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Abstract

Recent results on the dynamics of a two-state system driven by dc-ac fields are discussed. We show that the approximation
put forward in the work by Wang and Zhao [Phys. Lett. A 217 (1996) 232] gives qualitative incorrect results for the
dynamics when effects of the dc field in the presence or absence of the ac field are considered.

The dynamics of a dissipative two-level system (TLS) driven by strong laser fields has been the object
of intense investigations in past years [1-8]. Here we report on the recent advances on the dynamics of the
dissipative two-level system as developed in Refs. [2-8]. By use of a direct comparison, we demonstrate that
the approximative results put forward by Wang and Zhao [9] are in disagreement with nonapproximated results
of the noninteracting-blib approximation (NIBA) in Refs. [2,5-7].

As a working model we consider the time-dependent spin-boson Hamiltonian where the bath is described as
an ensemble of harmonic oscillators with a bilinear coupling in the TLS-bath coordinates

h 2
H() = —-2-[A¢rx +e(t)o,] + % zﬂ:(;—z + m,,wﬁxi — caxad0'1>. (1)
Here the ¢’s are Pauli matrices, and the eigenstates of o, are the basis states in a localized representation
where d is the tunneling distance. The tunneling splitting energy is given by %4 , while the asymmetry energy
is fie(t) = A€o+ € cos £2t) and describes the coupling with external dc-ac fields. As far as regards the influence
of the bath on the TLS dynamics, all information is captured in the twice-integrated bath correlation function
[10,11) (B=1/kgT), ie,
o0
d? J(w) cosh(wpB/2) — cosh{w(B/2 —it)]
0= L [ goll@) cosh(@B/2) B/ ,
- ® sinh(wfB/2)

0

where J(w) = %77 Za(ci /Mawa)8(w — w,) is the bath spectral density. For Ohmic dissipation it has the form
J(w) = 2ah?/ d?)awe=*/*, with a denoting the dimensionless coupling strength and w. a cut-off frequency.
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Finally, the quantity of interest to investigate the TLS dynamics is the expectation value (o, (1)) = P(1,1)
where we suppose that the particle was held at the site o, = 1 at times ¢t < o with the bath having a thermal
distribution. An exact path-integral solution for the expectation value {0, (¢)) has first been obtained in Ref.
[2], together with closed form analytical solutions valid at low-frequency driving fields, within the NIBA. On
the other hand, a master equation for the case of a symmetric TLS that covers only the transient dynamics was
obtained within the NIBA first in Ref. [3], by addressing the high-frequency regime. The generalization of the
NIBA master equation for high frequencies and a biased TLS was discussed afterwards by Dakhnovskii in Ref.
[4,5]. The exact (i.e. valid beyond the NIBA) non-Markovian master equation that governs the TLS dynamics
has recently been obtained in Ref. [7]. The NIBA master equation for the asymmetric TLS reads [4-8]

P(t,19) = / dr'[K (e, 1) = KD (1, f)YP(, 19) ], (2)

o

with the kernels K(¥)(¢,+') given by

KD 1,1y = A% 20 cos[ Q" (¢t — 1) ] cos[n(t, )],
K (1,0) = A% sin[ Q" (1 — 1) I sin[n(1,1)], (3)

where (t,1') = €o(t — ') + &/2(sin £2t — sin ). Here Q'(¢) and Q" (1) are the real and imaginary parts of
the bath correlation function Q(t), respectively. It corresponds to Eq. (6)' of Ref. [9]. The authors of Ref.
[9] then attempt to obtain, following Refs. [3,4], an approximation to (2) of convolutive type, being valid
for the case of an high-frequency driving field. In doing so, one intrinsically neglects the oscillatory longtime
dynamics. In this way the authors of Ref. [9] arrive at their Eq. (13) in Ref. [9]. This Eq. (13), which
constitutes the central starting point of the further analysis in Ref. [9], however, is incorrect. Likewise, the
same mistake appears in Eq. (37) by Dakhnovskii in Ref. [4]. In fact, a static bias fiep does break the spatial
inversion symmetry of the dynamics. This leads, for example, to different backward and forward relaxation
rates and to an equilibrium (or quasi-equilibrium for the case of fast ac fields) value, being different from
zero. In particular, within the NIBA and in the absence of the ac field, the forward (y*) and backward (y~)
relaxation rates obey the detail balance relation y* = ¢"€y~ thus P(t,1y) will reach at long times the thermal
equilibrium value P.q = tanh(%fBeo/2), cf. Refs. [10,11]. This relation no longer holds in the presence of
asymmetry (€o # 0) and nonzero driving (€cos 2t). A discussion of how the detailed balance symmetry is
broken in the presence of dc-ac fields is also given in Ref. [8]. This error has been noted by Dakhnovskii and
Coalson, which they consequently corrected in later work [5]. Analogous results have been obtained by use
of a path integral formulation by Grifoni et al. [6,7], and recently by Goychuck et al. [8] within a polaron
approach.

The correct high-frequency master equation is readily obtained from (2) if we observe that the essential
dynamics of P(t,1y) is described by its average value py(f — t9) over a period, of the ac field. It reads [5-8]

Pol(t —to) =/dt’[k{)"<t—r’) — k(= )po(f — 1)1, (4)

f
with the kernels k(()i)(t —t') representing the average of K*)(¢,1') over a period
kST (1) = h(r)e™2 ™ cos[ Q" (1) ] cos(eqT),
kST (1) = h(r)e™ 2 sin[ Q" (7) ] sin(eor) | (5)
where h(7) = 42J5[ (2¢/12) sin( 27/2)] and Jo(z) is the zero order Bessel function.

! Note that Eq. (6) in Ref. [9] contains a mistake: The minus sign in the inhomogeneous term (first line) should read plus.
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Fig. 1. The logarithm (base 10) of expectation value P(z) = P(¢,1y = 0) of the exact NIBA equation in (2) (solid oscillatory line) is
compared with its high-frequency approximation in (4) (solid line). The incorrect approximation, Eq. (13) of Ref. [91, is also depicted
by the dashed line. The parameters are given in the figure.

The numerical soiution of the full NIBA equation in (2) is compared with the correct high-frequency
approximation in (4) in Fig. 1. At asymptotic long times the oscillatory parts in Fig. 1 survive; they describe
the periodic longtime dynamics [6]. We find good agreement between the exact NIBA in (2) and its high-
frequency approximation in (4). In contrast, we also compare our results with the high frequency result in
(13) of Ref. [9]. It can be obtained from (4) setting the inhomogeneous contribution k((,_)(r) = 0 and
ké”(r) = h{7) exp[—Q'(7)] cos[Q"(7) + €o7]. Apart from a limiting regime at very short initial times, we
find distinct differences over the whole regime of small-to-moderate-to-long times. This comparison explicitly
demonstrates the shortcomings inherent in Eq. (13) of Ref. [9] where the incorrect result (dashed line)
decays exponentially towards the incorrect longtime value P(t — oo0) = 0. The failings of this high-frequency
approximation in turn impact also their analysis regarding the behavior of the rate coefficient 7=}, see Eq. (23)
in Ref. [9], or the behavior of the transition temperature T*, see Eq. (34) in Ref. [9].

Moreover, we observe from Fig. 1 that the exact NIBA in (2) and its high-frequency approximation in (4)
do not exhibit a decaying behavior that is single exponential like.

In summary, the relaxation of the transient dynamics at high-frequency driving is %overned by Eq. (4), which
differs from Eq. (13) in Ref. [9] by the nonzero inhomogeneous contribution k(()‘ (t — 1) and by a different

transition kernel k(()“(t - ).
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