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Floquet-Markovian description of the parametrically driven,
dissipative harmonic quantum oscillator
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Using the parametrically driven harmonic oscillator as a working example, we study two different Markov-
ian approaches to the quantum dynamics of a periodically driven system with dissipation. In the simpler
approach, the driving enters the master equation for the reduced density operator only in the Hamiltonian term.
An improved master equation is achieved by treating the entire driven system within the Floquet formalism and
coupling it to the reservoir as a whole. The different ensuing evolution equations are compared in various
representations, particularly as Fokker-Planck equations for the Wigner function. On all levels of approxima-
tion, these evolution equations retain the periodicity of the driving, so that their solutions have Floquet form
and represent eigenfunctions of a nonunitary propagator over a single period of the driving. We discuss
asymptotic states in the long-time limit as well as the conservative and the high-temperature limits. Numerical
results obtained within the different Markov approximations are compared with the exact path-integral solu-
tion. The application of the improved Floquet-Markov scheme becomes increasingly important when consid-
ering stronger driving and lower temperatures. @S1063-651X~97!13101-4#

PACS number~s!: 05.30.2d, 42.50.Lc, 03.65.Sq
I. INTRODUCTION

The dynamics of microscopic systems in strong periodic
fields forms a problem of fundamental significance, with a
vast variety of applications in quantum optics, quantum
chemistry, and mesoscopic systems. If the driving field is of
a macroscopic nature, for example, a continuous-wave laser
irradiation, it is appropriate to describe the complete system
in a mixed quantum-classical way, i.e., to give a full
quantum-mechanical account of the central system and its
energy loss to ambient degrees of freedom ~the electromag-
netic vacuum or weakly coupled internal degrees of free-
doms!, but to include the field as a classical external driving
force. A solution of the dynamics then requires one to simul-
taneously eliminate the ambient freedoms and to integrate
the equations of motion with an explicit time dependence. In
principle, this can be done exactly using path-integral tech-
niques. However, even a partially analytical solution within
the path-integral approach is feasible only for the very sim-
plest systems in the class addressed, in particular, for peri-
odically driven, damped harmonic oscillators @1#, or for
driven dissipative two-level systems @2#. As soon as nonlin-
ear forces come into play, the path-integral approach requires
one to resort to extensive and sophisticated numerics, such as
Monte Carlo calculations @3#, with their own shortcomings.
In most cases of interest, it is more adequate to make as

much use as possible of the methods and approximations that
have been developed separately for the two problems men-
tioned above, quantum dissipation, on the one hand, and pe-
riodic driving, on the other hand. Specifically, it is desirable
to combine a Markovian approach to quantum dissipation,
leading to a master equation for the density operator, with
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the Floquet formalism that allows one to treat time-periodic
forces of arbitrary strength and frequency. While the Floquet
formalism amounts essentially to using an optimal represen-
tation and is exact @4#, the simplification brought about by
the Markovian description is achieved only at the expense of
accuracy. Here, a subtle technical difficulty lies in the fact
that the truncation of the long-time memory introduced by
the bath, and the inclusion of the driving, do not commute:
As pointed out in Ref. @5#, the result of the Markov approxi-
mation depends on whether it is made with respect to the
eigenenergy spectrum of the central system without the driv-
ing, or with respect to the quasienergy spectrum obtained
from the Floquet solution of the driven system. In the second
case it cannot be treated as a system with proper eigenstates
and eigenenergies. A Markovian approach based on a
quasienergy spectrum has been implemented in recent work
on driven Rydberg atoms @6# and driven dissipative tunnel-
ing @7#.
The purpose of the present paper is to investigate these

two Markovian approaches to damped periodically driven
quantum dynamics, with their specific merits and drawbacks,
for a linear system where an exact path-integral solution is
still available: The parametrically driven, damped harmonic
oscillator allows for a very transparent and well-controlled
introduction of the different approximation schemes at hand.
Their quality can here be reliably checked since, in this sys-
tem, the quasienergy spectrum is sufficiently different from
the unperturbed energy spectrum @8# ~this feature is in con-
trast to the additively driven harmonic oscillator, where the
difference of two quasienergies does not depend on the driv-
ing parameters @8#!, and a comparison with the known quan-
tum path-integral solution @1# is possible.
Moreover, by switching to a phase-space representation

such as the Wigner function, it is possible to elucidate the
relationship of the quantal results to the corresponding clas-
sical Liouville dynamics. Since this relation is particularly
close in the case of linear systems, this provides an addi-
300 © 1997 The American Physical Society
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tional consistency check. Therefore, the emphasis of this pa-
per is predominantly on the testing and thorough understand-
ing of the available methods. Their application to a strongly
nonlinear system where analytical path-integral solutions are
far beyond our present capabilities will be the subject of
forthcoming publications.
Forming a convenient ‘‘laboratory animal’’ due to its sim-

plicity and linearity, the parametrically driven harmonic os-
cillator still shows nontrivial behavior, interesting in its own
right. We shall give a brief review of the model and its
classical dynamics in Sec. II. The central results of the paper,
concerning the applicability and quality of the alternative
Markov approximations, are presented in the course of the
quantization of the system with dissipation, in Sec. III. Its
last subsection is devoted to a discussion of the asymptotics
of the quantal solutions, such as the conservative and the
high-temperature limits. Section IV contains numerical re-
sults for a number of characteristic dynamical quantities as
obtained for the alternative Markovian approaches, and the
comparison to the path-integral solution. A summary of the
various representations and levels of description addressed in
the paper, with their interrelations, is given in Sec. V. A
number of technical issues are deferred to Appendix A. Re-
sults for an additive time-dependent force in combination
with a parametric periodic driving are summarized in Appen-
dix B.

II. THE MODEL AND ITS CLASSICAL DYNAMICS

For a particle with mass m moving in a harmonic poten-
tial with time-dependent frequency, the Hamiltonian is given
by

HS~ t !5
p2

2m1
1
2 k~ t !x

2, ~1!

where k(t) is a symmetric and periodic function with period
T . A special case is the Mathieu oscillator, where
k(t)5m(v0

21«cosVt) with V52p/T . Depending on its fre-
quency and amplitude, the driving can stabilize or destabilize
the undriven oscillation. Figure 1 shows the zones of stable
and unstable motion, respectively, for the Mathieu oscillator,
in the v0

2-« plane. The equation of motion for a classical
particle with velocity-proportional ~i.e., Ohmic! dissipation
in the potential given in Eq. ~1! reads

ẍ1g ẋ1
1
m k~ t !x50. ~2!

By substituting x5yexp(2gt/2), we can formally remove
the damping to get an undamped equation with a modified
potential,

ÿ1@k~ t !/m2g2/4#y50. ~3!

Already here, on the level of the classical equations of mo-
tion, we can apply the Floquet theorem for second-order dif-
ferential equations with time-periodic coefficients. It asserts
@9# that Eq. ~3! has two solutions of the form

j1~ t !5e imtw~ t !, j2~ t !5j1~2t !, w~ t1T !5w~ t !.
~4!
The solution j2(t) is related to j1(t) by the time-inversion
symmetry inherent in Eq. ~3!. Being periodic in time, the
classical Floquet function w(t) can be represented as a Fou-
rier series

w~ t !5 (
n52`

`

cne inVt. ~5!

The Floquet index m depends on the shape of the driving
k(t) and is defined only mod V . There exist driving func-
tions for which m is complex so that one of the solutions
j i(t) becomes unstable ~cf. Fig. 1!. In stable regimes m is
real. On the border between a stable and an unstable regime,
m becomes a multiple of V/2 and the solutions j1(t) and
j2(t) are not linearly independent. For given k(t), the j i(t)
still depend on the damping g . We denote the limit g→0 of
the functions j i(t) by j i

0(t).
The normalization of the cn is chosen such that the

Wronskian W, which is a constant of motion, is given by

W5 j̇1~ t !j2~ t !2j1~ t !j̇2~ t !52i , ~6!

resulting in the sum rule

(
n52`

`

cn
2~m1nV !51. ~7!

Returning to the original x coordinate, we find that the
fundamental solutions of Eq. ~2! read

f i~ t !5e2gt/2j i~ t !, i51,2. ~8!

For constant frequency of the oscillator,
k(t)5const5mv0

2, the Floquet index and the periodic func-
tion become m5(v0

22g2/4)1/2 and w(t)5(v0
22g2/4)21/2,

respectively, which reproduces the results for a damped har-
monic oscillator without driving.
The Green function for Eq. ~2! is constructed using Eqs.

~5! and ~6!,

FIG. 1. Stability of Eq. ~2! with g50 for the case of a Mathieu
oscillator. In the white areas the Floquet index m is real, which
corresponds to stable solutions. In the shaded areas m is complex
and therefore one of the fundamental solutions ~4! is unstable. On
the borderlines m becomes a multiple of V/2.
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G~ t ,t8!5e2g~ t2t8!/2@j1~ t !j2~ t8!2j2~ t !j1~ t8!#/2i , ~9!

5e2g~ t2t8!/2(
n ,n8

cncn8sin@m~ t2t8!1V~nt2n8t8!#.

~10!

In terms of this function, the solution of Eq. ~2! with initial
conditions x(t0)5x0 and p(t0)5p0 reads

x~ t ,t0!52x0
]G~ t ,t0!

]t0
1
p0
m G~ t ,t0!. ~11!

Since the potential breaks continuous time-translational in-
variance, this solution depends explicitly on the initial time
t0.

III. THE DISSIPATIVE QUANTUM SYSTEM

To achieve a microscopic model of dissipation, we couple
the system ~1! bilinearly to a bath of noninteracting harmonic
oscillators @10#. The total Hamiltonian of system and bath is
then given by

Ĥ~ t !5ĤS~ t !1ĤSB1ĤB , ~12!

where

ĤB5 (
n51

N S p̂n
2

2mn
1
mn

2 vn
2x̂n
2D ~13!

is the Hamiltonian of N oscillators with masses mn , frequen-
cies vn , momenta p̂n , and coordinates x̂n . The bath inter-
acts with the system via

ĤSB52 x̂(
n51

N

gnx̂n1 x̂2(
n51

N gn
2

2mnvn
2 , ~14!

which couples the system to each bath oscillator n with a
strength gn . The second term in Eq. ~14! serves to cancel a
shift of the potential minimum due to the coupling @10,11#.
The bath is fully characterized by the spectral density of the
coupling energy,

I~v !5p (
n51

N gn
2

2mnvn
d~v2vn!. ~15!

We choose an initial condition of the Feynman-Vernon
type, i.e., at t5t0 the bath is in thermal equilibrium and
uncorrelated to the system, i.e.,

r~ t0!5rS~ t0! ^ rB ,eq , ~16!

where rB ,eq5exp(2ĤB /kBT)/trBexp(2ĤB /kBT) is the ca-
nonical ensemble of the bath and kBT Boltzmann’s constant
times temperature.

A. Interaction picture and perturbation theory

Due to the bilinearity of the system-bath coupling, one
can always eliminate the bath variables to get an exact,
closed integro-differential equation for the reduced density
matrix rS5trBr , which describes the dynamics of the central
system, subject to dissipation @12–14#. In most cases, how-
ever, this equation cannot be solved exactly. In the limit of
weak coupling,

g!kBT/\ , ~17!

g!Dab , ~18!

it is possible to truncate the time-dependent perturbation ex-
pansion in the system-bath interaction after the second-order
term. The quantity g denotes the effective damping of the
dissipative system, and Dab are the transition frequencies of
the central system @see, e.g., Eq. ~56!, below#. The autocor-
relations of the bath decay on a time scale \/kBT , and thus in
this limit instantaneously on the time scale 1/g of the system
correlations.
With the initial preparation ~16!, the equation of motion

for the reduced density matrix in this approximation is given
by @12–14#

ṙS~ t !52
i
\

@ĤS~ t !,rS~ t !#2
i
\
trB@ĤSB ,rS~ t !#

2
1
\2E0

`

dt trB†ĤSB ,@H̃SB~ t2t ,t !,rB ,eq^ rS~ t !#‡.

~19!

The tilde denotes the interaction picture defined by

Õ~ t ,t8!5U0
†~ t ,t8!ÔU0~ t ,t8!, ~20!

U0~ t ,t8!5T expS 2
i
\Et8

t
dt9@ĤS~ t9!1ĤB# D , ~21!

where T is Wick’s time-ordering operator.
For ĤS and ĤSB as in Eqs. ~13! and ~14!, we find the

master equation

ṙS~ t !52
i
\

@ĤS~ t !,rS~ t !#

2
1
\2(n51

N

gn
2E

0

`

dt$Sn~t !†x̂ ,@ x̃~ t2t ,t !,rS~ t !#‡

1iAn~t !†x̂ ,@ x̃~ t2t ,t !,rS~ t !#1‡%, ~22!

with @A ,B#15AB1BA and

Sn~ t !5
\

2mnvn
cothS \vn

2kBT
D cosvnt , ~23!

An~ t !52
\

2mnvn
sinvnt , ~24!

the symmetrically ordered and antisymmetrically ordered, re-
spectively, correlation functions of the bath oscillator n .

B. Markov approximation with respect
to the unperturbed spectrum

So far, we have followed the standard approach to dissi-
pative quantum dynamics in the weak coupling limit @12–
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14. In the following subsections, we shall contrast a simpler
Markov approximation based on the unperturbed spectrum,
with a more sophisticated approach that accounts for the
modification of the spectrum due to the driving.

1. Master equation

In the following, we restrict ourselves to an Ohmic bath,

I~v !5mgv , ~25!

fixing the relation between the macroscopic damping con-
stant g and the microscopic coupling constants gn introduced
in Eq. ~14!. By imposing a Drude cutoff I(v)→I(v)/(1
1v2/vD

2 ) with vD@v0 ,V , divergent integrals are avoided.
In the crudest approximation, the time dependence of the

system Hamiltonian is neglected in the derivation of the mas-
ter equation, i.e., the incoherent terms in the master equation
are calculated replacing ĤS(t) by H̄S5(1/T)*0

Tdt ĤS(t),
i.e., the Hamiltonian with zero driving amplitude. The posi-
tion operator in the interaction picture is then given by

x̃~ t ,t8!5 x̂cosv0~ t2t8!1
p̂
mv0

sinv0~ t2t8!. ~26!

Since the information on the phase of the driving is lost, it
depends only on the difference t2t8 of its arguments.
Inserting this operator and the correlation functions ~23!

and ~24! into Eq. ~22! leads to the master equation

ṙS52
i
\

@ĤS~ t !,rS#2
i
2\

ḡ†x̂ ,@ p̂ ,rS#1‡2
g

\2
D pp†x̂ ,@ x̂ ,rS#‡

1
g

\2
Dxp†x̂ ,@ p̂ ,rS#‡. ~27!

The right-hand side of this equation depends on time only
through its first, the Hamiltonian, term and therefore retains
the periodicity of the system Hamiltonian ĤS(t).
This form of the master equation does not produce a posi-

tive semidefinite diffusion matrix. It consequently does not
exhibit Lindblad form @13,15–17#. The positivity of rS is
thus not guaranteed for all elements of the function space of
density operators. The Markovian approximation implies that
quantum effects on a length scale l,ldB5\/A4mkBT ~non-
Markov effects! cannot be described self-consistently @17–
19#. Note also that within a Markov approximation, the mas-
ter equation is periodic with the driving period T52p/V
~Floquet form!. This is in contrast to the non-Markovian ex-
act master equation @1#. In this latter case, the effective mas-
ter equation has the structure of Eq. ~27! with time-
dependent coefficients Dxp and D pp that depend also in a
nonperiodic way on the time elapsed since the preparation at
t0. In Wigner representation, this corresponds to a time-
dependent diffusion coefficient ~see below!.
The coefficients ḡ and Dpp can be evaluated straightfor-

wardly @20# to give

ḡ5g , ~28!

D pp5
1
2 m\v0coth

\v0

2kBT
. ~29!
The evaluation of the cross-diffusion Dxp is more com-
plex. Because we did not find it in the literature, we give the
outline of its derivation. The logarithmic divergence of Dxp
is regularized by the Drude cutoff to obtain

Dxp52
\

2p
PE

2`

`

dvcothS \v

2kBT
D v

v22v0
2

ivD

v1ivD
,

~30!

where P denotes Cauchy’s principal part. The integral in Eq.
~30! is solved by contour integration in the upper half plane.
Expressing the resulting sums by the psi function
c(x)5d lnG(x)/dx @21# and neglecting terms of the order
v0 /vD , we obtain

Dxp52
\

p FcS 11
\vD

2pkBT
D1C G , ~31!

where C is the Euler constant.
Interestingly enough, mgDxp coincides with the Drude

regularized divergent part of the stationary momentum vari-
ance of a dissipative harmonic oscillator @22#.
It must be stressed that the dissipative terms in the master

equation ~27! are independent of the driving. This manifestly
reflects that the time dependence of HS(t) has not been taken
into account in the incoherent terms of the master equation.

2. Wigner representation and Fokker-Planck equation

In order to achieve a description close to the classical
phase-space dynamics, we discuss the time evolution of the
density operator in the Wigner representation. It is defined
by @23#

W~x ,p ,t !5
1

p\E2`

`

dx8e2ipx8/\^x2x8urS~ t !ux1x8&.

~32!

The moments of the Wigner function are the symmetrically-
ordered expectation values of the density operator.
Applying this transformation to the master equation ~22!,

we obtain a c-number equation of motion,

] tW~x ,p ,t !5L~ t !W~x ,p ,t !, ~33!

with the differential operator

L~ t !52
1
m p]x1g]pp1k~ t !x]p1gD pp]p

21gDxp]x]p .

~34!

Equation ~34! has the structure of an effective Fokker-Planck
operator. However, for DxpÞ0, the diffusion matrix is not
positive semidefinite; correspondingly Eq. ~33! has no
equivalent Langevin representation.
As is the case for the master equation from which it has

been derived, the coefficients of the Fokker-Planck operator
retain the periodicity of the driving, so that Eq. ~33! has
solutions of Floquet form. This fact will be exploited in the
following subsection to construct the solutions.
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3. Wigner-Floquet solutions

The Fokker-Planck equation for the density operator in
the Wigner representation, Eq. ~33! with Eq. ~34!, offers the
opportunity to make full use of the well-known and intuitive
results for the corresponding classical stochastic system. In
particular, a solution of the Fokker-Planck equation can be
obtained directly by solving the equivalent Langevin equa-
tion @24,25#, or by using the formula for the conditional
probability of a Gauss process @25#. In the present case, how-
ever, the fact that the diffusion matrix of Eq. ~34! is not
positive semidefinite requires one to take a different route.
Since Eq. ~33! with Eq. ~34! represents a differential

equation with time-periodic coefficients, it complies with the
conditions of the Floquet theorem. Consequently, there exists
a complete set of solutions of the form

Wa~x ,p ,t !5ematua~x ,p ,t !, ua~x ,p ,t !5ua~x ,p ,t1T !,
~35!

henceforth referred to as Wigner-Floquet functions.
We construct a solution for Eq. ~33! of this form with

m0050 by the method of characteristics @26#, cf. Appendix
A. In the limit t0→2` , the terms in the first line of Eq.
~A18!, which contain the initial condition, vanish and we
obtain the asymptotic solution

W00~x ,p ,t !5
1
2p Usxx~ t ! sxp~ t !

sxp~ t ! spp~ t !
U21/2

expH 2
1
2 S xp D

3S sxx~ t ! sxp~ t !
sxp~ t ! spp~ t !

D 21S xp D J ~36!

with the variances

sxx~ t !5
2gDpp

m2 E
2`

t
dt8@G~ t ,t8!#2, ~37!

sxp~ t !5
2gDpp

m E
2`

t
dt8G~ t ,t8!

]

]t G~ t ,t8!, ~38!

spp~ t !52mgDxp12gDppE
2`

t
dt8F ]

]t G~ t ,t8!G2.
~39!

Note that in Eqs. ~37!–~39! the difference in using Dpp and
D5Dpp1gDxp @see Eq. ~A14! in Appendix A# is meaning-
less, since it is a correction of order g . By inserting for
G(t ,t8) the Fourier representation ~10!, one finds that the
variances are asymptotically time-periodic.
Starting from W00 , we construct further Wigner-Floquet

functions: By solving the characteristic equations ~see Ap-
pendix A!, we find the two time-dependent differential op-
erators

Q11~ t !5 f 1~ t !]x1m ḟ 1~ t !]p , ~40!

Q21~ t !5 f 2~ t !]x1m ḟ 2~ t !]p . ~41!

They have the properties

@L~ t !2] t ,Q11~ t !#5@L~ t !2] t ,Q21~ t !#50 ~42!
and

Q11~ t1T !5e ~2g/21im !tQ11~ t !, ~43!

Q21~ t1T !5e ~2g/22im !tQ21~ t !. ~44!

Taking the commutation relation ~42! into account, the func-
tions

Wnn8~x ,p ,t !5Q11
n ~ t !Q21

n8 ~ t !W00~x ,p ,t !,

n ,n850,1,2, . . . ~45!

also solve Eq. ~33!.
Due to Eqs. ~43! and ~44!, they are of Floquet structure

with the Floquet spectrum

mnn85n~2g/21im !1n8~2g/22im !. ~46!

This spectrum is independent of the diffusion constants, as
expected for an operator of type ~34! @27#, and therefore is
the same as in the case of a classical parametrically driven
Brownian oscillator @28#.
The expression for the eigenfunctions in the high-

temperature limit of the ~undriven! classical Brownian har-
monic oscillator in Refs. @27,29# is also of the structure ~45!.
We can recover this solution by inserting the classical diffu-
sion constant mkBT and the undriven limit «→0 for the
classical solution, given in Sec. II.

C. Markov approximation with respect
to the quasienergy spectrum

The master equation ~27! can be improved by including
the time-dependent term in the system Hamiltonian ~1! be-
fore a Markov approximation is introduced, to account for
the change in the quasienergy spectrum due to the driving.

1. Floquet theory and quasienergy spectrum

For a Schrödinger equation with a time-periodic system
Hamiltonian such as Eq. ~1!, the Floquet theorem @4# asserts
that there exists a complete set of solutions of the form

uca~ t !&5e2imatufa~ t !&, ufa~ t1T !&5ufa~ t !&. ~47!

The quasienergy ma plays the role of a phase and therefore is
only defined mod V , cf. Ref. @4#. We shall use the basis
$uca(t)&% as an optimal representation to decompose states
and operators.
For the parametrically driven harmonic oscillator ~1!, the

Floquet solutions for the Schrödinger equation are derived in
the literature in various ways @30–33#. We skip the deriva-
tion and merely present the result,

ca~x ,t !5S Am/p\

2an!j1
0~ t ! D

1/2S j1
0~ t !

j2
0~ t ! D

a/2

3Ha„xAm/\j1
0~ t !j2

0~ t !…exp„i j̇1
0~ t !x2/2j1

0~ t !…,

~48!
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for the Floquet solutions in the stable regime, where Ha is
the ath Hermite polynomial, a50,1,2, . . . . The Floquet
index for this solution is ma5m(a11/2). This gives the
quasienergy spectrum

ma ,k5~a11/2!m01kV , k50,61,62, . . . . ~49!

Note that Eq. ~48! is a solution only in the stable regime.
Consequently m is real, cf. Sec. II.
In analogy to the annihilation and creation operators for

the undriven harmonic oscillator, one can define operators
Ĝ and Ĝ† which act as shift operators for the Floquet states,
i.e.,

Ĝ~ t !uca~ t !&5Aa uca21~ t !&, ~50!

Ĝ†~ t !uca~ t !&5Aa11 uca11~ t !&. ~51!

For a parametrically driven harmonic oscillator, Ĝ(t) can be
expressed in terms of position and momentum operator as
@31,32#

Ĝ~ t !5
1
2i S x̂A2m

\
j̇1
0~ t !2 p̂A 2

m\
j1
0~ t ! D . ~52!

The relations ~50! and ~51! can be proven by inserting the
Floquet solutions ~48! and using the recursion relations for
Hermite polynomials @21#.
The matrix element Xab(t) of the position operator x with

the states uca(t)&, which we shall need later, reads

Xab~ t !5e i~ma2mb!t^fa~ t !uxufb~ t !& ~53!

5(
k
e iDabktXabk , ~54!

Xabk5
1
TE0

T
dt e2ikVt^fa~ t !uxufb~ t !&, ~55!

with the transition frequencies

Dabk5ma2mb1kV . ~56!

For Eqs. ~54! and ~55!, the periodicity of the Floquet states
ufa(t)& has been used. The Fourier components Xabk are
preferably evaluated in the spatial representation,

Xab~ t !5E
2`

`

dx ca~x ,t !xcb~x ,t ! ~57!

5A \

2m@Abj2
0~ t !da ,b211Aaj1

0~ t !da ,b11# , ~58!

by inserting the Fourier expansion ~5! for j i
0(t), to give

Xabk5A \

2m~Ab c2kda ,b211Aa ckda ,b11!. ~59!
2. Improved master equation

We start anew from the full master equation in the weak-
coupling limit,

ṙ52
i
\

@ĤS~ t !,r#1
1

p\E2`

`

dv I~v !n th~v !

3E
0

`

dt e ivt@ x̃~ t2t ,t !r , x̂#1H.c. ~60!

Here, H.c. denotes the Hermitian conjugate of the dissipative
part and

n th~v !5~e\v/kBT21 !2152n th~2v !21 ~61!

gives the thermal occupation of the bath oscillator with fre-
quency v . To achieve a more compact notation, we have
required that I(2v)52I(v), which for an Ohmic bath, cf.
Eq. ~25!, is just the analytic continuation.
The fact that the Floquet states uca(t)& of the undamped

central system, Eq. ~47!, solve the Schrödinger equation, al-
lows for a substantial formal simplification of the master
equation: With the density operator being represented in this
basis,

rab~ t !5^ca~ t !ur~ t !ucb~ t !&, ~62!

the master equation takes the form

ṙab5
1

p\E2`

`

dv I~v !n th~v !E
0

`

dt e ivt

3 (
a8b8

$Xaa8~ t2t !ra8b8Xbb8
* ~ t !

2Xa8a
* ~ t !Xa8b8~ t2t !rb8b%1H.c. ~63!

Inserting Eqs. ~55! and ~59! and using the identity
*0

`dt e ivt5pd(v)1P(i/v), we arrive at the explicit equa-
tion of motion

ṙab5
1
\ (

a8b8
(
kk8

$2I~Da8b8k8!n th~Da8b8k8!

3e i~Da8b8k82Daa8k!tXa8ak
* Xa8b8k8rb8b1I~Daa8k!

3n th~Daa8k!e
i~Daa8k2Dbb8k8!tXaa8kra8b8Xbb8k8

* %

1H.c. . ~64!

The quasienergies of the undamped central system appear in
Eq. ~64! by way of the Dabk . Since these frequencies con-
tain only differences of quasienergies, they have a direct
physical significance as transition frequencies and so may be
used as arguments of I(v) and n th(v). This is not the case
for the quasienergies themselves, due to their Brillouin-zone-
like ambiguity, cf. Eq. ~49!. Shifts of the Dabk brought about
by the principal parts of the integrals have been neglected.
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3. Rotating-wave approximation and solution
in the Floquet representation

In a rotating-wave approximation ~RWA!, it is assumed
that phase factors exp@i(Dabk2Da8b8k8)t#, with (a ,b ,k)
Þ(a8,b8,k8) in Eq. ~64! oscillate faster than all other time
dependences and hence can be neglected. This argument ap-
plies, however, only to quasienergy spectra without system-
atic degeneracies or quasidegeneracies. Indeed, the harmonic
potential we are presently dealing with has the peculiarity of
equidistant ~quasi!energy levels, cf. Eq. ~49!, so that addi-
tional terms have to be kept. Here, the condition
(a2b ,k)5(a82b8,k8) is sufficient to ensure Dabk
5Da8b8k8. Therefore these terms have to be kept in RWA.
Making the RWA, substituting Eq. ~59! in Eq. ~64!, and

assuming an Ohmic bath as above, we obtain the time-
independent master equation

ṙab5
g

2 $~N11 !@2A~a11 !~b11 !ra11,b112~a1b !rab#

1N@2Aabra21,b212~a1b12 !rab#%. ~65!

The effective thermal-bath occupation number

N5(
k

~ck
0!2~m01kV !n th~m01kV ! ~66!

reduces to N5n th(v0) in the undriven limit.
Formally, this master equation coincides with that for the

undriven dissipative harmonic oscillator in rotating-wave ap-
proximation @14#. It has the stationary solution

rab
as 5

1
N11 S N

N11 D
a

dab . ~67!

The density operator of the asymptotic solution is diago-
nal in this representation and reads

ras~ t !5 (
a50

`

raa
as uca~ t !&^ca~ t !u. ~68!

The basis $uca(t)&% corresponds to the ‘‘generalized Flo-
quet states’’ introduced in Ref. @5#, i.e., they are centered on
the classical asymptotic solution and diagonalize the asymp-
totic density operator.
To get the variances of Eq. ~68!, we switch to the Wigner

representation,

Was~x ,p ,t !5 (
a50

`

raa
as Wa~x ,p ,t !, ~69!

where

Wa~x ,p ,t !5
~21 !a

p
e2z2La~2z2!, ~70!

z25
1
\

$m j̇1
0~ t !j̇2

0~ t !x22@ j̇1
0~ t !j2

0~ t !1j1
0~ t !j̇2

0~ t !#px

1j1
0~ t !j2

0~ t !p2/m% ~71!
is the Wigner function corresponding to uca(t)& @33#, with
the Laguerre polynomial La . Using the sum rule @21#

(
a50

`

kaLa~x !5~12k !21expS xk
k21 D , ~72!

we obtain the asymptotic solution in the Wigner representa-
tion as

Was~x ,p ,t !5
1

p~2N11 !
e2z2/~2N11 !. ~73!

It is a Gaussian with the variances

sxx~ t !5
\

m ~N11/2!j1
0~ t !j2

0~ t !, ~74!

sxp~ t !5\~N11/2!@ j̇1
0~ t !j2

0~ t !1j1
0~ t !j̇2

0~ t !#/2, ~75!

spp~ t !5\m~N11/2!j̇1
0~ t !j̇2

0~ t !. ~76!

To enable a comparison between the different equations
of motions for the dissipative quantum system, we give for
the master equation in RWA ~65! also the corresponding
partial differential equation in Wigner representation. For a
derivation, we use the properties ~50! and ~51! of the opera-
tors Ĝ and Ĝ†, to get from the master equation ~65! for the
density matrix elements rab the corresponding operator
equation

ṙ52
i
\

@ĤS~ t !,r#1
g

2 $~N11 !~2ĜrĜ†2Ĝ†Ĝr2rĜ†Ĝ!

1N~2Ĝ†rĜ2ĜĜ†r2rĜĜ†!%. ~77!

The dissipative part of this equation is the same as for the
undriven dissipative harmonic oscillator @14#, but with the
shift operators for Floquet states instead of the usual creation
and annihilation operators. Interestingly, the master equation
in Eq. ~77! now exhibits Lindblad form @13,15#.
By substituting Eq. ~52!, we get an operator equation

which only consists of position and momentum operators.
Transforming them into the Wigner representation, we find

L~ t !52
1
m p]x1

g

2 ~]xx1]pp !1k~ t !x]x

1
g

2 @Dxx~ t !]x
21Dxp~ t !]x]p1Dpp~ t !]p

2# ~78!

with the coefficients

Dxx~ t !5\j1
0~ t !j2

0~ t !~N11/2!/m , ~79!

Dxp~ t !5\@ j̇1
0~ t !j2

0~ t !1j1
0~ t !j̇2

0~ t !#~N11/2!, ~80!

Dpp~ t !5m\j̇1
0~ t !j̇2

0~ t !~N11/2!. ~81!

The fact that there are also dissipative terms in Eq. ~78!
containing derivatives with respect to x is a consequence of
the RWA: Its effect is equivalent to using instead of Eq. ~14!
the coupling Hamiltonian HSB

RWA5(ngn(abn
†1a†bn), where
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a and bn are the usual annihilation operators of the system
and the bath, respectively. This introduces an additional cou-
pling term }ppn . In the next subsection we show how to
avoid this RWA, by going back to the original Markov ap-
proximation, Eq. ~22!.

4. Fokker-Planck equation without rotating-wave approximation

In the present case of a bilinear system, driven or not, for
which the classical motion is integrable, the knowledge of
the classical dynamics opens a more direct access also to the
quantal time evolution. Specifically, the interaction-picture
position operator x̃(t ,t8) for the corresponding undamped
quantum system is given by the solution of the classical
equation of motion in the limit g→0, indicated by the su-
perscript 0. In our case the classical solution is given by Eq.
~11!. The corresponding interaction-picture position operator
reads

x̃~ t ,t8!52 x̂
]G0~ t ,t8!

]t8
1
p̂
m G

0~ t ,t8!. ~82!

Inserting it into Eq. ~22!, we obtain a master equation in the
Markov approximation with respect to the quasienergy spec-
trum without expanding into Floquet states of the Schrö-
dinger equation. Even with the rotating-wave approximation
avoided, the resulting equation already has a simple struc-
ture: It is of the same form as the master equation derived in
Sec. III B 1, but with time-dependent transport coefficients

ḡ~ t !52gE
0

`

dv vE
0

`

dt sin~vt !G0~ t2t ,t !, ~83!

Dpp~ t !52
m\

p E
0

`

dv vcothS \v

2kBT
D E

0

`

dt cos~vt !

3
]G0~ t2t ,t8!

]t8 U
t85t

, ~84!

Dxp~ t !5
\

pE0
`

dv vcothS \v

2kBT
D E

0

`

dt cos~vt !G0~ t2t ,t !.

~85!

To evaluate these expressions, we substitute the undamped
limit of Eq. ~10!,

G0~ t ,t8!5 (
n ,n8

cn
0cn8
0 sin@m0~ t2t8!1V~nt2n8t8!#, ~86!

and exploit the sum rule ~7! for the cn , to find, as in Sec.
III B 1,

ḡ~ t !5g . ~87!

The explicit time dependence in G(t ,t8) results in a time
dependence of the coefficients Dpp and Dxp . Averaging the
transport coefficients over a period of driving, we find for
Dxp with the sum rule ~7! again the expression ~31!, as in
Sec. III B 1. Here, we have to choose the cutoff vD much
larger than the relevant frequencies m01nV .
For Dpp we find in an average over a period of driving
Dpp5
1
2 m\ (

n52`

`

@cn
0~m01nV !#2coth

\~m01nV !

2kBT
.

~88!

Unlike the corresponding expression in the Sec. III B 1, Eq.
~28!, the diffusion Dpp now accounts explicitly for the
quasienergies \(m01nV) instead of the energy \v0. Thus
the quasispectrum approach is reflected solely by a driving-
induced modification of the momentum diffusion Dpp .
The Fokker-Planck equation for W(x ,p ,t) is now of the

same structure as in the case of the Markov approximation
with respect to the unperturbed spectrum. Therefore the so-
lution and the Floquet-Wigner functions remain the same, up
to a different momentum diffusion Dpp .
In contrast to the Fokker-Planck equation with RWA in

the preceding subsection, the terms with ]xx and ]x
2 are now

absent. In addition, the cross diffusion Dxp in Eq. ~85! is
completely different, and unrelated to the one in the RWA
case ~80!. It originates from a principal part that has been
neglected in the derivation of Eq. ~78!.

D. Asymptotics

1. The conservative limit

In contrast to the Markov approximation with RWA in
Sec. III C 3, the variances in both Markov approximations
without RWA still depend on the friction g . To obtain the
conservative limit g→0 of these, we insert the Green func-
tion ~10! into Eq. ~37! and get

sxx~ t !52
gDpp

2m2 (
n ,n8

cncn8S f 12~ t ! egt2i[2m1~n1n8!V]t

g2i@2m1~n1n8!V#

22 f 1~ t ! f 2~ t !
egt2i~n2n8!Vt

g2i~n2n8!V

1 f 2
2~ t !

egt1i[2m1~n1n8!V]t

g1i@2m1~n1n8!V#
D . ~89!

In the limit of low damping, g!m1nV for any integer n ,
only the case n5n8 of the second term in the brackets re-
mains. Note that this condition is violated in parameter re-
gions where the Floquet index becomes a multiple of V , as is
the case along the borderlines of the regions of stability in
parameter space ~cf. Fig. 1!.
For the position variance, we get

sxx~ t !5A
Dpp

m2 j1
0~ t !j2

0~ t !, ~90!

where

A5 (
n52`

`

~cn
0!2 ~91!

denotes a number of order unity.
In an analogous way, we find

sxp~ t !5A
Dpp

2m @ j̇1
0~ t !j2

0~ t !1j1
0~ t !j̇2

0~ t !#, ~92!
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spp~ t !5AD pp j̇1
0~ t !j̇2

0~ t !. ~93!

Besides the prefactor, these variances are the same as for the
master equation with RWA in Sec. III C 4.
Moreover, in this limit g→0, all diagonal elements

W nn(x ,p ,t) are Floquet functions with the quasienergies
mnn50. However, they are different from the Wigner repre-
sentation of the stationary solutions ~73! of the correspond-
ing Schrödinger equation, which are of course solutions of
Eq. ~33! with g50. Due to the degeneracy of the Floquet
indices, this is no contradiction. The W nn(x ,p ,t) can be
viewed as dissipation-adapted Floquet functions.
For consistency, we check the uncertainty relations for the

asymptotic solution. It is satisfied if the variances fulfill the
inequality

Usxx~ t ! sxp~ t !
sxp~ t ! spp~ t !

U5SD ppA
m D 2>\2/4, ~94!

which we have verified numerically for the case of the
Mathieu oscillator.

2. The high-temperature limit

In the limit of high temperatures kBT@\vD , we expect
the Fokker-Planck equation for the Wigner function to give
the Kramers equation for the classical Brownian motion @28#,
i.e., an equation of the form ~33! with the diffusion constants
D xp50 and D pp5mkBT .
In the standard approach ~Sec. III B! and the quasispec-

trum approach without RWA ~Sec. III C 4!, the Fokker-
Planck equation is already of the required structure. With
c(1)5C @21# the cross diffusion D xp vanishes in the high-
temperature limit. For D pp , we use cothx51/x1O (x) and
get

D pp5mkBT(
n

~cn
0!2~m01nV !. ~95!

With the sum rule ~7!, this reduces to D pp5mkBT .
In the quasispectrum approach with RWA in Sec. III C 3,

the variances and diffusion constants scale with N11/2. This
factor reads, in the high-temperature limit,

N1
1
25(

n
~cn
0!2
kBT
\

5A
kBT
\
. ~96!

Therefore the diffusion constants D xx and D xp remain finite
and the Fokker-Planck operator ~78! does not approach the
Kramers limit for high temperatures. Nevertheless the as-
ymptotic variances in RWA coincide for high temperatures
with the classical result in the limit g→0.

IV. NUMERICAL RESULTS

In this section, we compare our approximate results to
exact ones, obtained from the path-integral solution in Ref.
@1#. Specifically, we give the numerical results for the
Mathieu oscillator, i.e., we use

k~ t !5m~v0
21«cosVt !. ~97!
This is an experimentally important case in view of the fact
that it describes the Paul trap @34#.
By inserting Eq. ~97! and the ansatz ~5! into Eq. ~3!, we

obtain the tridiagonal recurrence relation

«cn2112@v0
22g2/42~m1nV !2#cn1«cn1150. ~98!

From this equation, the classical Floquet index m and the
Fourier coefficients cn are determined numerically by con-
tinued fractions @24#.
In the figures we use the scaled quantities t̄5Vt /2,

v̄052v0 /V , and «̄52«/V2. The external period thus takes
the value T̄5p . Position and momentum are scaled via
x̄5(2\/mV)1/2 and p̄5(m\V/2)1/2p , respectively. The
overbar for the scaled quantities has been suppressed in the
figures.
The influence of the quasienergies on the equation of mo-

tion ~33! is given by different diffusion coefficients D pp . In
Fig. 2, we compare the momentum-diffusion coefficients be-
tween the Markov approximation with respect to the unper-
turbed spectrum, given by Eq. ~29!, and the Markov approxi-
mation that relates to the quasienergy spectrum, given by Eq.
~88!. We have scaled the values to the classical momentum-
diffusion coefficient mkBT . The parameters v0

2 and « are
varied along the full line in the inset. Note that within the
unstable regimes, perturbation theory is not valid. Neverthe-
less, Eq. ~88! gives a smooth interpolation. The discrepancies
become most significant for strong driving and large v0

2. For
both low driving amplitude «!v0

2 and high temperature
T@\v0 /kB , the difference vanishes.
The variances sxx(t) and spp(t) of the Markov approxi-

mations without RWA are compared against the exact results
@1# in Figs. 3~a! and 3~b!. The chosen driving parameters
v256.5V2 and «57V2 lie inside the fifth stable zone
(m54.535 13V/2). The temperature kBT50.5\V is suffi-
ciently large, but with quantum effects still appreciable. We
note that the improved Markov treatment in Sec. III C 4,
which accounts for the quasienergy differences, agrees better

FIG. 2. The diffusion constant D pp for the simple ~dotted! and
the improved ~dashed! Markov approximation compared to the time
average of the exact value in units of the classical diffusion constant
mkBT for kBT50.5\V . The parameters v0

2 and « are indicated by
the full line in the inset ~units as in Fig. 1!.
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with the exact prediction. In the figure we depict asymptotic
times t̄.50, where transient effects have already decayed.
The asymptotic covariance elements retain the periodicity
T̄5p of the external driving. For the chosen parameters the
relative error is reduced by the use of the improved Markov
scheme by approximately 30%.
The relative error hxx( t )5sxx

Markov( t )/sxx
exact( t ) of the po-

sition variance for these two Markov approximations is de-
picted in Fig. 4. Note that the maximal deviations do not
occur in the extrema, but happen to occur in the regions with
negative slope.
As depicted in Fig. 5, the quality of both Markov approxi-

mations worsens with increasing dissipation strength g . This
reflects the breakdown of the weak coupling approach when
strong friction is ruling the system dynamics.
Results for the Markovian treatment within RWA, given

in Sec. III C 3, are depicted for the position variance sxx( t )
in Fig. 6. The driving parameters are the same as in Fig. 3.
For this example, the quality of agreement to the exact result
is similar for both Markov approximations. Nevertheless, the
solution without RWA yields—up to a scale—a better over-
all agreement with the exact behavior over a full driving
period T .

FIG. 3. The asymptotic variances sxx( t ) ~a! and spp( t ) ~b! with
period T52p/V for the simple ~dotted! and the improved ~dashed!
Markov approximation, compared to the exact result ~full line! for
the parameters «57 V2, v0

256.5V2, kBT50.5\V , and g5V/20.
The scaled driving period T̄5p is indicated in panel ~a!.
V. CONCLUSION

We have used the parametrically driven harmonic oscilla-
tor as a simple working example to compare various versions
of the Markovian approach to the quantum dynamics of pe-
riodically driven systems with dissipation, and to provide a
synopsis of a number of alternative representations, each of
which emphasizes different aspects of the same underlying
physics.
The principal distinction to be made among possible Mar-

kovian approaches to the driven dissipative dynamics refers
to the degree to which changes in dynamical and spectral
properties of the central system due to the driving are taken
into account. In the crudest treatment, the nonunitary terms
in the master equation are derived ignoring the explicit time
dependence of the Hamiltonian, and the driving appears only
in the unitary term. An improved master equation is obtained
if the central system and the driving are coupled to the heat
bath as one whole. The energy-domain quantity relevant for
all subsequent developments is then the quasienergy spec-
trum, obtained within the Floquet formalism, instead of the

FIG. 4. Relative error hxx( t )5sxx
Markov( t )/sxx

exact( t ) for the posi-
tion variances of Fig. 3~a!.

FIG. 5. The time averaged variance s̄xx( t ) for the simple ~dot-
ted! and the improved ~dashed! Markov approximation, compared
to the exact result ~full line! for the parameters «57V2,
v0
256.5V2, and kBT50.5\V .
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unperturbed spectrum. In the time domain, the quantities en-
tering the dissipative terms of the master equation, such as
Heisenberg-picture operators of the central system, gain an
explicit time dependence with the periodicity of the driving.
As a bonus, the Floquet treatment of the central system with
driving yields a well-adapted basis, the set of eigenstates of
the Floquet operator. Representing the master equation in
this basis completely removes the unitary term.
Besides the differences in representation, the use of the

improved Floquet-Markov approximation in Sec. III C 4. re-
sults mainly in a modified momentum diffusion that depends
on the quasienergy spectrum instead of the unperturbed spec-
trum of the central system. The difference becomes signifi-
cant in the limits of strong driving amplitude and low tem-
perature. An additive time-dependent external force, applied
in addition to or instead of the parametric driving, undergoes
a renormalization which vanishes, however, in the case of an
Ohmic bath.
Even within the improved Markov approach, finer levels

of approximation can be distinguished. A significant simpli-
fication of the master equation is achieved by a rotating-
wave approximation, i.e., here by neglecting reservoir-
induced virtual transitions between Floquet states of the
central system that violate quasienergy conservation. The re-
sulting master equation has Lindblad form, with creation and
annihilation operators acting on Floquet states, and thus
manifestly generates a dynamical semigroup. This is not the
case if the RWA is avoided. Apparently a drawback, the lack
of a Lindblad structure in the master equation without RWA,
faithfully reflects the failure of the Markov approximation on
short time scales.
An analogous situation as with the Lindblad form of the

master equation arises with its Floquet structure. If all coef-
ficients are at most periodically time dependent, then the
equation of motion for the reduced density operator complies
with the conditions for applicability of the Floquet theorem.
As a consequence, the solutions can be cast in Floquet form,
i.e., can be written as eigenfunctions of a generalized non-
unitary Floquet operator that generates the evolution of the

FIG. 6. Position variances obtained with the Markov approxi-
mation with respect to the quasienergy spectrum with ~dotted! and
without ~dashed! RWA, compared to the exact result ~full line! for
~a! g5V/20 and ~b! g5V/10 ~b! for kBT50.5\V . The driving
parameters are «57V2 and v0

256.5V2.
density operator over a single period. Since all variants of the
Markov approximation discussed herein truncate the
memory of the central system on time scales shorter than the
period of the driving, the corresponding master equations
have Floquet structure throughout. The exact path-integral
solution, in contrast, allows for memory effects of unlimited
duration and thereby generally prevents the consistent defi-
nition of a propagator over a single period.
Additional insight is gained by discussing the dynamics in

terms of phase-space distributions, specifically, in terms of
the Wigner representation of the density operator and its
equation of motion. In this representation, the Floquet for-
malism is a useful device to construct and classify solutions.
Since all Fokker-Planck equations obtained are time peri-
odic, as are the corresponding master equations, their solu-
tions may be written as eigenstates of a Wigner-Floquet op-
erator ~the Fokker-Planck operator evolving the Wigner
function, integrated over a single period!, or Wigner-Floquet
states in short. They represent the quasiprobability distribu-
tions closest to the Floquet solutions of the corresponding
classical Fokker-Planck equation.
Wigner-Floquet states with a purely real quasienergy cor-

respond to asymptotic solutions. They are not literally sta-
tionary but retain the periodic time dependence of the driv-
ing. Since we are dealing here with a linear system, the
asymptotic quasiprobability distributions follow the corre-
sponding classical limit cycles. In the case of parametric
driving, these limit cycles are trivial and correspond to a
fixed point at the origin. A time dependence arises only by
the periodic variation of the shape of the asymptotic distri-
butions.
Concluding from a numerical comparison of certain dy-

namical quantities, for the specific case of the Mathieu oscil-
lator, the attributes ‘‘simple’’ and ‘‘improved’’ for the two
basic Markovian approaches prove adequate. Results for the
Markov approximation based on the quasienergy spectrum
show consistently better agreement with the exact path-
integral solution than those for the Markov approximation
with respect to the unperturbed spectrum. However, even in
parameter regimes where the respective approximations are
expected to become problematic, the differences in quality
are not huge and the agreement with the exact solution is
generally good. Technical advantages of the Markov ap-
proximation in general and of its various ramifications—easy
analytical and numerical tractability, desirable formal prop-
erties such as Floquet or Lindblad form of the master
equation—can justify accepting their quantitative inaccu-
racy.

ACKNOWLEDGMENTS

Financal support of this work by the Deutsche Fors-
chungsgemeinschaft ~Grant No. Di 511/2-1 and Ha 1517/
14-1! is gratefully acknowledged. We thank Christine Zerbe
for providing us the numerical code for the path integral
solution and Gert-Ludwig Ingold for helpful discussions.

APPENDIX A:
SOLUTION OF THE CHARACTERISTIC EQUATIONS

In this appendix, we solve the equation of motion for the
Wigner function by the method of characteristics. For sim-
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plicity, we use here units with m51. We write W(x ,p ,t) as

W~x ,p ,t !5E dXdP e ixX1ipPeS~X ,P ,t !. ~A1!

By this ansatz, Eq. ~33! is transformed to the quasilinear
partial differential equation

F~X ,SX ,P ,SP ,t ,S t!50 ~A2!

for S(X ,P ,t), where F is given by

F5S t2XSP1gPSP1k~ t !PSX1gDppP21gDxpXP .
~A3!

We denote the partial derivatives of S(X ,P ,t) with respect to
X , P , and t by SX , SP , and S t , respectively.
The characteristic equations @26# of Eq. ~A2! are given by

ṫ5
]F
]S t

51, ~A4!

Ẋ5
]F
]SX

5k~ t !P , ~A5!

Ṗ5
]F
]SP

5gP2X , ~A6!

ṠX52
]F
]X5SP2gDxpP , ~A7!

ṠP52
]F
]P52gSP2k~ t !SX22gDppP2gDxpX ,

~A8!

Ṡ t52
]F
]t 52

dk~ t !
dt PSX , ~A9!

whose solutions give the characteristics of the partial differ-
ential equation ~A2!.
Equation ~A4! means that the characteristics can be pa-

rametrized by the time t . Instead of Eq. ~A9!, we will use Eq.
~A2! to get an expression for S t . So we only have to solve
Eqs. ~A5!–~A8!. The solutions of these equations can be
traced back to the fundamental solutions f i(t) of the classical
equation of motion ~2!.
From Eqs. ~A5! and ~A6!, we find

P̈2g Ṗ1k~ t !P50. ~A10!

This is simply the classical equation of motion with a nega-
tive damping constant. Therefore the solutions for X and P
read

P~ t !52c11egt f 2~ t !1c21egt f 1~ t !, ~A11!

X~ t !5c11egt ḟ 2~ t !2c21egt ḟ 1~ t !, ~A12!

where c i1 denotes integration constants.
From Eqs. ~A7! and ~A8! we find for SX

S̈X1g ṠX1k~ t !SX522gDP , ~A13!
which is the classical equation of motion with an inhomoge-
neity. The effective diffusion constant D is given by

D5Dpp1gDxp . ~A14!

With the integration constants c i2 , we integrate Eq. ~A13!
with the Green function ~9! to

SX~ t !5c12 f 1~ t !1c22 f 2~ t !22gDE
t0

t
dt8 G~ t ,t8!P~ t8!,

~A15!

and get by use of Eq. ~A7!

SP~ t !5c12 ḟ 1~ t !1c22 ḟ 2~ t !22gDE
t0

t
dt8

]G~ t ,t8!

]t P~ t8!

1gDxpP~ t !. ~A16!

By inserting

P~ t8!5G~ t ,t8!X~ t !1
]G~ t ,t8!

]t P~ t !, ~A17!

obtained from Eqs. ~A11! and ~A12!, we get a result for SX
and SP that depends only on the endpoints of the character-
istics. Now together with Eq. ~A2!, we have an expression
for grad S(X ,P ,t)5(SX ,SP ,S t), which can be integrated to

S~X ,P ,t !5@c12 f 1~ t !1c22 f 2~ t !#X

1@c12 ḟ 1~ t !1c22 ḟ 2~ t !#P2
1
2 sxx~ t ,t0!X2

2sxp~ t ,t0!XP2
1
2 spp~ t ,t0!P2, ~A18!

with

sxx~ t ,t0!52gDE
t0

t
dt8@G~ t ,t8!#2, ~A19!

sxp~ t ,t0!52gDE
t0

t
dt8G~ t ,t8!

]

]t G~ t ,t8!, ~A20!

spp~ t ,t0!52gDxp12gDE
t0

t
dt8F ]

]t G~ t ,t8!G2.
~A21!

By inserting S(X ,P ,t) into Eq. ~A1!, we find a solution for
the Wigner function W(x ,p ,t).
The integration constants c i6 are of course constant

along the characteristics. Therefore the Poisson brackets
between the expressions c i6(X ,SX ,P ,SP ,t) and
F(X ,SX ,P ,SP ,t ,S t) vanish @26#. By transforming back from
Fourier space to real space, one finds that the operators
ĉ i6[c i6(2i]x ,2ix ,2i]p ,2ip ,t) commute with the op-
erator ] t2L(t), whose nullspace is the solution of the equa-
tion of motion. Therefore, the ĉ i6 are shift operators in the
subspace of solutions, i.e., if W(x ,p ,t) is a solution of Eq.
~33!, then ĉ i6W(x ,p ,t) is also a solution.
For the ĉ i6 we find
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ĉ115
1
2 @ f 1~ t !]x1 ḟ 1~ t !]p# , ~A22!

ĉ215
1
2 @ f 2~ t !]x1 ḟ 2~ t !]p# , ~A23!

ĉ125i ḟ 2~ t !@x1sxx~ t ,t0!]x1sxp~ t ,t0!]p#

2i f 2~ t !@p1sxp~ t ,t0!]x1spp~ t ,t0!]p# , ~A24!

ĉ2252i ḟ 1~ t !@x1sxx~ t ,t0!]x1sxp~ t ,t0!]p#

1i f 1~ t !@p1sxp~ t ,t0!]x1spp~ t ,t0!]p# . ~A25!

Note that because of the linear structure of the character-
istic equations, there is no ambiguity concerning the ordering
of operators.
The operators Q i1(t), used above, are proportional to the

ĉ i1 .

APPENDIX B:
THE ADDITIVELY DRIVEN HARMONIC OSCILLATOR

In this appendix we present the Markovian master equa-
tion within the quasispectrum approach when the parametric
oscillator is subjected to additional additive driving
2 x̂F(t), i.e.,

Ĥ~ t !5ĤS~ t !2 x̂F~ t !. ~B1!

With ĤS(t) being a time-independent harmonic oscillator,
i.e., k(t)5mv0

2, the corresponding Markovian master equa-
tion in RWA for the dissipative system has already been
given in @5#. Herein we generalize these results for the com-
bined time-dependent system Hamiltonian in Eq. ~B1!.
It is known that the only effect of the driving force F(t)

on the ~quasi!energy spectrum of a parametrically driven har-
monic oscillator is an overall level shift @8#. Thus the level
separations remain unaffected and we expect no change in
the dissipative part of the master equation ~27!.
The classical equation of motion, which is also obeyed by

the interaction-picture position operator, now reads

mẍ1k~ t !x5F~ t !, ~B2!

and can be integrated to yield the interaction-picture position
operator

x̃~ t ,t8!52 x̂
]G0~ t ,t8!

]t8
1
p̂
m G

0~ t ,t8!

1
1
mEt8

t
dt9 G0~ t ,t9!F~ t9!. ~B3!
Thus we obtain a c-number correction to the interaction-
picture position operator ~82!, given by the third term. After
inserting Eq. ~B3! into Eq. ~22!, the generalized Markov ap-
proximation emerges as

ṙS5•••1
i
\
F~ t !@ x̂ ,rS# ~B4!

2
i

\2(n
gn
2E

0

`

dt An~t !@ x̂ ,rS#
2
m

3E
t

t2t

dt8G0~ t2t ,t8!F~ t8!. ~B5!

The dots denote the old result for F(t)50, given by the
right-hand side of Eq. ~27!. The term in the first line stems
from the reversible part of the master equation ~22!; the sec-
ond one is a correction of the driving force due to the inter-
action with the bath. Thus the equation of motion for the
density operator has the structure

ṙS5•••1
i
\
F̃~ t !@ x̂ ,rS# ~B6!

with an effective total driving force

F̃~ t !5F~ t !1
2
mpE0

`

dv I~v !E
0

`

dt sinvt

3E
t

t2t

dt8G0~ t2t ,t8!F~ t8!. ~B7!

Note that the dissipative parts of Eq. ~B6! are not affected
by the additive driving force F(t). This makes it explicit that
we must use a parametric time dependence to study differ-
ences in the dissipative parts resulting from the Markov ap-
proximation with respect to the energy spectrum versus the
Markov approximation with respect to the quasienergy spec-
trum.
With an Ohmic bath, I(v)5mgv , the integral in Eq.

~B7! vanishes and we obtain F̃(t)5F(t). Thus in contrast to
an explicit parametric time dependence k(t) in the quadratic
part of the Hamiltonian, the time dependence of an additive
force, in this case, does not change the Markovian master
equation of the dissipative system.
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