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Abstract

Recent results on the dynamics of a two-state system driven by dc-ac fields are discussed. We show that the approximation
put forward in the work by Wang and Zhao [ Phys. Lett. A 217 ( 1996) 2321 gives qualitative incorrect results for the
dynamics when effects of the dc field in the presence or absence of the ac field are considered.

                                  

The dynamics of a dissipative two-level system (TLS) driven by strong laser fields has been the object
of intense investigations in past years [ l-81. Here we report on the recent advances on the dynamics of the
dissipative two-level system as developed in Refs. [ 2-81. By use of a direct comparison, we demonstrate that
the approximative results put forward by Wang and Zhao [ 91 are in disagreement with nonapproximated results
of the noninteracting-blib approximation (NIBA) in Refs. [ 2,571.

As a working model we consider the time-dependent spin-boson Hamiltonian where the bath is described as
an ensemble of harmonic oscillators with a bilinear coupling in the TLS-bath coordinates

H(t) = -+i~~+~(f)uJ + ic
a

2 +m,w:x: -ccnxndaz . > (1)

Here the CT’S are Pauli matrices, and the eigenstates of uI are the basis states in a localized representation
where d is the tunneling distance. The tunneling splitting energy is given by ZiA , while the asymmetry energy
is FiE( t) = iI( EO + 3 cos L&) and describes the coupling with external dc-ac fields. As far as regards the influence
of the bath on the TLS dynamics, all information is captured in the twice-integrated bath correlation function
[ 10,111 (/3 = l/I@), i.e.,

cm

Q(f) = d’
J

dw~(~) cosh(wp/2) - cosh[o(P/2 - if)1
7T W2 sinh( w/3/2) ,

0

where J(w) = $TC~(C~/ m,w,)6( w - w,) is the bath spectral density. For Ohmic dissipation it has the form
J(W) = (2?~h~/d~)(ywe+“I~c, with CY denoting the dimensionless coupling strength and w, a cut-off frequency.
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Finally, the quantity of interest to investigate the TLS dynamics is the expectation value (am) - P(t, to)
where we suppose that the particle was held at the site U, = 1 at times t < to with the bath having a thermal
distribution. An exact path-integral solution for the expectation value (a,(t)) has first been obtained in Ref.
[2], together with closed form analytical solutions valid at low-frequency driving fields, within the NIBA. On
the other hand, a master equation for the case of a symmetric TLS that covers only the transient dynamics was
obtained within the NIBA first in Ref. [ 31, by addressing the high-frequency regime. The generalization of the
NIBA master equation for high frequencies and a biased TLS was discussed afterwards by Dakhnovskii in Ref.
[4,5]. The exact (i.e. valid beyond the NIBA) non-Markovian master equation that governs the TLS dynamics
has recently been obtained in Ref. [ 71. The NIBA master equation for the asymmetric TLS reads [ 4-81

P(r,ro) = J dr’[K’-)(t,r’) - K’+)(r,t’)P(r’,ro)], (2)

with the kernels Kc*) (I, r’) given by

K’+‘(r, r’) = 42e-Q”‘-“) co s [Q ”(r  -  r ’) ]  co s [7 j(r,r ’) ],

K ’-’ (r  r ’)  =  ~2~-Q’(r-r’)9 sin[Q”(r - r’)] sin[rl(r,r’)], (3)

where v( r ,  r ’)  =  E O ( r  -  r ’)  +  Z /0 (  sin R r -  sin O r’).  Here Q’(r) and Q”(r) a re  the real and imaginary parts of
the bath correlation function Q(r), respectively. It corresponds to Eq. (6) ’ of Ref. [9]. The authors of Ref.
[9] then attempt to obtain, following Refs. [ 3,4], an approximation to (2) of convolutive type, being valid
for the case of an high-frequency driving field. In doing so, one intrinsically neglects the oscillatory longtime
dynamics. In this way the authors of Ref. [ 91 arrive at their Eq. ( 13) in Ref. [ 91. This Eq. ( 13)) which
constitutes the central starting point of the further analysis in Ref. [9], however, is incorrect. Likewise, the
same mistake appears in Eq. (37) by Dakhnovskii in Ref. [ 41. In fact, a static bias &a does break the spatial
inversion symmetry of the dynamics. This leads, for example, to different backward and forward relaxation
rates and to an equilibrium (or quasi-equilibrium for the case of fast ac fields) value, being different from
zero. In particular, within the NIBA and in the absence of the ac field, the forward (r+) and backward ( y- )
relaxation rates obey the detail balance relation y+ = eRfl@ y-, thus P( r, ro) will reach at long times the thermal
equilibrium value Pes = tanh( Fipeo/2), cf. Refs. [ 10,111. This relation no longer holds in the presence of
asymmetry ( EO # 0) and nonzero driving (ecos L b ). A discussion of how the detailed balance symmetry is
broken in the presence of dc-ac fields is also given in Ref. [ 81. This error has been noted by Dakhnovskii and
Coalson, which they consequently corrected in later work [5]. Analogous results have been obtained by use
of a path integral formulation by Grifoni et al. [6,7], and recently by Goychuck et al. [ 81 within a polaron
approach.

The correct high-frequency master equation is readily obtained from (2) if we observe that the essential
dynamics of P(r, to) is described by its average value po( r - to) over a period, of the ac field. It reads [ 5-81

@0io(f- r0) =
./

d r’[kh -‘(r  -  r ’)  -  kh + ‘(r  -  r ’)po (r’ -  to )],  (4)
10

with the kernels kh*’ (r  -  r ’)  representing the average of K(*)( r, r’) over a period

k;+‘(7) = h(r)e- Q’cT) cos [ Q”( 7) ] cos( ~07) ,

k;-)(r) = h(r)e-Q”7) sin[Q”(r>] sin(ear) ,

where h(r) = d2Jo[ (22/a) sin( &/2)] and JO(Z) is the zero order Bessel function.

(5)

’ Note that E!.q. (6) in Ref. [9] contains a mistake: The minus sign in the inhomogeneous term (first line) should read plus.
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Fig. I. The logarithm (base IO) of expectation value P(t) = P(t, 1~1 = 0) of the exact NIBA equation in (2) (solid oscillatory line) is
compared with its high-frequency approximation in (4) (solid line). The incorrect approximation, I%+ ( 13) of Ref. [9], is also depicted
by the dashed line. The parameters are given in the figure.

The numerical solution of the full NIBA equation in (2) is compared with the correct high-frequency
approximation in (4) in Fig. 1. At asymptotic long times the oscillatory parts in Fig. 1 survive; they describe
the periodic longtime dynamics [6]. We find good agreement between the exact NIBA in (2) and its high-
frequency approximation in (4). In contrast, we also compare our results with the high frequency result in
( 13) of Ref. [ 93. It can be obtained from (4) setting the inhomogeneous contribution kh-’ (7) G 0 and
$,+)( 7) = h(r) exp[ --Q’(T) ] cos[Q”(~) + ~071. Apart from a limiting regime at very short initial times, we
find distinct differences over the whole regime of small-to-moderate-to-long times. This comparison explicitly
demonstrates the shortcomings inherent in Eq. ( 13) of Ref. [ 91 where tLe incorrect result (dashed line)
decays exponentially towards the incorrect longtime value P(t -+ 00) = 0. The failings of this high-frequency
approximation in turn impact also their analysis regarding the behavior of the rate coefficient 7-l) see Eq. (23)
in Ref. [ 91, or the behavior of the transition temperature T*, see Eq. (34) in Ref. [ 91.

Moreover, we observe from Fig. 1 that the exact NIBA in (2) and its high-frequency approximation in (4)
do not exhibit a decaying behavior that is single exponential like.

In summary, the relaxation of the transient dynamics at high-frequency driving is
4

overned by Eq. (4)) which
differs from Eq. ( 13) in Ref. [9] by the nonzero inhomogeneous contribution ki- (t - t’) and by a different
transition kernel kp’ (t - t’).
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