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Escape overfluctuating barriers in the presence of thermal white noise is addressed. Several general results are established, for
stochastic barrier fluctuations being controlled by colored Gaussian noise. Our findings are exact in the limit of white noise
sources and (partially) in the limit of extreme large noise color, and are approximate for intermediate noise color. As one main
result we find that the escape time can generically exhibit a minimum resonant activation, whenever the colored noise intensity
is an increasing function of the noise correlation time. The effects induced by correlated noise sources are addressed as well.

1. Introduction

Ever since the seminal achievements by Svante Arrhenius and Hendrik Antoine Kramers, the problem of
escape from metastable states continues to attract ever growing interest, e.g. see refs. [ 1,2 1. In particular, inter-
esting variations of this topic arise when studying transport in complex systems, such as in glasses [ 31 and in
proteins [ 4 ]. In this context the problem of escape over stochastic barriers has moved into the limelight within
several scientific communities [ 5- 12 ] #‘. The interest in this concept of noise-assisted escape over fluctuating
barriers has germinated when describing complex non-equilibrium systems such as the migration of ligands in
proteins [ 41, molecular dissociation in strongly coupled chemical systems [ 5 1, or electron transport in a quan-
tum double well structure [ 13 1, which is subjected to an external fluctuating voltage-bias, to name only a few
examples. The problem area is also closely related to noise-assisted escape in systems with fluctuating potential
parameters [ 8-101. A characteristic feature of all these cases is that these are open systems, being in contact
with one or more fluctuating environments, i.e. we deal with complex nonequilibrium systems, in which the
fluctuations are generally not related to a fluctuation-dissipation theorem of the Einstein-Nyquist type. It must
further be emphasized that - although related - the fluctuating barrier concept is different from the phenomenon
of stochastic resonance [ 14,151, with the latter being characterized by time-dependent, but deterministic barrier
modulations, i.e. the continuous time-translation symmetry is broken, thereby rendering these latter systems
nonstationary nonequilibrium systems.

As correctly emphasized already in ref. [ 6 1, noise-assisted escape over fluctuating barriers involves several
relevant time-scales. In particular the typical fluctuating barrier time-scale can be either very small, comparable
to, or even be much larger than the average molecular time-scale characterizing local relaxation within meta-
stable states. Therefore, the escape dynamics for the reaction coordinate x(t) is generally governed by a non-
Markovian process driven by both, white environmental noise e( t ) , and colored, generally multiplicative barrier
fluctuations C(t). The problem of obtaining the average escape time of fluctuating barriers thus becomes a chal-
lenging problem, because generally even the stationary probability is not known. Indeed, in all previous studies
[ 6-121, one has been forced to impose severe limitations. These constitute either the restriction to the white or
almost white noise limit (i.e. small colored noise limit) for the barrier-fluctuations [ 8- 12 1, or the discussion
had been restricted to both, the use of a very simple colored noise structure, such as exponentially correlated

sL In particular note the News and Views contribution in ref. [ 5 1.
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two-state noise, driving the barrier fluctuations (i.e. dichotomic noise c(t) ) together with a stylized metastable
potential composed of a piecewise linear barrier and piecewise linear wells [ 6,7]. Even in this case the analytical
analysis is already very complex so that Monte Carlo simulations had been invoked [ 6,7]. Nevertheless, Doer-
ing and Gadoua [ 61 discovered within these latter limitations a most interesting resonance-like phenomenon
for the behavior of the average escape time; i.e. the escape time in their study did not grow monotonously with
increasing noise color 7, but instead did exhibit a minimum near a “resonant” barrier fluctuation rate 7;'.
Clearly, the question then arises if this phenomenon is universal, i.e. if it still holds for realistic potential shapes
and/or more realistic colored noise sources c(t).

The task to answer these open challenges stimulated the present work. Here, I have succeeded to obtain several
results, which describe a variety of general phenomena for noise-assisted escape over fluctuating barriers. Most
importantly, one finds that the resonance-phenomenon can occur generically, whenever the colored noise
intensity,

increases with increasing noise-correlation time T.

2. The approach

The starting point for our considerations is an arbitrary bistable flow for the reaction coordinate x. Explicitly,
with the static metastable potential denoted by U(x), we have f= - u’(x) =f( x) , which possesses two stable
deterministic f=ed pointsf(x,) =O, withf’(x,) ~0, and one unstable fixed pointf(x*> =O, withy’(P) >O,
see fig. 1. The barrier fluctuations are governed by a fluctuating potential W(x, i) = - c( t)JXg(y) dy, with c(t)
a colored noise source. The function g(x) = - W’(x, c= 1) denotes the corresponding force-profile, which up
to the condition -gcflg)‘>O within the bistable region (x_, x,), can be chosen arbitrarily. Throughout this
work, the prime denotes a differentiation with respect to x. The escape over a fluctuating barrier is then governed
by the nonlinear non-Markovian Langevin equation

a=&) +g(x)r(t) +$%t) > (1)

where t( t ) is white Gaussian noise of vanishing mean and correlation ( <( t)<(s) ) = 6( t - s), reflecting environ-
mental (thermal ) noise, while the colored noise c(t) controls the barrier fluctuations. A common example for
f(x) is the archetypal Landau flow f(x) =ax- bx3, a> 0, b> 0; while g(x) could be Gaussian, i.e. W(x,

Fig. 1. Escape over a fluctuating barrier. The solid line depicts
the static potential with xk denoting the stable states and x’ the
unstable, activated state. The dotted lines present two realiza-
tions for the fluctuating barrier. The dashed line shows a slight

& jl 4 *X
modification of the static potential away from barrier top which

X X" X+
in turn changes the corresponding value for the resonant noise
color T,, see text below eq. ( I 8).
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*[)=-C(2a!)-‘exp(-~~~*),yieldingg(x)=xexp(-ux ) #*. Note, that for cr=O we have g(x) =x, which cor-
responds to a fluctuating barrier curvature [ 81, i.e. a-+a + C( t). In order to define the stochastic process in eq.
( 1) completely it is necessary to specify both the individual and the joint statistical properties of c( t) and c(t).
Bearing in mind the central limit theorem, we use for c(t) a Gaussian statistics. For the sake of simplicity only,
we choose an exponentially correlated Gaussian noise (Omstein-Uhlenbeck process) of vanishing mean and
correlation, i.e.

(i(r)i(s))=qexp(- v). (2)

Moreover, to start with we make here the assumption that c(t) and c(t) are independent, i.e. (c(t)<(s) > = 0
for all r, s; see however section 4.3 below. The non-Markovian, multiplicative Langevin equation in eq. ( 1) is
then equivalently recast as a two-dimensional (Stratonovitch) Langevin equation, reading

(3)

whereq(t) isaagainGaussianwhitenoise,obeying (q(t)q(s))=6(t--s),and (q(t)C;(s))=O.Thewhitenoise
limit then emerges naturally by observing that lim,,O= ([( t)c( 0) ) = 2QS( t).

The idea underlying our approach is as follows: In realistic situations the (dimensionless) noise intensities T
and Q are “small”. With Ta 1, Q e 1, but with the ratio R s Q/T finite, we encounter escape times which are
exponentially large. Put differently, the (forward: x_ +x+ ) escape time Y exhibits an Arrhenius-like behavior,
which is dominated by the ratio of the stationary probability p(x, r) at the stable state x_ and the unstable state
x”. Setting fi( x, T) = h (x, r) exp [ - cD( x, r, R ) / T] one has within exponential accuracy

F(R, .t) ccexp(A@(: ‘)),
where in terms of the effective potential @ the barrier height equals A@= @(x”) - @(x_ ). Thus, we are not
interested in obtaining an accurate approximation of the non-Markovian Langevin dynamics in eq. ( 1) on all
time-scales, but rather are interested in the long-time dynamical properties only. Indeed, if we would study the
limit of small noise color by expanding eq. ( 1 ), via the functional derivative method [ 161, around the 7=0
limit one finds - in agreement with the general theory [ 171 - that there exists to leading order in 7 no small-r
effective Fokker-Planck equation. With c(t) colored, the flow in eq. ( 1) can thus never be transformed into
purely additive noise alone. This fact in turn implies a third order Kramers-Moyal-type. contribution for the
rate of change dt(x, 7), being of order 7. Moreover, it is of interest to establish whether novel phenomena such
as the resonant-like behavior of Doering and Gadoua [ 61 persist under realistic conditions; in particular, that
they are not the mere result of some “prefactor-effect” appearing only at strong noise intensities Q and/or T
within a stylized metastable potential form.

In the presence of a single noise source c( 1) only, the unified colored noise approximation (UCNA) [ 18-201
has proven to accurately model the stationary dynamics of colored noise driven flows [ 18-2 11. Borrowing the
reasoning underlying [ 18-201, one can similarly implement this long-time approximation scheme for the flow
ineqs. (3), (4).Intermsoftheprocessu(t),i.e.ug(x)=f(x)+Cg(x),eqs. (3), (4)canberecastas

k=ug+mc,

ti= [ 1/7-gCflg)‘]u+7-‘Cf/g)+r-‘J2erl+ cf/g)‘,/%r.

(6a)

(6b)

‘* In this case -gcf/g)‘=Zbx 2-2CWr2(a_bx2),beingnonnegativewithin [x_=-_,x+=+fll forcu<bla,seealsJref. wi.
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By use of the time-scale t^= tt- ‘I2 [ 18-201, the deterministic equation corresponding to eq. (6b) reads

du
Z-

- - [7-“2-7”*gCflg)‘]u+7-“2Cf/g) . (7)

With the nonlinear friction obeying y(x, 7) G z-‘/*-7 ‘l’gcf/g)‘&O for all 7 when -gcflg)‘>O we note that
y(x, 7) s+ 1 both for 740 and ~-CCL An adiabatic elimination of li thus renders the generalized UCNA for eq.
( 1)) i.e. the (Stratonovitch)-Markovian-Langevin approximation reads in the original time-scale t

li-= [ 1 -M_A/g)‘l -‘cf+g,/% rl+&W 9 (8)

which possesses a corresponding Fokker-Planck equation. In passing, we note that the same (Stratonovitch)
Fokker-Planck equation corresponding to eq. (8) results if one performs within the configuration-state path
integral representation for the non-Markovian process in eq. ( 1) a self-consistent Markovian approximation in
the non-Markovian-Onsager-Machlup functional, cf. ref. [ 221. The stationary probability (up to a normaliza-
tion constant) thus reads

I 1 - w_f7s)‘l
H&7)= [1+Rg2(x)]l/2exP

T/l 1 -w_og)‘l(I dy 

o > z-(l+RgZ) . (9)

The result eq. (9) approximates generally very accurately the stationary non-Markovian probability over the
bistable region (x_, x+ ) within its support, i.e. in x-regions obeying [ 1 - rgcflg)‘] > 0, cf. refs. [ 18-2 11.

3. Average escape time over fluctuating barriers

With the long-time approximation to eq. ( 1) in hand, it is smooth sailing towards obtaining the average
escape time 9. This can be estimated by the mean first passage time (MEPT) expression for the one-dimen-
sional Fokker-Planck process in eq. ( 8 ), i.e. $$ FPT (x_ -+x+ ) z Y( R, 7) is given by the two quadratures

where x=x+ has been chosen to be an absorbing boundary, and D&x, 7) = ( 1 +Rg’) [ l -7gcflg)‘l-*> 0.  With
weak noise, the steepest descent approximation to eq. ( 10) explicitly reads

2lt
9-(R, 7) = , cf,(x# t)f,(x), ,,2 [I1-7gwg)‘Ix=x* II-7gWs)‘l,=,_l exPf@(;’ ‘))

with the effective barrier height given by

A@(R,z)=- i’ sCY,[L--7g~~)R~2~l:g(~))‘l dv >AotR, 7=oI.
x-

(11)

(12)

Here, eq. ( 11) presents a most accurate approximation to the exact non-Markovian escape time for 7-m, and
7-+0, i.e. y(x, 7) -00. For other values of noise color, the result in eq. ( 11) implicitly presents a crossover result,
bridging smoothly between the limits of small and large noise color.

We remark that the condition -gcflg)‘> 0 in (x_, x+ ) can be relaxed without changing the qualitative fea-
tures of our results (see also ref. [ 24 ] ): With x”_ (7)) i.e. 1 - 7gcf/g)‘= 0 at x?. , x_ <x”_ (7) G x”, the effective
diffusion becomes singular at xY_ (7). Escape then predominantly occurs near xS. (7), i.e. the upper integration
limit in eq. ( 12) is substituted by x!_ (7). The fact that the diffusion is singular at x”_ (7) -just as is also the case
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for the action-diffusion for the Kramers time at weak friction [ 1 ] - nevertheless yields with smooth A@(R, r)
a well defined escape time. We also like to point out that the use of x”_(r), rather than
x”_ =x”_ (r+co) <x”_ (7), also considerably improves the result for colored noise driven escape at finite r-val-
ues, cf. ref. [ 201.

4. Results

From eqs. (9)-( 12) we can now establish a variety of general findings. First we shall consider the limit of
white noise for both the barrier fluctuations C(t) and the internal thermal noise e(t).

4.1. The limit of white noise

For zero noise color 75= 0, the above results in eqs. (7)- ( 12 ) become exact. The MFPT in eq. ( 10 ) can be
evaluated at weak noise up to order 0 ( T * ) to give

Y(R, r=O) 39-(R)

2R=exptAWVITl ~,~,,(X~),Q)N(X_)11~2 h(x”)h(x-)+
1

1
TICz

h”(x”)h(x_) + h”(x_)h(x#)
I @“(x”) I @“(x-) >

+ L
(

h’(x”)h(x_)W”(x”) _ h(x”)h’(x_)W’(x_)
2 I@“(x*)12 [CJ”(x-)]2 >

+ i h(x”)h(x_)W”(x”) h(x”)h(x_)@““(x_)
8 ( -1 @“(x”) 12 [W(x-)I2 >

5
+z

h(x”)h(x_) [ @“(x”)]2 + h(x”)h(x_) t @“‘(x- 1 I2
I W(x”) 13 >I1[@“(x-)]3 ’

where @J(X) is the effective potential
x

@(xl= jf(l+Rg2)-’ dy, (Ida)

and h (x) is a state-dependent form function given by

h(x)=[1+Rg2(x)]-1’2, (14b)

(13)

which is assumed to be smoothly varying.
The third ( 1 /S...) and fourth term (5/24...) within the squared brackets in eq. ( 13) describe the well-known

[ 231 steepest-descent correlation to the Smoluchowski escape time, while the additional first and second con-
tribution emerge due to the multiplicative character of the white noise sources, cf. eq. ( 1).

From eq. ( 12 ) we further find

A@(R) < A@(R=O) . (15)

Moreover, from eqs. ( 1 1 ), ( 15) the escape time Y(R) is monotonously decreasing with increasing R= Q/T,
i.e.

F(R)dY(R=O). (16)
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The result in eq. ( 16 ) is in agreement with prior studies investigating white noise driven escape over fluctuating
barriers [8,11,12].

4.2. Case with colored noise

We now turn to the main focus of our work, namely the escape over fluctuating barriers which are modulated
by colored noise of weak-to-moderate-to-strong noise correlation time z:

(i) Fixed colored noise intensity. With TCK 1, Q-K 1 let us keep fixed the ratio R=Q/T. The colored noise
assisted escape time over a fluctuating barrier is then always enhanced, i.e.

Y(R, .t) >F(R, ~=0) . (17)

We note from eq. ( 11) that this increase is Arrhenius-like, and it occurs monotonously. The characteristic be-
havior in eqs. ( 16 ), ( 17 ) can be made plausible if we observe that in the white noise limit the escape is driven
by an enhanced state-dependent temperature T (x, R) = T[ 1 + Rg’(x) ] > T, while from eqs. (9)) ( 11) colored
noise driven escape (at R fixed) is governed by a lower, effective temperature T( x, z) = T/ ( 1 - zgcflg)‘] < T.

(ii) Resonant activation. If one notes the two inequalities in eqs. ( 16), ( 17), which are obeyed monoto-
nously, one finds that the overall effective temperature in eqs. (9)-( 1 1 ), i.e.

which in turn controls the escape process, can be either smaller or larger than T. Therefore, with R not held
fixed, but being a function of noise color 7, such that R( 7) increases with increasing noise color, a competition
between the monotonous decrease in eq. ( 16) and the monotonous increase in eq. ( 17) becomes possible. With
R = R (7) being increasing with 7, the escape time Y( R ( T), 7) can thus attain a minimum at a “resonant” noise
correlation time 7r for which the effective barrier height A@(R( z), 7) assumes a minimal value! Setting from
eq. (11) J(R,r)=A(7) exp[A@(R,~)/T],withA@(R(7),7) givenbyeq. (12), theresonantvalue (orval-
ues)7,obeyingd~(R(7),7)/d7=Ocan,withA(7)xconst,beestimatedfromtheminimumofA~(R(7),7),
i.e.

x~X~1+R(~)g21sCf/g)‘+t~/d~)~2[1-~~Cf/g)’lldy=o

J 11 +R(7k212 9

x-

(18)

which with f< 0, gcflg)‘G 0 within (x_, x*) and dR/dz> 0 always possesses, with sufficiently strongly increas-
ing R ( 7)) a solution for 7,. The width of the “resonance” can further be estimated from the inverse of d’A@( R ( 7),
7) /dz2. Most importantly, we note that the value of the “resonant’‘-color time 7r is not attained at the adiabatic
minimum of the fluctuating barrier, but depends globally on both the static metastable potential shape (or its
force f(x) ) and the barrier-modulation function g(x). Put differently, modifying slightly the potential away
from the barrier top dictates already a different “resonant” noise color value 7r, cf. fig. 1. This resembles very
much quantum tunneling where the Gamow-factor for barrier transmission depends globally on the potential
shape and not just on the barrier height, as is the case for thermally activated escape [ 11. Within the piecewise
linear barrier model driven by two-state noise in ref. [ 6 ] the authors implicitly used Q/7= const = C, i.e. R ( 7) =
Q/T= C7/ T indeed increases with increasing noise color 7.

Thus, upon inspecting eq. ( 11) with R (7) being a function of noise color 7, the effective barrier A@( R, 7) in
eq. ( 12 ) exhibits one amongst the following three characteristic behaviors: (I) with a solution of eq. ( 18) at
finite 7, the effective barrier depicts a minimum as a function of increasing T, (II) with eq. ( 18) obeyed only for
t-+c0 the effective barrier increases towards an asymptotically flat value as 7+cq (III) with R(7) not sufft-
ciently increasing with 7 the behavior is as in eq. ( 17), i.e. A@(R, 7) -co as 7-m.

(iii) Symmetries. We next consider symmetric bistable potentials U(x) such that - U’(x) =f (x) = -f ( -x)



                                                163

is an odd function. The flow in eqs. (3), (4) then exhibits a different symmetry depending whether the barrier
modulation function g(x) is even or odd, respectively; i.e.

inversion symmetry: x+-x, c- -c, ifg(x) =g( -x) , (19)

reflection symmetry: x-+-x, c+ +C;, ifg(x) = -g( -x) . (20)

These symmetries drastically impact the behavior of the separatrix, which divides the deterministic domain of
attraction of the bistable flow in eqs. (3), (4). With an odd modulation, the separatrix is described by the line
x= 0, whereas for even g(x) (e.g. g(x) =const ) the separatrix is moving into the x-c plane, crossing at (x= c=O)
from left to right [ 20,25 1.

(iv) Behavior at extreme noise ratios R. It turns out that the behavior for Y( R, 7) exhibits a different asymp-
totic behavior depending on whether Q/T= R e 1, or R =r> 1. In the latter case the escape is dominated by the
noise intensity Q, rather than T. Putting a particle initially at x=x_, the escape dynamics within the (x, (I)-
phase space of eqs. ( 3 ) , (4 ) closely follows for R z+ 1 the line E (x) = -f(x) /g( x), where the deterministic flow
lines (i.e. T= Q= 0 in eqs. ( 3)) (4) ) exhibit turning points, i.e. dc/dx= co, see fig. 2. If we denote by CM the
maximum of If(x) /g(x) 1 within (x_, x”), the asymptotic behavior for Y(R B+ 1,7) reads

Y(R=41,r)=Y(R)[l+O(r)] exp{t[&+O(R-‘)]/2Q}. (21)

Note that for 7+cq the exponential increase given by the last term dominates over all the remaining contributions.
For the bistable symmetric Landau potential with a fluctuating curvature [24], i.e.f(x) =ux- bx3, g(x) =x,

one finds CM= a, i.e. eq. ( 11) yields

~(R~1,r)=~(R)(l+2ar)exp{r[a2+0(R-’,R-’lnR)]/2&}, (22)

while in the opposite limit, and not too large noise color, the escape time behaves as

F(R-+z 1, r)=Y(R)( 1+2ar) exp(a3r/6bT), u7< 1 . (23)

This makes explicit that in the latter case with Q-0, TAO, TB Q, the escape is dominated by the additive
thermal noise <( t ) .

4.3. Correlated noise sources

Throughout the above analysis we assumed that the colored noise C(t) driving the barrier fluctuations and the
internal white noise c(t) were not correlated. This assumption, however, might not always hold a priori. In
particular, when the barrier fluctuations are not imposed externally by the experimenter, but rather are the result

Fig. 2. Deterministic trajectories for the archetypal Landau flow:

-1 0
X

1 2
z&x-x3+xC; (= -C/7, for the noise correlation time 7= 15. The
dotted line depicts the line of turning points e(x) =x2- 1. The
separatrix is given by the line x=0.
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of strong couplings to random nonequilibrium environments, additive and multiplicative noise contributions
likely become correlated. Within our approach, such a correlation can be described by setting in eqs. ( 3 ), (4 )
(q(t)<(s) ) =p@t-s) with IpI G 1, which guarantees a positive definite diffusion tensor. The corresponding
UCNA Fokker-Planck equation becomes rather complex, reading explicitly

Ij,=- & ({C-‘(x, z)f+Q[gC-‘(x, r)](gC-‘(x, 7))‘+Tc-‘(x, 7)(C-‘(x, ?))’

+A/mC-‘(x, 7)[(gC-lb, 7>)‘+g(C-‘(x, .r))'l)pt)+E$ KC-‘CT 7)(1+Rg2+2P&)Ptl, (24)

where C( x, 7) = 1 - tgcf/g)’ has been used. For the corresponding Arrhenius factor one obtains from eq. (24)
the result

(25)

For the important case of a symmetric static barrier, f(x) = -f( -x) and symmetric barrier modulations
W(x) = W( -x), i.e. g(x) = -g( -x), the forward and backward escape times Y( R, T) are no longer equal.
Fromeq. (25)wefindwithp~O:~+(R,7=O,p)~~+(R,7,p),and~+(R,7,p)~~(R,7,p)~~(R,7=O,p),
where we assumedg(x-x”) (0, for x-x”<O. Here Y* denotes the forward (x--+x+) and backward (x,+x_)
escape time, respectively. For 7= 0, the above effective barrier becomes exact, yielding Y+ (R, p) > 9Z (R, p),
p>O. However, we find that Y+ (R, p) < Y(R=O) generally is no lunger obeyed. This is so, because the two
contributions Rg2 and 2pfi g making up the diffusion coefficient are with g< 0 in (x_, x”) of different sign.
In particular, with R (7) increasing with 7 the possibility of a “resonance-behavior” is not necessarily guaranteed.

5. Conclusions and outlook

There are a number of further investigations suggested by our general study of noise-assisted escape over
fluctuating barriers. The role of correlated noise sources certainly deserves future research efforts. Another area
which remained untouched is the study of inertia effects, and more generally, the influence of additional relevant
degrees of freedom, i.e. the role of multidimensional (fluctuating) barrier crossing [ 261. In presence of colored
noise sources this latter task obviously becomes very difficult [ 1,201.

We could demonstrate that the phenomenon of “resonance-like” escape in ref. [6] is generic if the noise
temperature Q( 7) is sufliciently strongly increasing with increasing noise color 7. This resonance essentially
occurs when the color-induced effective barrier in eq. ( 12) assumes a minimal value: Its minimum depends
globally on both the static potential shape V(x) and the barrier modulation W(x). In the context of surmount-
ing fluctuating barriers in metastable nanostructures, the influence of non-Gaussian statistics (e.g. shot-noise)
for both the colored noise source c(t) and the white noise r(t) is of interest as well. The author hopes to return
to this latter area in a future study #3.
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a3 For two-state noise, the exact result for the escape time Y(R, T, p= f 1) follows from eq. ( 11) in ref. [ 27 1, or eq. (3.5) in ref. [ 281,
which both give the inverse escape time (i.e. the flux-over-population escape rate) in terms of two quadratures.
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