
        

            

                              

                 

Giant suppression of the activation rate
in the presence of correlated white noise sources

A . J . R .  M a d u r e i r a  a,b,l, P. H~J.nggi a,2, H .S .  W i o  c,3
a lnstitutfiir Physik. Universita't Augsburg, Memmingerstrasse 6, D-86135 Augsburg, Germany

b Departamento de Matenuitica Aplicada, Univesidade Estadual de Campinas, Caixa Postal 6065, 13081-970 Campinas, Brazil
c Centro At6mico Bariloche (CNEA) and lnstituto Balseiro (UNC), 8400 Bariloche, Rio Negro, Argentina

                                                                                                          
                            

A b s t r a c t

We have studied the effect of two simultaneous correlated white noises, one additive and the other multiplicative, on the
activation rate of a bistable system. It is proved that as a function of the (positive-valued) correlation strength between the
two noise sources the activation rate can be suppressed by orders of magnitude (likewise, with a negative-valued correlation
strength it can be enhanced). Hence, the correlation between the two noises provides a tool for a controlled slow-down
(speed-up) of fast (slow) reactions by adding an appropriately chosen additional correlated noise force.

1. I n t r o d u c t i o n

The problem of  evaluating activation rates in
bistable systems has received considerable attention
since the pioneering work of  Kramers (see the re-
cent review [ 1 ] ). Among others, the situations so
far studied include cases of  additive or multiplica-
tive white or colored noises [ 1 ]. Moreover, the case
of simultaneously acting uncorrelated additive and
multiplicative white (and colored) noises has been
considered [2].  However, the impact of  simultane-
ously correlated noise forces for the reaction rate has
not been addressed previously.

The goal of  this work is to show that the simultane-
ous consideration of  additive and multiplicative - cor-
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related - white noises induces a dramatic suppression
of the escape rate in a double well system.

In order to fix ideas about the physical relevance of
the present results, let us focus on a particular (realis-
tic) model showing bistable behaviour. We will ana-
lyze the so called ba l las t  res i s tor  [3] .  It consists of  a
metallic wire or ribbon immersed in a cooled gas. Both
Tb, the temperature of  the gas (or bath), and I ,  the
electric current that flows along the wire, are externally
controlled. Near a ferromagnetic or superconducting
phase transition the metal shows an abrupt change (in-
crease) in its resistivity as a function of  the tempera-
ture, exhibiting an inflection point. Hence, the charac-
ter is t ic  (current-voltage) curve looks very similar to
a gas-liquid isotherm, i.e. contains a section of  neg-
a t ive  res is tance where (through a Maxwell-like con-
struction) the current remains constant as the voltage
is varied. These special features have been exploited
in the so called ho t - spo t  m o d e l  in connection with ex-
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periments in superconducting microbridges [4].
In order to describe the ballast resistor, it is neces-

sary to write an equation for the conservation of the
internal energy per unit length of the wire. After some
approximations, using Onsager relations connecting,
for instance, the differential thermoelectric power with
the Peltier coefficient, and the fact that the internal en-
ergy of the wire can be taken as proportional to the
local temperature of the wire, an equation for the tem-
perature field T(x ,  t) is obtained. The resulting equa-
tion is

3 T ( x , t )  3
c 3t = ~xK(X)  T(x ,  t)

- q (T (x ,  t) - Tn) + I2R(T) ,  (1)

where c is the heat capacity of the wire (per unit
length), K is the heat conductivity, q relates the en-
ergy flow into the bath to the difference in tempera-
ture between the wire and the bath, I is the electric
current, and R(T)  the temperature dependent resis-
tivity. The hot-spot model of the ballast resistor, as-
sumes that c, K and q are independent of x, and also
introduces a piecewise linearization of the cubic-like
nonlinearities that arise in the original energy balance
equation for the wire (i.e. R(T)  ~ O(T - Tc), where
Tc is "the" critical temperature). As a matter of fact,
it is possible to see this equation as mimicking the
well known Schl6gl model or a very general class of
bistable reaction-diffusion systems [5].

Within this context of bistable systems, and partic-
ularly for the above indicated models, it is possible to
see that fluctuations in some of the model parameters
(for instance: in the bath temperature TB and the re-
sistivity for the hot-spot model; or in the direct and
inverse reaction rates of the noncatalytic contribution
for the Schl6gl's model), should not be independent
(i.e. must be correlated).

In addition, looking into the original equations of
these models we find that fluctuations in the above
indicated parameters lead us to noise contributions
of both additive and multiplicative character. For in-
stance, fluctuations in TB will induce both, an addi-
tive noise contribution from the second term on the
r.h.s, of the model equation, as well as a multiplica-
tive noise contribution through its effect on the criti-
cal current and the resistivity [6] from the third term.
Even though the first contribution can be (naturally)

assumed as white, the second one, involving charac-
teristic time scales of the system, would not necessar-
ily be white. However, as in many other situations, it
is reasonable to adopt as a first step in the modeliza-
tion of this phenomenon the assumption that the sec-
ond noise contribution is also white and, afterwards,
relax this condition and include the finiteness of its
correlation time.

Hence, the study of problems showing a simulta-
neous presence of additive and multiplicative - corre-
lated - white noises could be of practical interest in
several experimental situations where we face a transi-
tion between the two states of an intrinsically bistable
system. For instance, the relevance of such an analy-
sis for spatially extended systems is apparent from the
results of Ref. [ 7 ].

In the next section we present our model system and
show that the simultaneous consideration of additive
and multiplicative correlated white noises induces a
suppression of the transition rate. In the last section
we present our conclusions.

2. Model

We consider a one dimensional fluctuating double
well system, driven by correlated additive and multi-
plicative noises, i.e. the Stratonovich-Langevin equa-
tion

2 = x - x 3 + v/-Qx(l (t) + v/-DsC2(t), (2)

(~(t)) =0, (3)

(~ i ( t ) ( j ( s ) )  = 2Cij~(t - s) ,  (4)

where

1 " ( 5 )

The noises sol (t) and (2(t)  denote white Gaussian
noises with cross-correlation intensity p. Here IPl ~<
1. It is easy to see [ 8-10] that the associated Fokker-
Planck equation (FPE) is given by

OP(x,t)ot - tgxO [ ( x  - x 3 ÷ Q x + p v / - ~ ) P ( x , t ) ]

0 2
÷ D ~ x 2 [ ( l + R x 2 + Z p v ~ x ) P ( x , t )  ], (6)
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where R =- Q/D.
The stationary probability density of the FPE in

Eq.(5) is then readily obtained as

Z - I
Pst (x) = ( 1 + Rx 2 + 2px/Rx)I /2 e x p [ - q b ( x ) / D ] ,

(7)

where the generalized potential is given in terms of a
quadrature by

X
/ (y _ y3) dy

~b(x) 1 + Ry 2 + 2px/Ry" (8)

The form of the stationary probability has been inves-
tigated previously in Ref. [9]. In particular, these au-
thors considered the change from a unimodal shape to
a bimodal shape for the stationary probability in Eq.
(6) and showed that the transition depends on a char-
acteristic threshold value, ac, for the linear relaxation
rate in Eq. ( 1 ). In our situation ac is given by

ac = RD + 3(¼P2RD2) ]/3,

and the (positive) unit linear relaxation rate in (1)
always lies above this threshold, i.e. 1 > ac, for 0 ~<
R ~< Rbm, where Rbm is the threshold value for bi-
modality of the stationary probability. For our chosen
parameter sets, the minimum in the transition rate oc-
curs always within the bimodal range for the station-
ary probability (see the figures). Above this threshold
value, the mean first passage time still exists, but is no
longer dominated by an Arrhenius-like bottleneck.

Our prime concern here is the study of the transition
rate K, defined here as l /T,  the inverse of the mean-
first-passage-time (MFPT) from the left stable state
x_ = - 1 ,  to the right stable state x+ = +1 (x_
x÷).  This quantity crucially determines the transport
in the bistable system. It is given by

1

p) = D -1 / dx H ( x )  exp[qb(x)/D]T+(R,
, i

-1

x / d y H ( y )  exp[ -q~(y) /D] ,  (9)
- - O O

where

H(x )  = ( 1 + Rx 2 + 2px/-Rx)-l/2. (10)
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Fig. 1. The relative rate v ( R , p )  = x(R,p) /KS is shown at
D = 0. l, for different values of  the cross-correlation intensity
p. The long-dashed line represents a case with anti-correlation
(p  = - 0 . 9 ) .  The short-dashed line is the case without correlation
(p  = 0).  The curves for positive cross-correlation intensity are de-
picted by the dotted line for p = 0.7 and by the dash-doued line
for (p  = 0.9). The full line gives the steepest descent prediction
for this latter case.

One can deduce from the symmetry of the system that
K+(R,p) = K - ( R , - - p ) .

We plot the curves of the relative rate ~, = K/KS
as a function of R, see Figs. 1 and 2. The symbol Ks
indicates the rate in the Smoluchowski limit ( R = 0).
One can see that for fixed R, the generalized force with
p > 0, as given by the integrand in Eq. (7),  increases
within the interval x_ < x < 0, when increasing the
value of p. Also the barrier for the transition x_ ---,
x+, increases. Thus, this causes an increase for the
MFPT and consequently the transition rate decreases
exponentially.

With an anti-correlation, i.e. p < 0 the barrier de-
creases with decreasing p. This in turn causes the op-
posite effect, namely an exponential increase for the
forward rate. When p = +1, the indicated force be-
comes divergent at x = 1/v/R and, if R > 1, the tran-
sition is quenched down to zero, i.e. (K + = 0). Figs. 1
and 2 depict those behaviours. For decreasing values
of intensity of the additive noise D, the suppression of
the reaction rate becomes more drastic. We also plot
the steepest descent approximation of the relative ratio
for p = 0.9. It is worthwhile using this approximation
in order to obtain some analytical results. For small
values of D we have to leading order

~,(R,p) - K(R,p)  = e x p [ ( ¼ -  A¢/,)I, (11)
KS
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Fig. 2. The relative rate v ( R , p )  = K(R ,p ) /KS  is shown at
D = 0.05, for different values of the cross-correlation intensity
p. The long-dashed line represents the case with anti-correlation
(p = -0 .9) .  The short-dashed line is the case with zero correla-
tion (p  = 0). The curves for positive cross-correlation intensity
are shown by the dotted line for p = 0.7 and by the dash-dotted
line for (p  = 0.9). The full line denotes the corresponding leading
steepest descent prediction (p = 0.9).

where

AcP = q0(0) - @( - 1 ). 12)

For R << 1 we have

v(R << l,p) =exp(-~-~--~pV/R + R(1-4p2) )
f i b  '

(13)

while for R >> 1 we have

e x p (  2p ) .  (14)v (R>>  l , p )  =v(R,p=O) RDv/~

It is known that the transition rate increases with in-
creasing R when the noises are uncorrelated [2]. Now,
with correlated noises, the denominator of the gener-
alized force

X -- X 3

1 + Rx 2 + 2px/-Rx'
has a p-dependent contribution that plays a very strong
role for small and moderate values of R. Depend-
ing whether p is negative or positive, the general-
ized force can be smaller or larger than for the case
when p = 0, respectively. For larger values of R,
the correlation between the noises becomes negligible
(Rx 2 >> 2pv/R x),  and the transition rate approaches
an asymptotic behaviour that corresponds to the case

of uncorrelated noise (p  = 0) ; a fact that follows read-
ily from Eq. (13).

3. Conclusions

We have shown that the simultaneous consideration
of additive and multiplicative correlated white noises
can induce a very giant suppression (or with an anti-
correlation p < 0 the opposite effect of a giant en-
hancement) of the forward transition rate (e.g. six or-
ders of magnitude in Fig. 2) in bistable systems. It
is clear that, from a mathematical point of view, we
could transform the original problem (with two corre-
lated noises) into another one with transformed vari-
ables and two uncorrelated noises, and then use the
standard approach. However, such a procedure would
clearly blur the physics of the escape dynamics that
occurs in the original problem.

As indicated in the introduction, there exist realis-
tic models of systems showing bistability, where the
fluctuations in the model parameters are not indepen-
dent and, in those cases at least, such fluctuations
do lead to noise contributions of both additive and
multiplicative character. Yet another potential physi-
cal application is given by the switching of magneti-
zation in single-domain ferromagnetic particles which
can be described by the noisy Gilbert equation [ 11 ].
Here, external and internal magnetic field fluctuations
are generally correlated and mutually influence the
bistable relaxation dynamics of the magnetic moment
[111.

A question to be raised is if this behaviour can be
also found when one of the noise sources is colored.
For instance, some initial analysis can be done within
the framework of approximations like the UCNA or
related ones [2,12,13]. This will be the subject of
further work. Using the UCNA approximation [ 12],
for example, a preliminary analysis shows that the ef-
fect of giant suppression of the reaction rate is robust
against small amounts of noise color. It will be also
interesting to perform numerical or analogue simula-
tions of this latter situation in order to have an inde-
pendent confirmation supporting the novel behaviour
found in this work. However, the most relevant ques-
tion is whether this novel phenomenon can be im-
plemented in real physical systems. We hope that the
present study and our discussion of possible candidate
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sys t ems  wil l  s t imu la t e  expe r imen ta l i s t s  to search  ( re-
a l ize)  for  th i s  t e chno log ica l l y  useful  effect.
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