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Precise Numerics versus Theory for Correlation Ratchets
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Fluctuation-induced transport in a correlation ratchet driven by both additive Gaussian white and

additive Ornstein-Uhlenbeck (colored) noise is studied numerically and interpreted against theoretical
predictions. The current, as well as the current-load curve, exhibits a different behavior depending on
the scaling of the colored noise strength. This archetypal correlation ratchet is capable of changing the
direction of current (passing through zero at a particular value of noise color) if only the shape of the
ratchet potential is chosen appropriately.

PACS numbers: 82.20.Mj, 05.40.+j, 87.10.+e
The ability of a Brownian particle to extract use-
ful work from nonequilibrium fluctuations when
rattling in a periodic structure with broken spatial
symmetry (“ratchet”) has recently attracted much atten-
tion [1]. Apart from the general effort of understanding
this novel nonequilibrium phenomenon, it entails in-
teresting technological applications such as novel mass
separation and trapping schemes [2] and, likely, is also
of relevance for intracellular transport processes [1–3].
In the simplest case, such a “Brownian rectifier” is
modeled by an overdamped particle moving in a periodic
ratchet potential V sxd ­ V sx 1 Ld of period L under
the simultaneous action of Gaussian white, d-correlated
thermal noise jstd, kjstdjssdl ­ dst 2 sd, of strength
2D and an additional state-independent fluctuating force
estd of vanishing mean kestdl, i.e.,
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≠V
≠x

1 estd 1
p

2D jstd . (1)
Equation (1) describes a correlation ratchet [4–6]. If the
additive fluctuation estd is a second Gaussian stationary
white noise, the dynamics in (1) obeys detailed balance;
hence the stationary current J ­ k Ùxl is zero in accordance
with the second law of thermodynamics. Our focus
here is on the simplest, nontrivial colored noise driven
correlation ratchet: With Gaussian noise being abundant
in physical applications [7], we choose for estd an
Ornstein-Uhlenbeck (OU) process, which is the archetype
model for free Brownian motion [7]. This Markovian
Gaussian process estd satisfies the Langevin equation
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hstd , (2)

with hstd Gaussian white noise, khstdhssdl ­ dst 2 sd,
which is independent of jstd. Its stationary correlation
reads

kestdessdl ­
Qstd

t
e2jt2sjyt . (3)

With Qstd ­ Q a constant, estd describes for small
noise correlation time t a deviation from the white noise
limit, yielding a constant integrated intensity 2Q. In
contrast, the case with a constant variance ke2l ­ Q̃
implies the different scaling Qstd ­ Q̃t. In this latter
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case, the noise intensity vanishes as t °! 0. Both
scalings are of practical relevance, but entail different
physical consequences. With Qstd ­ Q the colored
fluctuations approach zero amplitude in the adiabatic
limit t °! `, whereas in the second case the Gaussian
stationary fluctuations estd explore a continuous spectrum
of amplitudes, which extends over the whole real axis and
is independent of t.

Equation (1) together with (2) provide our setup for di-
rected transport generated by colored nonequilibrium fluc-
tuations estd. The problem at hand is challenging from
several points of view: First, the dynamics of the parti-
cle motion xstd is non-Markovian in nature. This means
that the application of familiar tools from the theory of
stochastic processes is met with distinct difficulties [7].
These queries become even more pronounced in the pres-
ence of two noise sources, with one being nonwhite.
Second, a finite stationary current J occurs only when in-
ternal forward and backward transitions do not cancel “on
average.” Hence, good approximations for the individual
internal transition rates do not necessarily guarantee good
results for the overall current J, which at weak noise is
sensitive to the difference of the two exponentially small
rates (see below).

Given these theoretical challenges, it is an important
task to test analytical predictions vs precise numerical
results. In fact, it is only very recently that the theoretical
qualifications for this class of two-noise driven colored
flows have been developed [8–12].

Before we engage in our objective of calculating both
the stationary current as well as the current-load charac-
teristics, we comment on the general features of the arche-
typal correlation ratchet in (1) and (2): When the noise
color t approaches zero, the current J vanishes since for
both scalings of the noise strength the stochastic dynam-
ics is driven by additive Gaussian white noise only. This
result holds true also for the constant intensity scaling
Qstd ­ Q in the adiabatic limit t °! `. The latter fea-
ture is valid independently of the Gaussian statistics of estd.
In contrast, for constant variance scaling Q̃ we encounter
in the adiabatic limit a Gaussian distribution of arbitrary
large barrier heights. In this limit a rate description fails
© 1996 The American Physical Society
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[9]. Nevertheless, there exists a limiting adiabatic aver-
age transition time and current as well [9,12]. Moreover,
it should not be overlooked that with our form in (1) we
implicitly use a scaling of physical time t, which is in-
versely proportional to the physical friction strength [7].
Hence, instead of varying t in (1) and (2), one could keep
t “fixed,” and vary instead the friction in the original (un-
scaled) system. This feature calls for interesting conse-
quences when the current changes sign as a function of the
noise color t (see below).

Starting from the Fokker-Planck equation (FPE) for the
probability density Wtsx, ed,
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we evaluate by use of the matrix-continued fraction
(MCF) method (see [7,10,13]) the x-periodic station-
ary probability Wstsx, ed ­ Wstsx 1 L, ed, normalized
to unity within a spatial period, i.e.,

RL
0 dx

R`
2` deWst 3

sx, ed ­ 1. With the probability current in the x direction
given by Jxsx, ed ­ s2≠Vy≠x 1 e 2 D≠y≠xdWstsx, ed,
the total fluctuation-induced nonequilibrium current J is
obtained as

J ­
Z L

0
dx

Z `

2`

deJxsx, ed . (5)

In applying the MCF, we expand the potential V sxd as
well as the solution Wstsx, ed into Fourier series in x, and
the e dependence into a series of Hermite functions. For
the ratchet potential we use two different shapes,

V sxd ­ V2sxd ­ 2fsins2pxd 1 0.25 sins4pxdgy2p ,

(6)
and a model with three Fourier modes,
V sxd ­ V3sxd ­ 2 sinhs2pxd 1 0.2 sinf4psx 2 0.45dg

1 0.1 sinf6psx 2 0.45dgjy2p . (7)
Both these ratchet potentials exhibit a smaller average
force in forward direction, see Fig. 1. Hence, the current
in a correlation ratchet is intuitively expected to flow
always towards the positive direction. Nevertheless, the
characteristic quantity [see (9) below]

2
Z L

0
dx V 0sxdfV 00sxdg2 ; c2 2 c1 (8)

is positive for V2sxd, but negative for V3sxd. This differ-
ence will be of crucial importance for the phenomenon of
current reversal in OU process driven ratchets.

For the potential V2sxd the behavior of the current J
in the (OU) ratchet is depicted in Figs. 2(a)–2(c) as a
function of the noise parameters hD, Q, tj. Figure 2(a)
is for the constant intensity scaling Qstd ­ Q, where
the current Jstd for fixed Q starts out from zero at
t ­ 0, reaches a maximum, and approaches zero again as
FIG. 1. Shape of the two ratchet potentials V2sxd (solid) and
V3sxd (dashed) used in this work.

t ! `. We note that this increase and decrease occurs
monotonically as t is varied. For fixed variance scaling
Qstd ­ Q̃t, the current is depicted as a function of Q̃
and noise color t in Fig. 2(b). We note that for fixed Q̃,
the current Jstd is maximal in the adiabatic fluctuation
limit t ! `, and always monotonically decreases to zero
as t ! 0. The global adiabatic maximum occurs near
Q̃ . 3. With t held fixed, the current JsQ̃d exhibits

FIG. 2. Numerical (MCF) results for the current J in V2sxd
are depicted in (a) and (b) for the two different noise scalings
Qstd ­ Q and Qstd ­ Q̃t at fixed thermal noise strength
D ­ 0.1. The dependence on both noise sources is exhibited in
panel (c) at t ­ 1. The prediction for Jst ! `d of the familiar
adiabatic approximation [1] agrees within line thickness with
the MCF results in (b).
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a bell-shaped maximum as Q̃ is varied within f0, `g.
Moreover, we note that this maximum does not occur
at a fixed value Q̃, but moves towards larger Q̃ values
as t ! 0. For t ­ 1 (i.e., Q̃ ­ Q) the influence of the
thermal noise strength D is depicted in Fig. 2(c). Over
most parts of the parameter regime sQ̃, Dd the effect of
increasing the thermal noise intensity D yields a smaller
current. An exception occurs for small Q̃ values &0.5,
where small thermal noise can increase the current.

For this class of two-noise driven colored flows a gener-
alized unified colored noise approximation (GUCNA) has
been developed in Ref. [10]. The upshot of this theory
is that the non-Markovian dynamics is approximated by a
white-noise driven effective Fokker-Planck equation with
a color and state dependent diffusion. Given this, the cur-
rent Jft, Qstd, Dg itself can be evaluated readily in terms
of two quadratures; see, e.g., Refs. [6,13]. Notably, the
GUCNA is not restricted to small noise intensities only.
The path integral approach is another tool for obtaining
approximative results; however, it is restricted to small
noise intensities. Within this restriction, the current J can
be approximated by Lfk1std 2 k2stdg, wherein k6 are
the forward and backward transition rates between adja-
cent minima of the ratchet potential V sxd. The Arrhenius
factors for these rates can be evaluated by invoking the
“small-g” path integral theory put forward in [12]. With
a constant intensity scaling Qstd ­ Q, the regime of va-
lidity of this approximation is governed by the expan-
sion parameter g ­ sQyDtd1y2 , 1, see Ref. [12]. At
small noise color t, yet a different path-integral analysis
[8,10,12] for weak noise D and Qstd similarly predicts
for the current
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Here, x0 is the minimum of the ratchet potential,
with the left- (right-) sided transition states x2 sx1d,
obeying V 00sx2d ­ V 00sx1d ; V 0sx#d. The quantity c6 is
dependent solely on the potential shape, c6 ­Rx6

x0
dxfV 00sxdg2V 0sxd . 0, and DV ­ V sx#d 2 V sx0d

denotes the Arrhenius energy of the periodic ratchet.
At large noise color t ! `, with D fi 0 but small, an
adiabatic approximation yields for the current a limiting
behavior of the form

Jst ! `d ­ C

(
1 2 exp

"
Qstd
2D2t

sL2
2 2 L2

1d

#)
, (10)

where C is positive valued and L6 ­ jx6 2 x0j.
The predictions of the various theories are compared

in Fig. 3 for constant noise intensity Qstd ­ Q for the
ratchet potential V2sxd. The small-g theory (dashed line)
yields qualitatively the correct behavior over the whole t
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FIG. 3. The numerical result (solid line) is compared to
theories of Eq. (9) (dotted line), GUCNA of [10] (dash-dotted
line), and small-g theory in [12] (dashed line) for the noise
parameters D ­ 0.1 and Q ­ 0.025. The inset shows the
current in the tilted potential V2sxd 1 xF, which flows “uphill”
for small F. D and Q are as above, t ­ 1.25 (solid line), t ­
0.25 (dashed line), and t ­ 0.05 (dotted line). As t ! 0, the
numerics of the small-g theory become increasingly intractable.

regime, predicting correctly the location of the maximum,
although being off for J by a factor &10. In contrast,
the GUCNA (dash-dotted line) is limited in the regime
of validity to small t values. There, it predicts rather
correctly the current, and is in agreement superior to the
small-t path integral result in (9) (dotted line).

The two theoretical predictions in (9) and (10) call for
interesting effects: First, we observe that with L1 . L2

(i.e., a forward ratchet), the current is always positive as
t ! `, independent of the noise scaling (cf. Fig. 2). For
Qstd ­ Q, it vanishes exponentially inversely propor-
tional to t. Turning to the behavior at small t, the rub is
that the quantity sc2 2 c1d in (8) can assume for a for-
ward ratchet both positive as well as negative values. In-
deed, for V2sxd, c2 2 c1 . 14.8, and for V3sxd, c2 2 c1 .
26.19! Hence, with sc2 2 c1d , 0, the current in (9)
starts out from t ­ 0 with negative values. Upon noting

FIG. 4. The current reversal in V3sxd is depicted for D ­
0.05 and Qstd ­ Q ­ 0.025: Numerical results (solid line)
are compared to GUCNA (dash-dotted line), small-t (dotted
line), and small-g (dashed line) theory. The inset gives a
magnification of the behavior at small t.
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(10), i.e., Jst ! `d $ 0, this implies at least one current
reversal of J vs t for the OU noise driven V3sxd ratchet.
Moreover, this reversal occurs independently of the chosen
form of the noise scaling Qstd. The vanishing (!) of Jstd
itself typically occurs at moderate noise color tR , which is
outside the regime of validity of the small-t path integral
approach as given in (9). Figure 4 depicts this new current
reversal [14], where precise numerics (solid) are compared
with the GUCNA (dash-dotted line), the “small-t” theory
in (9) (dotted line), and the small-g theory (dashed line).
The reversal occurs near tR . 0.037, while the small-g
theory—being presently the only theory that captures
the change of sign—yields tR . 0.16. At small t, the
GUCNA again exceeds in accuracy the prediction (9), see
inset in Fig. 4. It is worth mentioning that the current re-
versal is not caused by the slight extra “shoulder” of the
potential V3sxd in comparison with V2sxd (cf. Fig. 1) as
can be demonstrated by examples; rather it is the proper
interplay of the higher x derivatives of V sxd in (8) which
matters.

The inset in Fig. 3 displays the current for V2sxd in the
presence of an additional constant bias F (“current-load
curve”) for different t values. For small bias, the particle
can move uphill until a critical value Fs (the stopping
force) is reached, where JsFsd ­ 0. This phenomenon
of uphill motion against an external gradient has been
observed recently for the directed motion of ions in a
biological system [15]. The stopping force Fsstd on the
almost linear load curve depicted in Fig. 3 exhibits a bell-
shaped behavior as a function of noise color t.

In summary, we have presented the first precise numer-
ical (MCF) calculations over extended parameter regimes
(cf. Fig. 2) for the simplest Gaussian colored noise driven
correlation ratchet. We compared the results vs recent,
nontrivial theoretical predictions. The discovered novel
features of the stopping force Fsstd and—most surpris-
ingly—the simple scheme of current reversal calls for
intriguing applications in the natural sciences in both mi-
crotechnology and biophysics.
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