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Stochastic resonance ~SR! occurs in nonlinear dynamical systems when the response to a weak coherent
input is enhanced by the presence of noise. While classical SR presently is an intensely studied phenomenon,
the role of quantum fluctuations has only started to be explored. We study SR in the temperature range where
quantum tunneling corrections to the classical rate of activation are relevant. For a particle subject to moderate-
to-large friction, we show that the semiclassical SR can be enhanced considerably by quantum fluctuations, as
compared to the predictions of a classical analysis. @S1063-651X~96!10406-2#

PACS number~s!: 05.40.1j, 05.30.2d, 03.65.Sq, 33.80.Be

I. INTRODUCTION

Stochastic resonance ~SR! is the process whereby noise
operates on a bistable system enhancing the response to a
weak coherent input. Since its discovery in 1981 @1#, this
intriguing phenomenon has been the object of many investi-
gations @2,3#, stimulated by its experimental demonstration
in biological @4# and physical @5# systems. The archetypal
model for SR is that of a particle of mass M moving in a
double-well potential while coupled to a heat bath at tem-
perature T and subject to a time-dependent periodic force.
Classically, the resonance condition is assumed when the
thermal hopping frequency is near the frequency of the
modulation @6–9#. In the presence of memory effects, the
classical escape rate out of a metastable well reads, for
moderate-to-strong friction @10#,

G cl5
va

2p

vR

vb
expS 2Vb

kBT
D . ~1.1!

Here, va5@V9(qa)/M #1/2 is the angular frequency of small
oscillations about the metastable minimum at qa ,
vb5@2V9(qb)/M #1/2, and Vb are the angular barrier fre-
quency and barrier height located at qb ~see also Fig. 1!.
Finally, the friction-renormalized angular barrier frequency
vR is defined below in Eq. ~1.3!. It is readily seen that the
classical transmission factor vR /vb,1 determines the dif-
ference between the transition-state-theory result and the cor-
rect classical rate due to diffusive recrossing of the barrier.
Equation ~1.1! generalizes the pioneering work by Kramers
@11# on the effects of frequency-independent friction on the
escape rate @see Eq. ~1.4!#, to include frequency-dependent
damping. The Arrhenius law ~1.1! predicts a vanishing rate
G as the temperature T approaches absolute zero. However,
quantum mechanics allows for the possibility of crossing the
barrier through quantum tunneling, thus leading to a finite
~quantum! rate at zero temperature.

Tunneling transitions dominate over thermally activated
transitions below a crossover temperature T0 ~see Fig. 2!. A
simple criterion for the crossover temperature T0 was given
by Gol’danskii in 1959 @12#. For a parabolic barrier with
barrier frequency vb , he found T05\vb/2pkB . The
Gol’danskii criterion, however, disregards the environmental
influence upon the tunneling rate. In order to fully take into

account the influence of dissipation and thermal fluctuation
on the tunneling rates, a functional integral approach has
been employed in @13–15#, while an alternative derivation
based on the periodic orbit approach is discussed in @16,17#.
It is found that

T05\vR/2pkB , ~1.2!

where vR is a dissipation-renormalized frequency, which is
given by the largest positive solution of the equation

vR
21vRĝ~vR!5vb

2 , ~1.3!

with ĝ(v) being the Laplace transform of the friction kernel
g(t) appearing in the classical equation of motion @see below
Eq. ~2.4!#. This relation holds independent of the detailed
shape of the potential provided that it is parabolic in the
vicinity of the barrier top. In the case of frequency-
independent damping, i.e., ĝ(v)5g , one has

vR5~vb
21g2/4!1/22g/2. ~1.4!

It should be noted that the crossover temperature may be
quite large and can reach for some physical and chemical
systems values larger than 100 K @17,18#. On the other hand,

FIG. 1. Thermal and quantum fluctuations influence the escape
rates out of the metastable wells of an asymmetric bistable poten-
tial.

PHYSICAL REVIEW E JUNE 1996VOLUME 53, NUMBER 6

531063-651X/96/53~6!/5890~9!/$10.00 5890 © 1996 The American Physical Society



in Josephson systems where both classical SR @19# and quan-
tum corrections @17,20,21# have been observed, it can be in
the mK region.

The role of quantum fluctuations on SR has only started to
be explored. As a matter of fact, the quantum tunneling
mechanism for the escape rate, and hence for SR itself, is
strongly dependent on temperature ~see Fig. 2!. Prior studies
@22,23# on the effects of quantum noise on SR addressed the
regime of very low temperatures T!T0 , where thermal hop-
ping events can be neglected.

The focus of this work is on the effect of quantum fluc-
tuations in the opposite regime T.T0 , where quantum tun-
neling is not the dominant escape mechanism, but leads to
significant quantum corrections of the classical rate of acti-
vation ~temperature regime of semiclassical SR, as denoted
in Fig. 2!. Because T0 is a function of the dissipation mecha-
nism, the relative size of the corresponding regions varies
with the dissipation strength. In particular, the semiclassical
region may extend far above T0 ~cf. Figs. 3–6!. In the
present work, we leave out only the very narrow temperature
region around T0 , determined by the condition

uT/T021u<(\vR /Vb)1/2 ~and denoted ‘‘crossover region’’
in Fig. 2!, where the evaluation of the escape rates requires
going beyond the semiclassical treatment discussed in Sec.
III.

In the investigated temperature regime T.T0 , the pres-
ence of the additional quantum ‘‘channel’’ for barrier cross-
ing results in a quantum correction factor that merely multi-
plies the classical rate of activation @see Eq. ~3.1! below#. We
find then that ~for moderate-to-strong damping! the semiclas-
sical SR can become enhanced up to two orders of magni-
tude, as compared to the predictions for SR based on a pure
classical SR analysis.

II. THE BISTABLE MODEL FOR SR

To investigate semiclassical SR, we consider a particle of
mass M moving in an asymmetric bistable potential V(q)
~see Fig. 1!, while coupled to a heat bath and subject to a
time-dependent periodic force f (t)52AcosVt. The poten-

FIG. 2. Dominant escape mechanism out of a
metastable potential, and corresponding regimes
for SR, depicted as a function of temperature.
T0 denotes the crossover temperature below
which quantum tunneling dominates over ther-
mally activated hopping events. Because T0 is a
function of the dissipation mechanism, the rela-
tive size of the corresponding regions varies with
the dissipation strength. In the region marked by
a question mark, quantum SR has, up to now, not
been investigated theoretically.

FIG. 3. Amplification vs temperature of the
semiclassical scaled signal-to-noise-ratio R̃sc as
influenced by quantum fluctuations ~solid line!.
For comparison, the classical signal-to-noise-
ratio is also depicted ~dashed line!. The inset
shows that the enhancement of the semiclassical
R̃sc, as compared to the classical one R̃cl, can
reach two orders of magnitude.
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tial is characterized by an asymmetry energy e>0 and be-
comes symmetric V(q)5V(2q) when e50. The two meta-
stable minima are located at 6qa and the maximum is at
qb50. Due to the asymmetry of the potential, the barrier
height to be surmounted by a classical particle located at
6qa is E65Vb7e/2, depending on whether the particle is
in the left or right well, respectively. Finally, the concept of
metastability makes sense only when the barrier is large
enough so that the forward G1 and backward G2 escape
rates out of the metastable states are very small compared
with all the other characteristic rate scales of the system dy-
namics. In particular, because the angular frequency va de-
scribes the time scale for decay within a metastable well, the
activation energies E6 are to be large enough compared to
the thermal energy kBT to ensure that the condition
va@G6 is fulfilled @17#.

The heat bath is assumed to be representable as a set of
harmonic oscillators interacting bilinearly with the particle
@24,25#, so that the Hamiltonian takes the form

H5
p2

2M 1V~q !1(
i51

N F p i
2

2m i
1

m iv i
2

2 S x i2 c i
m iv i

2 q D 2G
2q f ~ t !, ~2.1!

where the quantum thermal noise j(t) is fully characterized
by a zero average ^j(t)&050 and by the correlation function

^j~ t !j~0 !&05
\M
p E

0

`

dv vg̃~v !
cosh@v~\b/22it !#

sinh~v\b/2!
,

~2.2!

with b51/kBT . Here ^ &0 denotes the statistical average over
the bath degrees of freedom with all the coupling constants
c i set to zero and in the absence of the external force f (t).
Finally, the friction coefficient g̃(v)5*0

`dt cos(vt)g(t) ap-
pearing in Eq. ~2.2! is the real part of the Fourier transform
of the time-dependent memory friction

FIG. 5. Amplification vs temperature of the
semiclassical power amplitude h̃ 1

sc for different
coupling strengths a5g/2vb ~solid lines!. For
strong damping, the effects of quantum fluctua-
tions extend well above the crossover tempera-
ture T0 . For comparison, the classical power am-
plitudes are also drawn ~dashed lines!.

FIG. 4. Amplification vs temperature of the
semiclassical scaled fundamental amplitude h̃ 1

sc

which accounts for quantum tunneling fluctua-
tions ~solid line!. For comparison, the classical
power amplitude h̃ 1

cl is also drawn ~dashed line!.
The inset shows that quantum tunneling can en-
hance the semiclassical h̃ 1

sc , with respect to the
classical one h̃ 1

cl , up to two orders of magnitude.
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g~ t !5
1
M(

i

c i
2

m iv i
2cos~v it !. ~2.3!

The density and coupling constants of the environment are
chosen in such a way that the particle obeys the classical,
generalized Langevin equation of motion with memory fric-
tion @26#,

Mq̈1
]V
]q 1M E

2`

t
ds g~ t2s !q̇~s !5jc~ t !1 f ~ t !,

~2.4!

where the frequency-dependent damping coefficient g̃(v)
and the force-force correlation function ~2.2! satisfy in the
classical limit \bv→0 the Green-Kubo formula

g̃ ~v !5
1

MkBT
E
0

`

dt e ivt^jc~ t !jc~0 !&0 , ~2.5!

and jc(t) denotes the thermal classical noise. Hence, the
thermal noise is characterized by the temperature T of the
thermal bath and by the coupling g of the bistable system to
the environment. It should be noted that, while in the classi-
cal regime the Arrhenius factors for the escape rates G6 are
independent of damping, and only the attempt frequencies
are modified @cf. Eq. ~1.1!#, in the quantum regime the pref-
actor of the rate and the exponent as well crucially depend on
the strength g̃ of the dissipative mechanism. Finally, the ex-
pectation value with respect to the full Hamiltonian ~2.1! of
the particle’s position

P~ t !5^q~ t !& ~2.6!

is considered to be the output of the system when the exter-
nal time-dependent periodic force f (t)5A cosVt modulating
the particle’s position is applied. In particular, the averaged
power spectrum S̄(v)

S̄~v !5E
2`

1`

dte ivtC̄~t !5SN~v !1S ~as!~v !, ~2.7!

defined as the Fourier transform of the averaged correlation
function C̄ (t),

C̄~t !5
V

2pE0
2p/V

dt
1
2 ^q~ t1t !q~ t !1q~ t !q~ t1t !& ,

~2.8!

is the quantity of interest to investigate SR @27#. For a time-
periodic perturbation, the power spectrum results in the sum
of two contributions, where SN represents, in the absence of
a signal, the broadband ‘‘noise’’ background, possessing a
Lorentzian hump at v50. We shall denote this contribution
by SN

(0) . In the presence of the signal, SN is obtained as a
product of the Lorentzian hump with a correction factor ~of
order unity for weak signals! describing the influence of the
signal @6,8#. The ‘‘asymptotic’’ contribution S (as)(v) is
given by the sum of d spikes at integer multiples v5nV of
the signal frequency, reflecting the fact that, for times t large
compared to the time scale of the transient dynamics, the
motion acquires the periodicity of the external perturbation.
To be definite, P (t) and C̄ (t) reach the asymptotic values
@6,23#

lim
t→`

P~ t !5P ~as!~ t !5 (
m52`

`

Pm~V ,A !e2imVt, ~2.9!

lim
t→`

C̄~t !5C ~ as!~t !5 (
m52`

`

uPm~V ,A !u2e2imVt. ~2.10!

Thus, the amplitudes uPmu of the harmonics of P (t) deter-
mine the weights of the d spikes of the averaged spectral
power density in the asymptotic state S (as)(v) via the rela-
tion

S ~as!~v !52p (
m52`

`

uPm~V ,A !u2d~v2mV !. ~2.11!

The two quantities that have been examined in the literature
to investigate SR are the power amplitude h1 in the first

FIG. 6. Amplification vs temperature of the
semiclassical amplitude h̃ 1

sc for different driving
frequencies V ~solid lines!. For comparison, the
classical power amplitudes are also plotted
~dashed lines!. The inset shows that the tempera-
ture maximum Th1

* (V) of h̃1 is approximately
determined by the condition Ḡ(Th1

* )'V , over a
range of four orders of magnitude spanned by
V .
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frequency component of S (as)(v) @3,6# and the ratio R of
h1 to the power spectrum SN

(0)(v) of q(t) in the absence of
signal evaluated at the external frequency, the so called
signal-to-noise ratio ~SNR! @2,3,8#, i.e.,

h1~V ,A !:54puP1~V ,A !u2,
~2.12!

R:54puP1~V ,A !u2/SN
~0 !~V !.

By definition, h1 has the dimension of a length squared,
while R has the dimension of a frequency. Thus, to investi-
gate the interplay between noise and the coherent driving
input giving rise to the phenomenon of stochastic resonance,
we shall consider the two dimensionless quantities, the
scaled power amplification h̃1 , and the scaled signal-to-
noise ratio R̃. They read

h̃1~V ,A !5
h1~V ,A !

~Aqa
2/Vb!

2 , R̃5
~R/vb!

~Aqa /Vb!
2 . ~2.13!

Which one of the two quantities is the most appropriate to
investigate SR depends on experimental realization @2,3,19#.

A. Linear-response theory for SR

Because the main theme of SR is the stochastic enhance-
ment of the response to a weak coherent input, we shall
develop in this section a theory for SR based on Kubo’s
linear-response theory and on fluctuation-dissipation theorem
~FDT! @28#. The results for the spectral amplification h1 and
for the SNR are expressed in such a way as to be indepen-
dent of the precise dynamics of the system ~being dominated
by quantum tunneling transitions or/and by thermally acti-
vated hopping events!, assuming that the resulting escape
rates at thermal equilibrium ~i.e., for the undriven dissipative
bistable system! are known. This will enable us to compare
the predictions for SR above the crossover temperature T0
which would be obtained using a ‘‘classical approximation’’
for the rates @cf. Eq. ~1.1!#, with those obtained using decay
rates corrected for quantum tunneling as in Eq. ~3.1! ~see
below!.

In the linear-response approximation, only the harmonics
0,61 of P (as)(t) in Eq. ~2.9! are different from zero, P0
being just the thermal equilibrium value Peq in the absence
of driving, and P615 (A/2) x̃(6V) being related by Ku-
bo’s formula to the linear susceptibility x̃(V),

x̃ ~V !5
1
i\E2`

1`

dt e iVtu~t !^@q~t !,q~0 !#&b , ~2.14!

where ^ &b indicates the evaluation of correlation functions in
thermal equilibrium, that is, in the absence of driving. Fur-
ther, i^@q(t),q(0)#&b /\ becomes in the classical case the
correlation function 2b^q(0) q̇(t)&b . Finally, because the
linear susceptibility is related to the power spectrum in ther-
mal equilibrium by the fluctuation-dissipation theorem @28#,
we end up with

h1~V ,A !5pA2ux̃~V !u2, ~2.15!

R5pA2 1
\ coth~b\V/2!

ux̃~V !u2

Imx̃~V !
. ~2.16!

Thus, for weak external signals, computation of the power
amplitude h1 or of the signal-to-noise ratio R reduces to the
evaluation of correlation functions in thermal equilibrium. It
should be noted that the above relationships are valid inde-
pendently whether the relaxation occurs via quantum or via
classical decay.

In order to evaluate the linear susceptibility, a knowledge
of the equlibrium dynamics is required. In doing so, we shall
derive our results within a two-state description of the sys-
tem dynamics, introducing the probabilities nL,R for the sys-
tem to be in the left (n L) or right (nR) well of the bistable
potential. For a continuous system, nL,R are defined in terms
of the probability density p(q ,t) for the particle’s position as

nL~ t !512nR~ t !5E
2`

qb
dq p~q ,t !. ~2.17!

One then finds that the average value in Eq. ~2.6! is simply
P(t)5qa@nR(t)2nL(t)# and obeys, for a classical or a semi-
classical dynamics, the Markovian rate equation

Ṗ~ t !52Ḡ@P~ t !2Peq# , ~2.18!

with Ḡ5G11G2 being the sum of the forward and back-
wards rates G1 and G2 , respectively, and
Peq5(G12G2)/Ḡ. Information about the detailed form of
the potential is still contained in the averaged rate Ḡ. In the
deep quantum regime T!T0 ~cf. Fig. 2! the same set of
equations holds whenever incoherent tunneling dominates
the dynamics, as it always holds true for strong enough
damping or sufficiently high temperatures @29,30#. Corre-
spondingly, in the limit \bV/2!1, the ~classical or quan-
tum! linear susceptibility x̃(V) exhibits a quasielastic
Lorentzian peak of amplitude b(T)54(qa

2/kBT)G1G2 /Ḡ2

and width Ḡ. It reads

x̃~V !5b~T !
1

12iVḠ21 1O~\bV !2. ~2.19!

Finally, whenever the backward and forward rates are related
by the detailed balance condition G25G1exp(2e/kBT), we
obtain for the scaled power amplitude h̃1 the result

h̃1~V !5pS Vb

kBT
D 2 1

cosh4~e/2kBT !

Ḡ2

V21Ḡ2 . ~2.20!

Likewise, consistent with condition \bV/2!1, the cotan-
gent hyperbolicus in Eq. ~2.16! can be approximated as the
inverse of its argument, and the scaled signal-to-noise-ratio
R̃ becomes effectively independent of the external frequency
V . One finds

R̃5
p

2 S Vb

kBT
D 2 Ḡ/vb

cosh2~e/2kBT !
. ~2.21!

Several features of the results in Eqs. ~2.20!, ~2.21! are worth
commenting on.
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~i! Within a two-state description of the incoherent ~un-
driven! dynamics, the linear-response theory developed in
this section effectively reduces the study of SR to the com-
putation of the transitions rates G1 or G2 in thermal equi-
librium.

~ii! By construction, a linear-response approximation
holds independent of whether the coherent applied signal
A cos(Vt) involves adiabatic or nonadiabatic frequencies.
Hence, Eqs. ~2.15! and ~2.16! hold for any driving frequency
V . On the other hand, while the expression ~2.19! for the
linear susceptibility x̃(V) becomes exact in the classical
limit, the condition \bV/2!1 requires some care in the
semiclassical and deep quantum regimes and may lead to
restrictions on the values of the applied driving frequency
V , as discussed in the next section. Whenever the condition
\bV/2!1 is not fullfilled, the linear susceptibility x̃(V)
~and hence h̃1 and R̃) exhibits a more complicated depen-
dence on the frequency V , as determined by the fluctuation-
dissipation theorem @28# and by the Kramers-Kronig rela-
tionships between its real and imaginary parts @see Refs.
@22,23# for a discussion of SR in the deep quantum regime#.

~iii! Because Eqs. ~2.20!, ~2.21! hold independent of
whether the escape mechanism is classical or quantum, some
general features of SR can be discussed. For the case of weak
external signals considered in Eqs. ~2.20! and ~2.21!, both
the scaled amplitude h̃1 and the scaled signal-to-noise ratio
R̃ are independent of the external strength A , but only h̃1 is
still a function of the external frequency V . Hence, the po-
sition TR* of the temperature maximum of the scaled SNR
effectively depends only on intrinsic parameters of the
bistable system, such as the barrier height Vb , the asymme-
try e , the frequencies vb and va , and the friction coeffi-
cient. By contrast, the temperature maximum Th1

* of the
scaled power amplitude h̃1 is roughly determined by the
condition Ḡ(Th1

* )'V ~cf. inset of Fig. 6!. This implies that
SR for h̃1 can be externally controlled by varying the ap-
plied driving frequency V .

~iv! On the same basis as ~iii!, the generality of Eqs.
~2.20, 2.21! implies that the differences between classical,
semiclassical or quantum SR ~cf. Fig. 2! are determined

solely by the explicit temperature dependence of the escape
rates G6 . In particular, the classical @cf. Eq. ~1.1!# and the
semiclassical @cf. Eqs. ~3.1!, ~3.2!, ~3.3!# transition rates de-
cay exponentially as the temperature decreases. This, to-
gether with the ~classical and semiclassical! condition
Vb@kBT necessary for a separation of time scales, implies
that the SR maxima are determined by the competition be-
tween this exponential decay and the algebraic divergence
(kBT)22 in h̃1 or in R̃ as the temperature is decreased.
Hence, the detailed balance factor cosh22(e/2kBT)<1 only
plays a minor role, and always suppresses the SR phenom-
enon ~cf. Fig. 7!. With exp(2e/kBT)!1, i.e., Ḡ.G1 the
power amplification h̃1 is exponentially reduced proportion-
ally to @exp(2e/kBT)#2; likewise the SNR is exponentially
~but more weakly! reduced proportionally to exp(2e/kBT).
This finding is in accordance with prior studies of SR in
nonequilibrium systems @31#.

~v! On the other hand, in the deep quantum regime, the
decay rates exhibit a smoother ~non-Arrenhius! temperature
dependence and remain finite even at zero temperature @17#.
Further, within a two-state description of the incoherent tun-
neling dynamics, the energy splitting of the two discrete en-
ergy levels is of the order of the asymmetry energy e . Hence,
the detailed balance factor represents the relative occupation
of the energy levels and plays a crucial role. Whenever
e!kBT the energy levels are almost equally occupied, so
that the limit e50 yields no SR phenomenon @22,23#.

III. QUANTUM ENHANCEMENT OF SR

We now apply the linear-response results discussed in the
preceding sections, valid for weak external signals, to the
study of the semiclassical SR. Hence, the study of SR in the
temperature regime where quantum corrections to the classi-
cal rate of activation are important reduces to the evaluation
of the semiclassical escape rates G1 or G2 at thermal equi-
librium. The thermal escape rate G out of a single metastable
state can be evaluated using the thermodynamic method ~the
quantum transition-state theory! first proposed by Langer
@32#, or by an equivalent periodic orbit approach @16#. Fol-
lowing Langer, above T0 the escape rate is related to the

FIG. 7. Semiclassical amplitude h̃ 1
sc vs the

asymmetry of the potential ~solid line! compared
to the classical power amplitude ~dashed line!. As
in the classical case, h̃ 1

sc is maximal for a sym-
metric bistable potential (e50).
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imaginary part ImF of the free energy of the metastable sys-
tem by the relation G52(2/\)(T0 /T) ImF , and below T0
by G52(2/\) Im F . This method is, in fact, not restricted
to the classical regime, because one can study as well the
quantum partition function of the system. When the potential
is not metastable but consists of two wells, as in Fig. 1, the
Langer method will yield the backward and forward rates as
long as there is no phase coherence between the ‘‘reactant’’
and ‘‘product’’ states. In particular, as shown in Ref. @30#,
the ImF method can be justified for dissipative quantum tun-
neling as long as only incoherent tunneling occurs. However,
because Langer’s method requires thermal equilibrium with
the environment, it does not extend to the region of energy-
diffusion-limited classical escape, occurring for extremely
underdamped systems ĝ(vb)<vbkBT/Vb with ĝ!vb . Such
an extension is possible by use of the quantum kinetic turn-
over approach put forward in @17#. In the following, how-
ever, we shall restrict the discussion to moderate-to-large
friction such that the quantum transition-state theory always
holds.

Starting from a path-integral formulation, the free energy
can be evaluated semiclassically using a steepest-descent ap-
proximation whenever Vb@\vR @13–15,30#. The crossover
temperature T0 is then just the temperature below which the
lowest energy fluctuation mode around the classical path
q(t)5qb in the inverted metastable potential 2V(q) be-
comes unstable. This instability indicates the appearance of
an additional solution that becomes the dominant ~stable!
one below T0 . Just below T0 , this new solution is a periodic
~with period \b) oscillation of small amplitude about the
minimum of the inverted metastable potential, called
‘‘bounce.’’ As the temperature is further lowered, the bounce
solution evolves in a way that depends on the nonlinearity of
the potential. For the double-well potential, the bounce solu-
tion evolves far below T0 into trajectories called ‘‘instan-
tons’’ where the particle starts from the bottom of one well,
traverses the classically forbidden region between the two
wells repeatedly, and finally returns to the starting point
@30,17#. Hence, the appearance of the bounce solution is in-
terpreted as the appearance of a new channel for barrier
crossing ~quantum tunneling! which dominates at very low
temperatures. Above T0 , the presence of the additional
quantum channel for barrier crossing at thermal equilibrium
results in a quantum correction factor f q that merely multi-
plies the classical rate of activation @13–15,33#,

G5 f qGcl , ~3.1!

where

f q5 )
n51

`
1va

21n2n21nnĝ~nn !

2vb
21n2n21nnĝ~nn !

~3.2!

and n52pkBT/\ . The factor f q approaches unity for
T@T0 and diverges exactly at the crossover temperature
T0 . This divergence can be regularized taking into account
the deviation of the barrier top from the parabolic form
@14,17#; however, the regularization is only necessary in a
very small region in the vicinity of T0 ~crossover region in
Fig. 2!. Because, as we shall see, the maxima in the SNR and
in h1 appear well above T0 , for our purposes the regulariza-

tion is not needed. At temperatures T@\va /kB , the leading
quantum corrections are found to be given by the high-
temperature approximation @14#

f q5expF\2

24 ~va
21vb

2!/~kBT !2G , ~3.3!

being independent of the dissipative mechanism. Thus, the
overall effect of the quantum fluctuations is to facilitate the
escape because they increase the average energy of the par-
ticle in the metastable wells @the va

2 contribution in ~3.3!#
and because, for a particle that is almost thermally excited up
to the barrier top, they allow for tunneling through the re-
maining barrier region @vb

2 contribution in ~3.3!#. As shown
by Eq. ~3.3!, both effects result in an effective reduction of
the barrier and, correspondingly, in an exponential enhance-
ment of the relaxation rate.

So far we have considered arbitrary frequency-dependent
damping. In the following we shall focus on the case of
frequency-independent Ohmic damping where the product
~3.2! can be evaluated exactly in terms of gamma functions
G @33#:

f q5
G~12l0

1/n !G~12l0
2/n !

G~12la
1/n !G~12la

2/n !
, ~3.4!

where, introducing the dimensionless coupling parameter
a5g/2vb , the frequencies l0

6, la
6 are

l0
652va@a6~a211 !1/2# ,

~3.5!

la
652vb@a26~a22~va /vb!

2!1/2# .

It is now interesting to observe that for strongly damped
systems a@$1,va /vb% and intermediate temperatures
T0!T!4a2T0 , the above Eq. ~3.4! simplifies to @15#

f q5~4a2T0 /T !~11va
2/vb

2
!T/T0, ~3.6!

so that the rate can be enhanced substantially even well
above the crossover temperature. For temperatures
T@4a2T0 , the factor f q is again approximated by the high-
temperature expression Eq. ~3.3!. A final remark concerns
the conditions Vb@\vR and Vb@kBT that ensure the valid-
ity of the semiclassical approximation and of separation of
time scales, respectively. Because vR'vb for weakly
damped systems and vR'vb /a for strongly damped sys-
tems @cf. Eq. ~1.4!#, it is apparent that the potential barrier
can be very small compared to the scale \vb when the sys-
tem is heavily damped. On the other hand, for strongly
damped systems the condition of well separated time scales
amounts to Vb@(T/T0)(\vb/4pa). The fulfillment of these
conditions has been checked self-consistently in our numeri-
cal results. Further, because, as shown by Eq. ~3.3!, the lead-
ing quantum corrections at high temperatures are of order
(\b)2(va

21vb
2), to be consistent with the semiclassical ap-

proximation to the linear susceptibility of Eq. ~2.19! we have
to require that 2V2!va

21vb
2 .

In Figs. 3–6 we discuss our results for a symmetric
double-well potential (e50), where the SR phenomenon for
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the semiclassical and classical h̃1 ~but also for R̃) is maxi-
mal ~cf. Fig. 7!. The semiclassical scaled signal-to-noise ra-
tio R̃sc and scaled power amplitude h̃1

sc are investigated in
Figs. 3 and 4, respectively, for strong Ohmic coupling
a550. We assume vb5va and barrier height
Vb50.2\vb . For comparison also the classical ~i.e. \50)
quantities R̃cl and h̃1

cl are plotted ~dashed line!. It is now
apparent that for strongly damped systems and not too high
barriers, quantum fluctuations strongly influence the result-
ing output signal, as compared with the results of a classical
analysis. In particular, the amplitude of the maximum is en-
hanced by quantum corrections and the position of the maxi-
mum itself is shifted towards lower temperatures. As shown
in the insets of Figs. 3 and 4, in the proximity of the cross-
over temperature, the enhancement can even exceed two or-
ders of magnitude. As the coupling constant a is increased,
for fixed barrier height the position of the maximum of h̃1
(R̃) is shifted toward higher temperatures. On the other
hand, because for strongly damped systems quantum effects
persist well above T0 @cf. Eq. ~3.6!#, the semiclassical SR can
still differ appreciably from the classical SR. This is shown
in Fig. 5, where the power amplitude h̃1 is depicted for dif-
ferent values of the Ohmic coupling constant a . We choose
a550, 75, 100 ~left to right!. The solid lines correspond to
the semiclassical power amplitude h̃1

sc and the dashed lines
to the classical approximation h̃1

cl . For higher potential bar-
riers and fixed damping, the position of the temperature
maximum in h̃1

sc or R̃sc moves toward higher temperatures
and the system behaves classically. In other words, the
quantum-corrected lines merge into the classical approxima-
tion. As previously mentioned, the position of the tempera-
ture maximum Th1

* of h̃1
sc depends also on the applied exter-

nal frequency. This result is shown in Fig. 6, where Th1
*

becomes shifted toward lower temperatures as the driving
frequency V is decreased ~the curves are for V/vb51026,
1025, 1024). In the inset, the ratio Ḡ@Th1

* (V)#/V is de-
picted for five chosen frequency values. It is remarkable that
within four orders of magnitude for V the ratio is approxi-
mately constant and of order unity. Hence, the semiclassical
SR maximum appears roughly at the temperature Th1

* at
which the semiclassical rate Ḡ(Th1

* ) is at resonance with the
driving frequency V of the coherent external force. Finally,

as discussed above, h̃1 is plotted in Fig. 7 versus the asym-
metry e of the potential shown in Fig. 1, where we use
V9(qa)5V9(2qa)5Mva

2 . As in the classical case ~dashed
line! @31#, the semiclassical power amplitude ~solid line! is
maximal for symmetric systems.

IV. CONCLUSIONS

In conclusion, we investigated the phenomenon of SR in
relation to the complicated interplay between quantum and
thermal fluctuations. Because the thermal escape rate can be
strongly enhanced in the presence of the additional quantum
tunneling channel, we showed that both the signal-to-noise
ratio R and the power amplitude h1 can be strongly ampli-
fied by quantum fluctuations ~e.g., up to 300 times; cf. the
insets of Figs. 3 and 4!. As a difference compared to the
classical case, in a semiclassical analysis the effects of tem-
perature and dissipation on the escape rate have to be con-
sidered separately. Hence, our analysis represents the quan-
tum generalization of SR for the Kramers equation @34#,
thereby covering moderate-to-large friction on a unified ba-
sis.

The value itself of the crossover temperature T0 , where
quantum transitions dominate over tunneling events, strongly
depends on the friction coefficient, especially for heavily
damped systems. In particular, for strongly damped systems,
we showed that the effects of quantum fluctuations on SR
can extend well above T0 . At fixed friction, quantum effects
become successively washed out for systems with increasing
barrier heights.

Possibilities for observing the predicted tunneling correc-
tions to classical SR are abundant. These concern all those
systems where quantum corrections to the thermal escape
rate could be established ~see Sec. XI of Ref. @17#!. Appli-
cation of a small periodic ac perturbation then allows one to
study these SR quantum corrections. A particularly suitable
experimental system is a SQUID, where quantum corrections
to the escape rate @20#, and very recently the phenomenon of
classical SR @19# itself, have been observed.
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