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Voltage Rectification by a SQUID Ratchet
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We argue that the phase across an asymmetric dc SQUID threaded by a magnetic flux can experience

an effective ratchet (periodic and asymmetric) potential. Under an external ac current, a rocking ratchet
mechanism operates whereby one sign of the time derivative of the phase is favored. We show that
there exists a range of parameters in which a fixed sign (and, in a narrower range, even a fixed value) of
the average voltage across the ring occurs, regardless of the sign of the external current dc component.
[S0031-9007(96)01045-9]

PACS numbers: 74.50.+r, 05.40.+ j, 74.40.+k, 85.25.Dq
Although the nonequilibrium dynamics of a particle in a
ratchet potential (i.e., a periodic potential that lacks reflec-
tion symmetry) has long been considered a fundamental
problem in statistical physics [1], it has become the object
of more intense attention in recent years, because of its
newly found relevance in diverse areas of physics, chem-
istry, and biology. A characteristic effect is that, when the
ratchet is subject to a stationary nonequilibrium perturba-
tion, particle motion in one direction is favored. Within
this context, an important class of dynamical systems is
formed by the so-called rocking ratchets, for which the ex-
ternal perturbation is a time periodic, uniform force [2–4].
The effect of dynamically induced unidirectional motion
can overcome the drift effect of a small bias that would
push the particle into the nonfavored direction. Thus, for
not very strong tilts, uphill movement is possible provided
the ratchet structure is conveniently rocked.

In this Letter, we propose a realization of the rock-
ing ratchet mechanism in a new type of superconducting
quantum interference device (SQUID) containing a char-
acteristic asymmetry. The system we propose, depicted
in Fig. 1, is formed by a ring with two Josephson junc-
tions in series in one of the arms and only one junction
in the other arm. We will show that, when the ring is
threaded by a flux Fext that is not an integer multiple of
F0y2 (F0 ; hy2e being the flux quantum), the effective
potential experienced by the total phase w across the ring
displays a ratchet structure. As a consequence, when the
asymmetric SQUID is “rocked” by an external ac current
Istd, one sign of the phase velocity Ùw is favored. From the
Josephson voltage-phase relation, we conclude that there
must be a range of parameters for which a fixed sign of
the average voltage V0 ; h̄k Ùwly2e occurs regardless of
the sign of the external current dc component I0.

We focus on SQUID structures formed by conventional
Josephson junctions whose phase is a classical variable
and which can be adequately described by the “resistively
shunted junction” model [5,6]. Thus, the phase wi across
Josephson junction i on the left arm [see Fig. 1(a)] obeys
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the equation (i ­ 1, 2)

Ilstd ­ Ji sinswid 1
h̄

2eRi
Ùwi 1

h̄Ci

2e
ẅi , (1)

where Ilstd is the current through the left arm, and Ri , Ci ,
and Ji are the resistance, capacitance, and critical current
of junction i. For simplicity, we assume here that the
two junctions in series are identical, and will comment
later on the case of slightly dissimilar junctions. We
take C1 ­ C2 ; 2Cl , R1 ­ R2 ; Rly2, and J1 ­ J2 ;
Jl . The total voltage drop across the two junctions is
V ­ V1 1 V2, where Vi ­ sh̄y2ed Ùwi .

If w1std is a solution for the first junction, then w2std ­
w1std ; wlstdy2 is also a solution for the second junction
[7]. This implies V ­ Ùwl h̄y2e, with wl satisfying the
equation

Ilstd ­ Jl sin
µ

wl

2

∂
1

h̄
2eRl

Ùwl 1
h̄Cl

2e
ẅl . (2)

Hence, a series of two identical Josephson junctions can
be described by the same equation as a single junction,
with the only difference that in the sine function the
argument wy2 occurs [8]. This is a most important
feature to build the ratchetlike structure. On the right arm,
the phase across the single junction obeys an equation that

FIG. 1. (a) Schematic picture of an asymmetric SQUID with
three junctions threaded by an external flux. (b) Representation
of the equivalent circuit: the two junctions in series of the left
branch behave like a single junction with w replaced by wy2.
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reads as in Eq. (1) with the labels l and i replaced by
r . In the following we assume that each Josephson link
operates in the overdamped limit, s2eyh̄dJaR2

aCa ø 1
(a ­ l, r), so that the capacitive terms can be neglected
in Eq. (2) as well as in its right arm counterpart [6,9].

The total current through the SQUID is Istd ­
Ilstd 1 Ir std, and the equivalent circuit [6,10] is shown in
Fig. 1(b). In the limit where the contributions Ll and Lr

to the total loop inductance L ­ Ll 1 Lr are such that
jLIj ø F0, the total flux F is approximately the external
flux Fext. Then, integration of the gauge invariant phase
around the loop yields wl 2 wr ­ 2wext 1 2pn, with
wext ; 2pFextyF0. Thus, we see that the application of
an external flux provides us with an externally tunable re-
lation between wl and wr , which, in combination with the
freedom to choose the ratio JlyJr , allows us to select the
shape of the potential experienced by the phase w ; wl .

We may include the effect of temperature T by adding
Nyquist noise. We assume Gaussian white noise hstd of
zero average and correlation khstdhs0dl ­ s2kBTyRddstd,
so that the phase satisfies the equation

h̄
eR

Ùw ­ 2 Jl sin
µ

w

2

∂
2 Jr sinsw 1 wextd

1 Istd 1 hstd , (3)

where we have set Rl ­ Rr ; R. The resulting Fokker-
Planck equation is numerically solved by a matrix con-
tinued fraction method [11]. The total dc voltage across
the SQUID is given by V0 ­ sh̄y2ed k Ùwll 1 LlkÙIll ­
sh̄y2ed k Ùwrl 1 LrkÙIr l, where k· · ·l stands for time and
noise average. Since currents must remain bounded, one
has kÙIll ­ kÙIr l ­ 0, which leads to V0 ­ sh̄y2ed k Ùwl.

Next we feed the circuit with a current Istd ­ I0 1

I1 sinsVtd. In terms of the dimensionless quantities x ;
sw 1 pdy2, t ; seRJly2h̄dt, s ; JryJl , F ; I0yJl,
A ; I1yJl , v ; 2h̄VyeRJl , and D ; ekBTyh̄Jl , Eq. (3)
reads

dx
dt

­ 2
≠

≠x
Usxd 1 F 1 A sinsvtd 1 jstd , (4)

where Usxd ­ 2fsinsxd 1 ssy2d sins2x 1 wext 2 py2dg
is the effective potential and jstd is Gaussian noise with
kjstdjs0dl ­ 2Ddstd. The average voltage is now given
by V0 ­ sJlRy2d kdxydtl. Setting, for instance, s ­ 1y2
and wext ­ py2, Usxd adopts the form of a ratchet poten-
tial with period 2p , as shown in Fig. 2.

We can expect the ratchet structure arising from the
combination of asymmetry and Fext ­ F0y4 to have
major consequences on the device properties. In Fig. 3
we show the dc current-voltage characteristics for a low ac
frequency v ­ 0.01 and A ­ 1. The resulting dc voltage
for the ratchet potential is compared to that obtained for a
symmetric potential with the same barrier height. Clearly,
the main effect of the ratchet shape of the potential is that
FIG. 2. The ratchet potential (solid line) given after Eq. (4)
of the text, which governs the behavior of the three junction
SQUID (cf. Fig. 1), is compared to the sine potential (dashed
line) Usxd ­ 1.1 sinsxd.

of shifting the dc current-voltage characteristics towards
more negative values of I0 or, equivalently, towards more
positive values of V0. Within the present sign convention,
we shall refer to this displacement as a shift in the “right”
direction, because in it k Ùwl has the sign that is generally
(although not exclusively [3]; see below) favored.

In the deterministic case, the velocity kdxydtl is almost
quantized at values nv, n ­ 0, 61, . . ., corresponding to
solutions xstd that are “locked” into the phase of the driv-
ing force [12]. For a symmetric potential, these plateaus
in the voltage correspond to standard Shapiro steps [6,12–
14]. In both the symmetric [15] and asymmetric cases, a
small amount of noise (D ­ 0.01) suffices to wipe out the
structure of steps. However, the same weak noise does
not destroy the ratchet-induced shift in the dc I-V charac-
teristics. As shown in Fig. 3, a stronger noise intensity is
needed to appreciably reduce the ratchet effect (note that
it still persists with D as large as 0.5) and to lead the sys-
tem towards a conventional behavior in which V0 ~ I0.
The same trend towards Ohmic response is already shown
for weak noise if I0 is large enough.

FIG. 3. The dc current-voltage characteristics for the SQUID
in Fig. 1 are shown for an adiabatically slow (v ­ 0.01) ac
contribution of amplitude A ­ 1 at different noise strengths D.
The ratchet potential with noise strengths D ­ 0 (solid line),
D ­ 0.01 (dashed line), and D ­ 0.5 (dotted line) is compared
to the sine potential of Fig. 2 with D ­ 0 (dash-dotted line)
and D ­ 0.01 (dash-double dotted line). Inset: Global view
of the same I-V curves for the ratchet potential with D ­ 0.01
(dashed line) and D ­ 0.5 (dotted line).
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It is remarkable that the ratchet effect can be displayed
so clearly at frequencies as low as v ­ 0.01. The adia-
batic limit (v ! 0) can actually be studied analytically.
For D ­ 0, one obtains V0 ­ sJlRy2d

Rp
2p duytsud,

where tsud ;
Rp

2p dxyfF 1 A sinsud 2 U 0sxdg. For F ­
0, V0 is guaranteed to be zero only if Usxd is symmetric,
since then U 0sxd and thus tsud must be odd functions. On
the contrary, if Usxd is not symmetric for any choice of
origin (ratchet potential), then one generally has V0 fi 0
with I0 ­ 0. For a given amplitude, the ratchet behavior
tends to disappear as the frequency grows. On the other
hand, for a given frequency, there is an optimum ampli-
tude that maximizes the ratchet effect [3].

In Fig. 4, we show V0 as a function of I0 for v ­
0.3 and A ­ 1.7. In the absence of noise, steps at half-
integer multiples of v can be clearly observed. In the
inset of Fig. 4, additional steps can be observed at vym.
They are also present for v ­ 0.01, although they cannot
be resolved in the scale of Fig. 3. We note that these
noninteger steps are not due to the ratchet structure itself
but to the deviation of Usxd from a simple sinsxd law,
which is the sole case for which steps lie only at integer
values nv [16]. Under weak noise (D ­ 0.01), the frac-
tional Shapiro steps disappear, but the structure of integer
plateaus is still somewhat preserved. More intense noise
(D ­ 0.5) destroys the voltage quantization totally and,
as in the adiabatic case, considerably reduces the ratchet
effect.

So far we have assumed that ac current sources are
applied to the device. It is interesting to analyze what
happens when a voltage source of the type V std ­ V0 1

V1 sinsVtd is applied instead. Then the phase evolves as

xstd ­ x0 1 k Ùxlt 2 sAyvd cossvtd , (5)

where k ÙxlyV0 ­ AyV1 ­ 2yJlR. Inserting (5) into Eq. (3)
and averaging over time, one obtains that, for k Ùxl ­ nv

or k Ùxl ­ s2n 1 1dvy2, a continuous interval of dc cur-
rent values F is possible. For wext ­ py2 one obtains,

FIG. 4. Same as in Fig. 3 for frequency v ­ 0.3 and A ­
1.7, for D ­ 0 (solid line), 0.01 (dashed line), and 0.5 (dotted
line). Inset: magnified picture showing steps at fractional
values of v in the D ­ 0 curve.
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respectively,

F ­ nv 1 Jn

µ
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v

∂
cossx1d 2 sJ2n

µ
2A
v

∂
coss2x1d ,

F ­
2n 1 1

2
v 2 sJ2n11

µ
2A
v

∂
sins2x1d ,

(6)

where Jnszd is the nth order Bessel function [17]. The
finite range of F values spanning a voltage plateau for a
given value of n is obtained by letting x1 take any real
value. After comparing the structure of plateaus predicted
by Eq. (6) with that obtained numerically for the case of
current sources, we have found that, as in the symmetric
case [15], similar results are obtained for v ¿ 1 or A ¿

1, provided that Ayv & 1. Inspection of Eq. (6) shows
that the resulting structure of steps, although not entirely
symmetric, does not exhibit a proper ratchet effect in any
range of parameters, since there is always a I0 ­ 0, V0 ­ 0
solution. This can be proved by noting that the last two
terms in upper Eq. (6) cancel for certain values of x1.

Going back to Figs. 3 and 4, we notice the remarkable
property that there is a finite range of I0 values in which
the sign of the average voltage is independent of the
average external current [18]. For a narrower range of
parameters (see, e.g., in Fig. 4), and in the absence of
noise, it is possible to obtain, not only the same sign, but
also the same value of V0, regardless of the value and
sign of I0. Therefore, we conclude that the asymmetric
SQUID we propose here can be used as a device for voltage
rectification. From the curves presented here, we note
that this mechanism of voltage rectification will operate
more efficiently at low frequencies and for not too small
ac amplitudes [19]. On the other hand, the analysis given
in the preceding paragraph indicates that, under the effect
of an external ac voltage source, the SQUID of Fig. 1 could
not yield current rectification.

In our analysis, we have assumed for convenience that
certain ideal relations between the parameters of the differ-
ent junctions are satisfied. One may wonder whether the
physical effects we have discussed may be affected by mi-
nor deviations from those specific values, especially when
the two junctions in series are not identical and the simple
relation w1std ­ w2std cannot always be valid. For the
case of zero noise, analytical considerations suggest that a
weakened ratchet effect and a structure of shorter steps will
remain. We have performed a numerical check by treating
w1 and w2 as independent variables. For v ­ 0.01 and
A ­ 1 and 1.7, and assuming differences of order between
1% and 10% (namely, R2yR1 ­ J2yJ1 ­ Rry2R1 ­ 1.01
and 1.1), we find that the dc voltage at zero current bias
decreases within 5% to 30% and that the voltage plateaus
are shortened by about one-half. These results underline
the robustness of the predicted physical behavior (in par-
ticular, the ratchet effect) against small deviations from the
ideal structure.

For a typical SQUID, the inductance can be L ,
10210 H [6]. Thus, currents &1026 A are required for
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the condition F . Fext to be satisfied. For typical tunnel
junctions, the overdamped limit is not easily achieved un-
less one operates very close to the critical temperature [6].
Operation in a wider range of temperatures could, however,
be achieved by adding shunts of sufficiently low resistance.
For Jl ­ 1026 A, R ­ 1 V, the “units” of temperature,
frequency, and voltage are 48 K, 125 MHz, and 0.5 mV.
From our numerical results, we conclude, for instance,
that for T ­ 0.48 K and V ­ 37.5 MHz the dc voltage
is V0 , 0.1 mV at zero dc current.

In conclusion, we have demonstrated the feasibility of
a novel effect in the dynamics of the phase across an
asymmetric SQUID threaded by a magnetic flux. The
ratchet structure of the effective potential experienced by
the phase through the ring favors one sign of its time
derivative. Under an oscillating current source, the dc
current-voltage characteristics present striking properties
such as displaced Shapiro steps and the possibility of
having a finite dc voltage with a zero dc current, and vice
versa. Within a certain range of parameters, the same
sign, and even the same value, of the dc voltage can be
obtained regardless of the sign of the external dc current.
This mechanism of voltage rectification has been shown to
be robust in the presence of moderate noise and of small
deviations of the junction parameters from the proposed
ideal behavior. Estimates for a single SQUID suggest
that the predicted ratchet-induced voltage shift is indeed
measurable. The effect could be conveniently amplified
by placing many similar devices in series.
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