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We investigate quantum stochastic resonance ~QSR! in the periodically driven spin-boson system with
Ohmic dissipation. For the special case a5

1
2 of the Ohmic coupling strength we present exact QSR results. For

arbitrary Ohmic coupling, the amplitude and the phase of the nonlinear response function vs temperature are
studied in a vast regime of temperatures and frequencies. It encompasses a dissipative-dominated incoherent
tunneling regime, occurring at ‘‘high’’ temperatures and adiabatic driving, as well as coherent tunneling
regimes, reached either at ‘‘low’’ temperatures or/and nonadiabatic frequencies. As a general feature, a prin-
cipal maximum appears only in parameter regimes where incoherent tunneling dominates over coherent tran-
sitions. Moreover, for adiabatic driving, the nonlinear QSR exhibits a noise-induced suppression of higher
harmonics accompanied by a characteristic phase change. @S1063-651X~96!05807-2#

PACS number~s!: 05.30.2d, 05.40.1j, 33.80.Be, 73.50.Td

I. INTRODUCTION

The process whereby noise operates on a bistable system
enhancing the response to an external periodic signal has
been termed stochastic resonance ~SR! @1#. While this phe-
nomenon has been the object of many investigations in clas-
sical systems @2,3#, the role of quantum fluctuations on SR
has only started to be explored @4–6#. In particular, the semi-
classical SR, that is, SR in the temperature region where
quantum corrections to the classical rate of activation are
important, has recently been investigated in @4#. On the other
hand, the possibility of SR in the deep quantum regime has
been addressed in @5#, where the role of incoherent tunneling
transitions at adiabatic driving frequencies is addressed. In
the present work, recent analytical results on the dynamics of
the driven spin-boson system will allow us to investigate the
nonlinear quantum stochastic resonance ~QSR! in a broad
parameter range encompassing adiabatic and nonadiabatic
frequencies, incoherent and coherent tunneling dynamics.
Parts of our analysis have been recently presented in @6#.
The investigation of the nonlinear QSR requires one to

solve the equation of motion of the nonlinearly driven dissi-
pative bistable system. We shall consider the case of an
Ohmic thermal environment characterized by a temperature
T and by a dimensionless coupling strength a of the bistable
system to the environment.
While the dynamics of the Ohmic dissipative spin-boson

system in the absence of driving has been investigated in
detail by several authors over the past 15 years ~for reviews
see @7–9#!, that of the driven spin-boson system has only
started to be explored @10–15#. In the absence of driving, at
sufficiently high temperatures and/or coupling, the dissipa-
tive effects are so strong that quantum coherence is com-
pletely suppressed by incoherent tunneling transitions ~see
the upper left inset in Fig. 1!. The incoherent dynamics can
then be modeled by rate equations. This picture still holds for
low-frequency driving @10# @region ~a! of Fig. 1#. The role of
incoherent transitions at low-frequency driving for classical
SR has been addressed in Ref. @16# and its extension to QSR
in @5#. In @5# it was found that QSR succeedingly vanishes as
the equality between forward and backward transitions is ap-

proached. In contrast, for classical and semiclassical SR, the
resonance is maximal in the absence of asymmetry @4,17#.
As the external frequency V is increased and/or when the
temperature is lowered, quantum coherence and/or driving-
induced correlations render the dynamics intrinsically non-
Markovian @13,14# @regions ~b! and ~c! of Fig. 1#. In this
work we investigate both QSR in the linear-response regime,
where only thermal equilibrium correlation functions for the
spin-boson system need to be evaluated, as well as the non-
linear QSR in the region of the (T ,V) plane outlined in Fig.
1 @18#. In particular, for the nonlinear QSR we predict vari-
ous phenomena, both for coherent ~conventional quantum
coherent regime for adiabatic driving at low temperatures,
driving-induced coherent regime for nonadiabatic driving!
and incoherent driven quantum dynamics. Apart from the
generic amplification of the first harmonic of the periodic
quantum output, we also discover the existence of the quan-
tum analog of noise-induced suppressions ~NIS! of higher
harmonics @17# and, correspondingly, a characteristic sudden
change in the phase shift between periodic response and ap-
plied driving signal.
The paper is organized as follows. In Sec. II we describe

our model and define the quantities of interest to investigate
QSR. As a first example, we consider the case of a weak
external signal, where the response function may be evalu-
ated within Kubo’s linear-response theory, so that only the
knowledge of thermal equilbrium properties of the dissipa-
tive two-level system ~TLS! is required. We then focus our
attention on the linear QSR in the parameter regime
\V!kBT , where a simplified expression for the quantum
fluctuation dissipation theorem holds ~this restriction is re-
leased later on in Sec. IV!. The investigation of the linear-
response theory for QSR turns out to be not only interesting
per se, but also sheds light on the physics that rules QSR
~related to thermal equilbrium properties of the dissipative
TLS!, together with the qualitative differences between lin-
ear and nonlinear QSR.
Sections III–V constitute the main part of this work.

There, with the aid of recent results on the dynamics of
driven dissipative two-state systems, we investigate the non-
linear QSR. In Sec. III the nonlinear QSR is examined for
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the case a51/2 of the Ohmic coupling strength. Therein, we
obtain exact QSR results. In Sec. IV an iterative scheme is
discussed that allows the evaluation of the nonlinear re-
sponse function, within the non-interacting-blip approxima-
tion ~NIBA! for the stochastic forces, for any driving
strength and frequency. As a first application, we consider
the linear-response limit of our results and ~within the NIBA!
we evaluate the linear susceptibility for any driving fre-
quency V . Second, we release the assumption of weak driv-
ing strengths and investigate the nonlinear QSR in the re-
gimes of adiabatic driving where ~within the NIBA! the
dynamics is Markovian and of nonadiabatic driving where a
driving-induced coherence occurs. In Sec. V we study the
nonlinear QSR in the regime of weak coupling and low tem-
peratures ~where coherent tunneling occurs and the NIBA
fails!. In doing so we use the results of a golden rule ap-
proach to the TLS dynamics. Finally, in Sec. VI we present
our conclusions.

II. THE BISTABLE MODEL FOR SR

As a working model we consider a TLS Hamiltonian.
Here the bath is described as an ensemble of harmonic os-
cillators with a bilinear coupling in the TLS bath coordinates
and we allow for an externally applied harmonic force
(\ê/a )cosVt, of amplitude \ê/a and frequency V. Then, the
driven spin-boson Hamiltonian reads

H52
\

2 ~Dsx1e0s z!2
\ê

2 cos~Vt !s z

1
1
2(a S pa

2

ma
1mava

2 xa
22caxaas z D . ~2.1!

The s’s are Pauli matrices and the eigenstates of s z are the
basis states in a localized representation, while a is the tun-
neling distance. The tunneling splitting energy of the sym-
metric TLS is given by \D , while the asymmetry energy is

\e0 . Finally, the dissipative influence of the bath is fully
characterized by a zero average ^j(t)&050 and by the cor-
relation function

^j~ t !j~0 !&05
\

pE0
`

dvJ~v !
cosh@v~\b/22i t !#
sinh~v\b/2! ~2.2!

of the stochastic force j5(acaxa @7,8#. Here b51/kBT is
the inverse of the temperature and ^&0 denotes the ensemble
average with respect to the bath Hamiltonian with all the
coupling constants ca set to zero. J(v) is the spectral density
of the environment and we make the specific choice of
Ohmic dissipation J(v)5(2p\/a2)ave2v/vc, where a is
the dimensionless coupling strength and vc is a cutoff fre-
quency @7–9#. In the following we shall assume that the cut-
off frequency vc in the environment modes is the highest
frequency of the problem.
Finally, the dynamical quantity P (t)5^s z(t)& is consid-

ered to be the output of the system to the external perturba-
tion and the averaged power spectrum S̄ (v)

S̄ ~v !5E
2`

1`

dte ivtC̄~t !, ~2.3!

defined as the Fourier transform of the averaged correlation
function C̄ (t)

C̄~t !5
V

2pE0
2p/V

dt
1
2 ^s z~ t1t !s z~ t !1s z~ t !s z~ t1t !&,

~2.4!

is the quantity of interest to investigate SR @20#. The com-
bined influence of dissipative and driving forces at interme-
diate times results in a reduction of the coherent tunneling
motion of the isolated TLS by incoherent tunneling transi-
tions. For times t large compared to the time scale of the
transient dynamics, the motion acquires the periodicity of the
external perturbation and P (t) and C̄ (t) reach the asymp-
totic values

FIG. 1. Dynamics of the
driven ( êÞ0) two-state system
for weak Ohmic coupling a . As
the temperature T or frequency
V is varied in the (T ,V) plane,
different tunneling regimes are en-
countered. For strong coupling,
regimes ~a! and ~b! extend down
to the lowest temperatures. For
comparison, the static case
( ê50) is considered in the inset,
where the parameter regions in the
(a ,T ) plane for incoherent or
quantum coherent ~QC! tunneling
are drawn.
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lim
t→`

P~ t !5Pas~ t !5 (
m52`

`

Pm~V , ê !e2imVt

5 (
m52`

`

uPm~V , ê !ue2i~mVt2wm! ~2.5!

and

lim
t→`

C̄~t !5Cas~t !5 (
m52`

`

uPm~V , ê !u2e2imVt. ~2.6!

The harmonics Pm of P(t) present the quantity of interest to
investigate the nonlinear QSR. The amplitudes uPmu deter-
mine the weights of the d spikes of the averaged spectral
power density in the asymptotic state Sas(v) via the relation
@6,19#

Sas~v !52p (
m52`

`

uPm~V , ê !u2d~v2mV !. ~2.7!

In order to investigate QSR we shall examine the scaled
power amplitude hm in the mth frequency component of
Sas(v) and the associated phase shift wm as well, i.e.,

hm~V , ê !54puPm~V , ê !/\êu2,

wm~V , ê !5arctanS ImPm~V , ê !

RePm~V , ê !
D . ~2.8!

As a final remark we observe that, for weak external signals,
only the fundamental power amplitude h1 and phase shift
w1 are different from zero to linear order in the external
strength. Within such an approximation, these quantities are
related to the amplitude and phase of the linear susceptibil-
ity, respectively. Hence they can be also evaluated by com-
puting correlation functions at thermal equilibrium. The re-
sults of this procedure are discussed in the following
subsection for the case of slow driving fields \bV!1.
For strong driving forces, the linear-response approxima-

tion breaks down and the evaluation of h1 and w1 , or of
higher harmonics, involves the computation of statistical
quantities of the full Hamiltonian ~2.1!. As we shall see, in
the nonlinear regime strong nonlinear effects such as a noise-
induced suppression of higher-order harmonics may appear.

Linear response for QSR

For weak external signals, Pas(t) can be evaluated within
the linear-response approximation. Then, only the harmonics
0,61 of Pas(t) in Eq. ~2.5! are different from zero. In par-
ticular, P0 becomes just the thermal equilibrium value Peq of
the operator sz in the absence of driving and
P615\êx̃(6V) is related by Kubo’s formula @21# to the
linear susceptiblility x̃qq(V)5a2x̃(V) for the particle posi-
tion q5a/2sz , where

x̃ qq~V !5
2i
\ E

2`

1`

dte2iVtu~t !^@q~t !,q~0 !#&b .

~2.9!

Here u(t) is the Heaviside function and @ ,# denotes the com-
mutator and ^&b the thermal statistical average of the full
system in the absence of the external periodic force

( ê50). Hence, from the definitions of Eq. ~2.8!, the study of
the power amplitude h1 or of the phase w1 reduces to the
evaluation of the linear susceptibility, yielding

h1~V !54pux̃~V !u2, ~2.10!

w15arctanS Imx̃~V !

Rex̃~V !
D . ~2.11!

Further, the absorptive part Imx̃(V) of the susceptibility is
related to the Fourier transform C̃(V) of the symmetrized
correlation function C(t)5Cqq(t)/a2, where Cqq(t)
5 1

2 ^q(t1t)q(t)1q(t)q(t1t)&b , by the fluctuation dissi-
pation theorem @22#

\Imx̃~V !5tanh~\bV/2!C̃~V !. ~2.12!

The real part Rex̃(V) follows from Eq. ~2.12! through the
Kramers-Kronig relations. Hence the study of the linear SR,
within an approach based on Kubo’s theory, involves the
evaluation of correlation functions in thermal equilibrium.
The computation of the symmetrized correlation function
C̃(V) can be carried out approximately @7,8,23,24#. As we
shall see, an investigation of the linear response for QSR will
be fundamental to understand some general characteristics of
QSR, together with the qualitative differences between the
linear and nonlinear QSR.
Let us first consider the case of weak coupling a!1,

which exhibits the richest behavior as the temperature is var-
ied. At low temperatures the tunneling dynamics is domi-
nated by quantum coherent effects even in the presence of
dissipation @see the inset in Fig. 1, where QC denotes the
parameter region in the (a ,T) plane where quantum coher-
ence occurs @7–9##. To be definite, at low temperatures
kBT,E/2pa @where E :5\(De

21e0
2)1/2 denotes the bath

renormalized energy difference between the two energy lev-
els and De(a) the renormalized tunneling splitting# and
weak coupling, the two-level system undergoes damped co-
herent oscillations of frequency E/\ and lifetime gcoh . Su-
perimposed to this is an incoherent tunneling motion with
decay time g rel towards the thermal equilibrium value
Peq5 \e0/E tanh(E/2kBT). The corresponding symmetrized
correlation function C̃(V) has been evaluated in @23#. It ex-
hibits two narrow resonances of width gcoh around
V56E/\ related to the damped coherent oscillations of the
TLS, and a quasielastic peak of width g rel at V50, describ-
ing incoherent relaxation towards thermal equilibrium.
Within a Lorentzian approximation valid at \bV!1, the
linear susceptibility x̃(V) is readily obtained by use of the
fluctuation dissipation theorem Eq. ~2.12! and reads

x̃ ~V !5x̃coh~V !1x̃ rel~V !, ~2.13!

where
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x̃ coh~V !5
\De

2

4E2 tanh
E
2kBT

3S 1
E/\1~V1igcoh!

1
1

E/\2~V1igcoh!
D ,

~2.14!

x̃ rel~V !5S \e0
E D 2 1

4kBT
1

cosh2~E/2kBT !

1
12iVg rel

21 ,

~2.15!

and the dissipation renormalized tunneling matrix De is

De5DS D

vc
D a/~12a !

@cos~pa !G~122a !#1/~222a !.

~2.16!

Finally, the rates gcoh and g rel are given by

g rel5paS \De

E D 2 E\coth E
2kBT

, ~2.17!

gcoh5
g rel
2 12paS \e0

E D 2 kBT\
. ~2.18!

Hence the linear susceptibility x̃(V) is the sum of a coherent
and of an incoherent contribution, the former being the only
one that survives as T→0. From Eqs. ~2.10!–~2.15! the lin-
ear QSR can now be straightforwardly investigated. In Fig. 2
the power amplitude h1 in ~2.10!, i.e., the squared amplitude
of the linear susceptibility x̃ , is plotted versus temperature in
the parameter region where quantum coherence occurs ~solid
line!. The frequencies are expressed in units of De and the
temperature is given in units of \De /kB . Because the coher-
ent contribution ~2.14! decreases monotonically with tem-
perature ~see the dashed line!, we find the intriguing result
that the maximum for QSR arises because of the incoherent
relaxational dynamics of an asymmetric TLS towards ther-
mal equilibrium ~with e050, one has x̃ rel50 for a symmetric
TLS!. Finally, the QSR maximum in h1 , obtained by com-
bining Eq. ~2.10! with Eqs. ~2.14! and ~2.15!, is attained

roughly when E'kBT . Because of the smooth temperature
dependence of the relaxation rate g rel , the maximum is de-
termined by the competition between the detailed balance
factor 1/cosh2(E/2kBT) ~which saturates to the value 1 when
2kBT>E) and the algebraic factor T21 stemming from
x̃ rel(V) in Eq. ~2.15!.
As the temperature is increased dissipation-induced inco-

herent tunneling transitions become increasingly important,
until the coherent tunneling motion is destroyed above the
temperature T*(a)5E/2pakB @23#. Correspondingly, the
three peaks of ~2.15! merge into a single quasielastic peak of
width ga ,

x̃ ~V !5
1

4kBT
1

cosh2~\e0/2kBT !

1
12iVga

21 . ~2.19!

On the other hand, for strong coupling a>1/2 incoherent
transitions always dominate the dynamics at any tempera-
ture. This parameter regime is sketched in the upper left inset
of Fig. 1 ~incoherent tunneling!. Hence, at high temperatures
T.T*(a) for weak coupling, as well as always for strong
coupling, the dynamics can be described in terms of a Mar-
kovian rate equation for the position’s probability

Ṗ~ t !52ga@P~ t !2Peq# , ~2.20!

with rate ga and towards the equilibrium value
Peq5tanh(\e0/2kBT). When a>1 or/and when T.T* one
finds that ga5Re S(e0) and Peq52tan(pa)ImS(e0)/
ReS(e0)5tanh(\e0/2kBT). Here

S~e0!5
De

p S \bDe

2p D 122a G~a1i\be0/2p !

G~12a1i\be0/2p !
~2.21!

and G(z) denotes the gamma function. Again, from an analy-
sis of Eq. ~2.19! the linear QSR in the regime of incoherent
tunneling can be investigated. Similar to the previously dis-
cussed QC case, the QSR maximum is attained roughly
when \e0'kBT . The QSR is determined by the competition
between the detailed balance factor 1/cosh2(\e0/2kBT),
which exponentially increases with the temperature until it
saturates to the value 1 when 2kBT>\e0 , and the algebraic

FIG. 2. Amplification vs tem-
perature of the fundamental am-
plitude h1 for weak signals in the
region of quantum coherent tun-
neling ~full line!. Because the co-
herent contribution ~ 2.14! to h1
decreases monotonically ~dashed
line!, the QSR maximum arises
solely because of incoherent tran-
sitions. Here and in the following
figures, frequencies are in units of
De and temperatures in units of
\De /kB .
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factor T21 in the incoherent susceptibility @5#. For a quasi-
symmetric system \e0!kBT the saturation is immediately
attained and the linear susceptibility shows only a monotonic
decay as the temperature is increased; hence no SR peak
occurs.

III. AN EXACT SOLUTION FOR THE NONLINEAR QSR:
THE CASE a51/2

The main theme of the periodically driven spin-boson sys-
tem is the modification of the coherent tunneling motion of
the isolated TLS by the combined influence of the environ-
mental and driving forces. As discussed in the preceding
section, the environmental stochastic forces act in reducing
the transient coherent tunneling by incoherent processes un-
til, at long times, quantum coherence is completely sup-
pressed. For driven systems the asymptotic dynamics ac-
quires the periodicity of the periodic force, independently of
the characteristics of the thermal bath. An exact formal so-
lution for any strength of the external force, which is in the
form of a power series in the tunneling transitions, has been
obtained using a real-time path-integral approach in
@10,13,14#. For arbitrary coupling a one has to resort to ap-
proximate solutions of the formal solution. In Secs. IV and V
we shall discuss controlled approximations that cover the
entire range of parameters outlined in Fig. 1. In this section
we shall consider the special value a51/2 of the Ohmic
friction. In contrast to the classical case, where no exact
closed analytical solutions are yet available for the nonlinear
dynamics, in the quantum case the two-state approximation
of the dynamics within an extended bistable potential allows
an exact solution for this special value of the Ohmic strength.
As shown in @10#, the power series in the tunneling transi-
tions can be summed up exactly in analytic form to give

Pm~V , ê !5
g

g2imV

2vc

p
hm~2imV ,g !, ~3.1!

with

h2k~l ,g !5~21 !ksin~pa !E
0

`

dte2lt2gt/22S~t !

3e2ikVtsin~e0t !J2kS 2 ê

V
sin

Vt

2 D ,
h2k11~l ,g !5~21 !ksinpaE

0

`

dte2lt2gt/22S~t !

3e2i~k11/2!Vtcos~e0t !J2k11S 2 ê

V
sin

Vt

2 D .
~3.2!

Here S(t)52aln@\bvc /psinh(pt/\b)#, Jm(z) is a Bessel
function of the first kind, and g5pD2/2vc is the dissipation
renormalized tunneling frequency De @see Eq. ~2.16!# for
a51/2. In Fig. 3 the power amplitude h1(V , ê) is plotted as
a function of the temperature for different driving strengths
ê ~frequencies are in units of g and temperatures in units of
\g/kB). Following the discussion of Sec. II, h1 can be in-
terpreted as the squared amplitude of a generalized nonlinear
susceptibility xNL(V , ê). For highly nonlinear driving fields
ê.e0 the power amplitude decreases monotonically as the
temperature increases ~uppermost curve!. As the driving
strength for periodic driving ê is decreased, a shallow mini-
mum followed by a maximum appears when the static asym-
metry e0 equals, or slightly overcomes, both the external
frequency V and strength ê ~intermediate curves!. For even
smaller external amplitudes, the nonlinear QSR can be stud-
ied within the linear-response theory ~dashed curve!, where
the linear susceptibility for the special case a51/2 takes the
analytic form

x̃ ~V !5
1
2pi

g

g2iV
f~V !

\V
, ~3.3!

with

FIG. 3. Amplification vs tem-
perature of the fundamental am-
plitude h1 @cf. ~ 2.8!# via quantum
SR, for different driving strengths
ê in the exactly solvable case
a51/2 of the Ohmic strength.
The principal maximum occurs in
the temperature region where in-
coherent tunneling prevails ~see
Fig. 4!.
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f~V !5c~x1!2cS x12i
\bV

2p D1c~x2!

2cS x22i
\bV

2p D , ~3.4!

and x65 1
21 \b/2p (g/26ie0). In the linear region the

shallow minimum is washed out and only the principal maxi-
mum survives. It is now interesting to observe that, because
for the undriven case the TLS dynamics for a51/2 is always
incoherent down to T50, again the principal maximum
arises at the temperature T at which the relaxation process
towards thermal equilibrium is maximal. On the other hand,
the minimum in h1 appears in the temperature region where
driving-induced coherent processes are of importance. This
means that the power amplitude h1 @or the nonlinear suscep-
tibility xNL(V , ê)# plotted versus frequency shows reso-
nances when V'e0 /n (n51,2, . . . ) ~full line in Fig. 4!.
This is a typical nonlinear effect, which has to be compared
with the resonances at E56\V that the coherent part ~2.14!
of the linear susceptibility exhibits in the quantum coherent
regime. Correspondingly, the dynamics is intrinsically non-
Markovian. As the temperature is increased, the coherence is
increasingly lost ~note the behavior of the dot-dashed and
dashed lines in Fig. 4!.

IV. INCOHERENT AND COHERENT QSR WITHIN THE
NIBA

In the static case ( ê50), the major difficulty for an ana-
lytic resummation of the series in the TLS tunneling transi-
tions arises from the bath-induced correlations between dif-
ferent transitions. Further, it is known that a perturbative
approach in the Ohmic coupling would fail in describing the
destruction of the quantum coherent motion induced by the
environmental stochastic forces at finite temperatures. In the
presence of time-dependent driving the situation is even
more intricate, because one also has to take into account the
correlations induced by the external field. The bath-induced
correlations can be treated within the non-interacting-blip ap-
proximation for the stochastic force @10,13#, whose range of
validity is, in general, different as compared to the undriven
case, and it has to be determined self-consistently. A set of
coupled equations for the Fourier coefficients Pm has been
recently derived for any strength and frequency of the driv-
ing force @13#, yielding the result

P05
f 0~0 !

g0~0 !
2 (

mÞ0

g2m~0 !

g0~0 !
Pm , ~4.1!

and for mÞ0

Pm5
i

mV S fm~2imV !2(
m8

gm2m8~2imV !Pm8D .
~4.2!

The coefficients fm are defined by Eq. ~3.2! via
fm5D2hm(2imV ,0); for the gm one has

g2k~l !5~21 !kD2cospaE
0

`

dte2lt2S~t !

3e2ikVtcos~e0t !J2kS 2 ê

V
sin

Vt

2 D ,
g2k11~l !5~21 !k11D2cospaE

0

`

dte2lt2S~t !

3e2i~k11/2!Vtsin~e0t !J2k11S 2 ê

V
sin

Vt

2 D .
~4.3!

We now observe that the coupled ensemble of equations
~4.2! can be converted again into the integro-differential
equation

Ṗas~ t !5F~ t !2
V

2pE0
2p/V

dt8Pas~ t8!L~ t8,t2t8! ~4.4!

that describes the time evolution within a period. Here

F~ t !5(
n

e2inVt f n~2inV !,

L~ t ,t8!5(
m ,n

e2imVte2inVt8gm~2inV !. ~4.5!

This result, within the NIBA, is still exact and explicitly
shows that, even at high temperatures and/or strong cou-
pling, the asymptotic driven dynamics is intrinsically non-
Markovian @in contrast to Eq. ~2.20! for the undriven case#.
In the following we shall first briefly discuss the linear re-
sponse limit of Eqs. ~4.1! and ~4.2! valid for any frequency.
Subsequently, we shall release the assumption of weak ex-
ternal fields and we shall study the nonlinear QSR in the case
of high-frequency and low-frequency driving, respectively,
where two different approximations of Eq. ~4.4! are dis-
cussed. For the weak-coupling case and not too low tempera-
tures ~so that the NIBA still applies!, they would represent
the regions ~a! and ~b!, respectively, of Fig. 1. Region ~c! of
Fig. 1 is investigated in Sec. V. In the strong-coupling case,
only region ~a! or ~b! may be attained, but not region ~c!
because adiabatic quantum coherence at strong friction never
occurs.

A. Linear response

On the assumption that the driving force is weak, Eqs.
~4.1! and ~4.2! can be evaluated by linearizing them in the
amplitude ê of the time-dependent force. To linear order in
ê , only the coefficients fm and gm with m50,61 need to be
considered. Further, the linearized coefficients f 0

(0) ,g0
(0) are

of order zero in ê , while f 1
(1) ,g1

(1) are of order ê . In terms of
these linearized coefficients and of the zeroth-order function

v~V ,e0!5D2cospaE
0

`

dte iVt2S~t !cos~e0t !, ~4.6!
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one finds, for the linear susceptibility, the expression

x̃ ~V !5
1

\ê@2iV1v~V ,e0!#

3S f 1~1 !~2iV !

2g1
~1 !~2iV !

f 0
~0 !~0 !

g0
~0 !~0 !

D . ~4.7!

Futher, by comparison with Eq. ~2.21! and the definition of
Peq in the line above it, one obtains f 0

(0)(0)/
g0
(0)(0)5Peq5tanh(\e0/2kBT) and g0

(0)(0)5ga . This result,
within the NIBA, holds for any driving frequency V . It is
now interesting to observe that, due to the specific form of
the Ohmic interaction S(t) @see the line below Eq. ~3.2!#,
whenever the condition V!akBT/\ is met, one can linear-
ize the integrands defining v(V ,e0) and the linearized coef-
ficients f 1

(1)(2iV),g1
(1)(2iV) in the small quantity Vt . We

obtain v(V ,e0).v(0,e0)5g0
(0)(0) together with

f 1
~1 !~2iV !. f 1

~1 !~0 !5
ê

2
d
de0

f 0
~0 !~0 !

and

g1
~1 !~2iV !.g1

~1 !~0 !5
ê

2
d
de0

g0
~0 !~0 !,

from which the linear susceptibility is readily found in the
simple Lorentzian form of Eq. ~2.19!. We defer the investi-
gation of QSR in the nonadiabatic regime to the next subsec-
tion.

B. High-frequency QSR

In order to discuss a systematic treatment of Eq. ~4.4!
useful at high driving frequencies, it is convenient to recast it
in the form

Ṗas~ t !5F~ t !2
V

2p(
m
Gm~ t !E

0

2p/V
dt8Pas~ t8!e2imVt8,

~4.8!

Gm~ t !5(
n

e2inVtgm1n~2inV !. ~4.9!

We observe now that at high frequencies only small-m val-
ues in the sum ~4.8! are of importance, because they repre-
sent contributions almost at resonance with the fast oscillat-
ing field. In particular, taking m50 amounts to evaluating
Pas(t) to order 1/(tcV). Here tc

21 :5limê→0g0(0)5ga is
the only nonvanishing coefficient gm in ~4.3! for zero exter-
nal driving field. It defines the time scale for the system to
reach thermal equilibrium in the absence of driving. We re-
cover in this case the high-frequency approximation of ~4.2!
previously discussed in Ref. @13#. On the other hand, because
Eq. ~4.8!, together with ~4.9!, within the NIBA is still exact,
we can now evaluate an mth harmonic Pm of Pas(t) to the
order (1/tcV)s11 if mÞ0, to the order ~1/Vtc!

s if m50,
which we denote Pm

(s) , by use of the zeroth and first s har-
monics of Pas(t) by means of the relation

Pm
~s11 !5

i
mV S fm~2imV !

1 (
k52s

s

Pk
~s2uku!gm2k~2imV !D , mÞ0, ~4.10!

with the initial value P0
(0)5 f 0(0)/g(0). The average value

P0
(s) , sÞ0, is obtained by inserting Eq. ~4.10! in Eq. ~4.1!.
The dynamics described by ~4.10! can be highly coherent,

as revealed by a numerical analysis of the Fourier coefficient
P1(V , ê) as a function of the driving frequency: When the
external frequency matches fractional values of the intrinsic
bias, resonances are found ~see the inset in Fig. 5!. Finally,
we observe that, because a fast oscillating field results in
reducing the bath-induced correlations, whenever the NIBA
is applicable in the absence of driving, it is justified even
better in the presence of a high-frequency driving ~i.e., al-
ways for strong coupling a.1; for weak coupling a!1
when 2pakBT.\De or e0.De). Figure 5 describes the first

FIG. 4. Fundamental ampli-
tude h1 vs driving frequency V
for different temperatures in the
exactly solvable case a5

1
2. At

high temperatures only incoherent
relaxation occurs ~dashed line!.
As the temperature is decreased,
resonances are found at submul-
tiples V5e0 /n (n51,2, . . . ) of
the static bias ~dot-dashed and full
lines!. These denote the occur-
rence of driving-induced coher-
ence.
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amplitude h1 versus temperature. In the investigated param-
eter regime the power amplitude always shows a monotonic
decay as the temperature is increased. This is in accordance
with the findings of the previous sections ~see Figs. 2–4!,
where the maximum in the power amplitude was found in
the temperature regime dominated by incoherent tunneling.
This is also in accordance with results on classical SR at high
driving frequencies @19#.

C. Low-frequency QSR

At low frequencies the above discussed truncation scheme
is useless because the contribution from all the harmonics
has to be considered. Whenever Vtc!1 ~that is,

\V!2pakBT), we can approximate gm(2inV).gm(0)
and fm(2inV). fm(0) in Eq. ~4.5! to get
L(t ,t8)→ga(t)d(t8) and F(t)→ga(t)Peq(t). Hence Pas(t)
in Eq. ~4.4! obeys the time-dependent rate equation

Ṗas~ t !52ga~ t !@Pas~ t !2Peq~ t !#, ~4.11!

with a time-dependent rate ga(t)5ReS@«(t)#
and time-dependent adiabatic equilibrium Peq(t)
52tan(pa)ImS@«(t)#/ReS@«(t)# . Here S(e) is defined
by Eq. ~2.21! and «(t)5e01 êcosVt plays the role of a time-
dependent adiabatic asymmetry. Finally, the rate equation
can be solved in terms of quadratures to give

FIG. 5. Monotonic decay vs temperature of the first amplitude h1 for nonadiabatic driving. As shown in the inset, in the investigated
parameter regime the dynamics is dominated by driving-induced coherent transitions. Correspondingly, h1 does not exhibit a peak as the
temperature is varied.

FIG. 6. Noise-induced sup-
pression ~NIS! of the third ampli-
tude h3 vs temperature in the
adiabatic incoherent regime
~4.12! as the frequency is de-
creased.
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Pm~V , ê !5
V

2pE0
2p/V

dt0ga~ t0!Peq~ t0!e2imVt0E
0

`

dt1

3e2imVt1expS 2E
t0

t01t1
dtga~ t ! D . ~4.12!

Equation ~4.12! completely describes the nonlinear SR dy-
namics at low frequency within the validity range of the
NIBA; see also @10,13#. We observe that classical nonlinear
SR has been recently investigated in a superconducting
quantum interference device system @26#. Lowering further
the temperature brings the system into the regime of Eq.
~4.12!, where nonlinear QSR could be observed for a mac-
roscopic quantum system. At low frequencies, the NIBA is
justified for strong damping a.1, while for weak coupling
a,1 it is valid in the region 2pakBT>\De or
u«(t)u@De . In the small coupling limit a!1 the relaxation
rate in ~4.11! and ~4.12! becomes

ga~ t !5paDe
2 «~ t !
~2pakT !21«~ t !2coth

\«~ t !
2kBT

~4.13!

and Peq(t)5tanh@\«(t)/2kBT# . It should be noted that in the
nonlinear regime ê@e0 the presence of the term 2pakBT in
the denominator is crucial because «(t) is zero at any instant
t , obeying t51/Varcos(e0 / ê). This explicitly shows the
breakdown of any perturbative approach to deal with time-
dependent problems at high temperatures in the nonlinear
regime.
The nonlinear QSR is investigated in Fig. 6, where the

third power amplitude h3 is plotted versus temperature. We
find the quantum analog of a NIS of higher harmonics as the
frequency is decreased. See Ref. @17# for the phenomenon of
NIS in the classical case. As shown in Fig. 7, the related
phase shift w3 possesses a crossover at the very same value
of the temperature at which the NIS appears. To understand
the results shown by Figs. 6 and 7 it is convenient to rewrite
~4.12! as the sum of a quasistatic Pm

(qs) and a retarded con-
tribution Pm

(ret)

Pm~V , ê !5Pm
~qs!~ ê !1Pm

~ret!~V , ê !, ~4.14!

FIG. 7. Discontinuity in the
associated phase shift w3 in corre-
spondence of the NIS in the am-
plitude h3 .

FIG. 8. Amplification vs tem-
perature of the power amplitude
h1 in the adiabatic coherent re-
gime. For intermediate driving
strength ê,e0 the position and
the shape of the maximum are
only slightly modified with re-
spect to the linear-response ap-
proximation. As the driving
strength is increased, the maxi-
mum in the nonlinear QSR in-
creasingly disappears.
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where the retarded contribution vanishes as V→0. To be
definite, in terms of dimensionless integration variables
x5Vt0 , y5Vt1 , and z5Vt one finds from Eq. ~4.12! that

Pm
~qs!~ ê !5

1
2pE0

2p

dxtanh
\«~x !

2kBT
cosmx ~4.15!

and

Pm
~ret!~V , ê !5

1
2p

\ê

2kBT 1
12e2GE0

2p

dx
sinx

cosh2@\«~x !/2kBT#

3E
0

2p

dye im~x1y !expS 2E
0

y
dzga~x1z !/V D ,

~4.16!
where G5*0

2pdzga(z)/2p , z5Vt . Hence the quasistatic
contribution is independent of the frequency V , while the
retarded contribution becomes negligible when V!ga ,
which for the parameters chosen in Figs. 6 and 7 amounts to
V<1024De . Hence the NIS is most pronounced when the-
retarded contribution becomes negligible ~see also Fig. 9 be-
low!.

V. ADIABATIC QUANTUM COHERENT QSR

At low temperatures kBT<\E , weak coupling a!1, and
De>u«(t)u, the NIBA fails to predict the correct long-time
behavior because the neglected bath-induced correlations
contribute to the dissipative effects to first order in the cou-
pling strength. Nevertheless, at low temperatures, where in
the static case quantum coherence occurs ~the QC region in
the inset of Fig. 1! a perturbative treatment is allowed @7,8#.
A solution of the dynamics can then be discussed in the
low-frequency regime êV!D2, where the tunneling motion
may be treated in the adiabatic limit @25# @region ~c! of Fig.
1#. In the adiabatic regime and for weak coupling Pas(t) is

simply related to the function N(t), representing the popula-
tion difference between the lower and upper eigenstates of
the driven two-state system, by Pas(t)5 \«(t)/E(t) N(t).
Here E(t)5\@De

21«(t)2#1/2 is the time-dependent level
splitting. One then finds that N(t) obeys the first-order dif-
ferential equation Ṅ(t)52g rel(t)@N(t)2Neq(t)# , which is
again in the form of a rate equation with a time-dependent
rate g rel(t)5 pa\De

2/E(t)cothE(t)/2kT @see Eq. ~2.17!# and
time-dependent adiabatic equilibrium value
Neq(t)5tanhE(t)/2kT . Again this equation can be solved in
terms of quadratures to give, for the harmonics of Pas(t), the
expression

Pm~V , ê !5
V

2pE0
2p/V

dt0
\«~ t0!
E~ t0!

e2imVt0

3E
0

`

dt1Neq~ t1!g rel~ t1!

3expS 2E
t0

t01t1
dtg rel~ t ! D . ~5.1!

Equations ~4.12!–~5.1! capture the essential features of
the dynamics of the driven TLS for low frequencies and
weak coupling in the whole temperature range. For strong
coupling or strong adiabatic asymmetries u«(t)u@De , Eq.
~4.12! holds down to the lowest temperatures. Figure 8
shows the behavior of the power amplification h1 versus
temperature for different external strenghts ê compared with
the linear-response result ~full line!. As shown in Fig. 8, the
position of the maximum and the shape of the resonance are
modified as compared to the linear-response approximation
obtained with Eqs. ~2.14! and ~2.15! ~see also Fig. 2!. Figure
9 shows the behavior of h3 versus temperature ~full line!.
Again for adiabatic driving, even in this low-temperature re-
gime, we observe a NIS of higher harmonics as the fre-
quency is decreased. As discussed in Sec. IV @see Eq.
~4.14!#, we can evaluate any harmonic hm as the sum of a
quasistatic contribution h (qs) and a retarded contribution
h (ret), where the latter vanishes as V→0. To be definite,

FIG. 9. Noise-induced sup-
pression of the third amplitude
h3 vs temperature in the adiabatic
coherent regime ~ 5.1! ~full line!.
The dot-dashed and dashed lines
depict the quasistatic and the re-
tarded contributions to h3 @see
Eqs. ~ 4.14! and ~ 5.2!#.
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when the condition g rel!V is fulfilled, Eq. ~5.1! may be sim-
plified to the quasistatic expression

Pm
~qs!5

1
2pE0

2p

dx
\«~x !

E~x !
tanh

E~x !

2kBT
cosmx , ~5.2!

which is independent of the external frequency V . The dot-
dashed line of Fig. 9 represents the quasistatic contribution
h (qs), while the dashed line is the retarded contribution
h (ret), which, for the chosen parameters, is negligible when
V,1025De . Correspondingly ~not shown, but see Fig. 6 for
the case where the NIBA holds!, the phase exhibits a cross-
over at the very same value of the temperature where the NIS
appears. Figure 10 depicts the dependence of the NIS’s as
the intrinsic asymmetry e0 is varied. It is found that the NIS
disappears when the external strength overcomes the intrin-
sic asymmetry.

VI. CONCLUSIONS

In summary, we have investigated QSR phenomena in the
deep quantum regime. In the nonlinear regime, driving-
induced coherence and quantum coherence may occur. On
the other hand, we showed that a maximum in the power

amplitude plotted versus temperature ~that is, stochastic reso-
nance! occurs only when incoherent tunneling contributions
dominate over coherent transitions. Further, we found that
quantum noise can substantially enhance, but also suppress,
the nonlinear response. In particular, the occurrence of a
noise-induced suppression of higher harmonics allows a
distortion-free amplification of signals in quantum systems.
The possibility of QSR in the presence of coherent tunneling
carries a great potential for applications, as they emerge in
the task of controlling persistent quantum coherences in
complex systems by use of tailored laser pulse sequences
@27#. These QSR phenomena may be detected by measuring
the ac conductance in mesoscopic metals @5,28#, in ac-driven
atomic force microscopy @29#, investigating ac-driven hydro-
gen tunneling in metals @30#, or in driven macroscopic quan-
tum systems @26#. Hence quantum noise does not represent a
nuisance, but rather can be a useful tool when interplaying
with external periodic perturbations.
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