PHYSICAL REVIEW E

VOLUME 55, NUMBER 4

APRIL 1997

Thermal ratchets driven by Poissonian white shot noise

T. Czernik, J. Kula, and J. Luczka
Department of Theoretical Physics, Silesian University, 40-007 Katowice, Poland

P. Hanggi
Institut fur Physik, Universitat Augsburg, Memminger Strasse 6, D-86135 Augsburg, Germany
(Received 10 September 1996)

We investigate the overdamped transport of Brownian particles that are placed in spatially periodic poten-
tials (without and with reflection symmetry) that are subjected to both Poissonian white shot noise and thermal,
i.e., Gaussian, white equilibrium fluctuations. The probability current of the output process, which is shown to
obey a second-order ordinary differential equation, is analyzed. The limit of strong Poissonian white shot noise
is studied analytically; the resulting current is given in closed form in terms of two quadratures. For general
forms of the periodic potential we present asymptotic expansions in terms of the ratio between the thermal and
the shot noise intensity. Analytic results are presented for the class of piecewise linear, sawtoothlike ratchet
potentials. Under specific conditions, the current exhibits a distinctive nonmonotonic dependence on such
parameters as temperature and/or asymmetry of the periodic potential. [S1063-651X(97)06104-7]

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

A variety of phenomena in nature are based on transport
of mass and energy. One can distinguish, at the macroscopic
level, the convective and diffusive character of transport. The
former is identified with systematic or directed motion. The
latter is a result of random collisions. Recently, it has been
realized that directed motion can be induced by nonthermal
fluctuations acting in the absence of any gradient fields or
bias forces [1]. Such systems are now termed Brownian
ratchets. These are spatially periodic systems in which non-
zero current is generated by noise forces of vanishing mean
and/or zero-mean deterministic forces. Ratchet-type models
have been used in molecular biology in order to explain
translocations of motor proteins such as kinesin, dynein,
myosin, and their relatives [2]. These enzymes perform prac-
tical tasks such as transport of organelles and vesicles, loco-
motion, and segregation of chromosomes during mitosis.
Possible physics applications of ratchet systems, especially
for different devices in nano- and microtechnologies, are
presently being actively investigated [1,3]. Several mecha-
nisms of noise-driven transport have been proposed [1]: In
[4] a spatially periodic potential is switched on and off both
deterministically and randomly. This situation is referred to
as a flashing ratchet, i.e., it corresponds to a situation with a
fluctuating periodic potential [1,5]. Another class of ratchets
uses a fluctuating force, which is either of stochastic (i.e., a
“‘correlation’” ratchet) or deterministic origin (i.e., a ‘‘rock-
ing”’ ratchet). In correlation ratchets [6—8], the driving noise
is a correlated stochastic force, e.g., the Ornstein-Uhlenbeck
process [6,7], an exponentially correlated telegraph signal
[6,9], or the kangaroo process [6,8]. Other models use non-
equilibrium fluctuations that are modeled by J-correlated
random processes such as white shot noises [10,11] or ratch-
ets driven by pure deterministic noise sources [12,13]. In
rocked ratchets [3], the system is subjected to the action of
an external, time-periodic force and thermal noise. The role
of finite inertia and chaotic motion on the ratchet dynamics
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has been investigated recently for a rocking ratchet in Ref.
[12]. In diffusion ratchets [14], the diffusion coefficient of a
Fokker-Planck equation is assumed to be a state-independent
time-periodic function.

In this paper we consider Brownian particles in a spatially
periodic potential that are driven by two stochastic processes,
namely, Gaussian white noise and white shot noise com-
posed of positively weighted & pulses that occur at the ar-
rival times of a Poissonian counting process. Such shot noise
is abundant in nature: For example, it describes the emission
of electrons in diodes, the counting process of emitted pho-
tons, and the rate of arriving telephone calls, to name only a
few. The former characterizes equilibrium symmetric fluc-
tuations in the system at temperature 7. The latter models
nonequilibrium asymmetric, white fluctuations of zero mean.
The statistical asymmetry [11] of this shot noise is sufficient
to induce directed motion for the particles (finite current);
this is so because noise-activated forward and backward tran-
sitions then no longer equal each other [10,11]. In Ref. [10]
an exact analytical result for the current was derived when
the system is at zero temperature 7=0. Herein we extend
this prior study to finite temperatures T>0. In Sec. 1l we
formulate the model for the ratchet dynamics. A master
equation for a probability distribution P(x,¢) of the resulting
process is a partial integro-differential equation that can be
transformed into an equation of continuity expressing the
conservation law of probability. This reformulation of the
master equation is presented in Sec. III. From the continuity
equation for P(x,f) one finds that the probability current
J(x,t) is determined, in the stationary regime, by a second-
order differential equation. Only for temperature 7=0 does
it reduce to a first-order differential equation, which can be
solved analytically for an arbitrary form of the periodic po-
tential V(x) [10]. If 7>0, the second-order ordinary differ-
ential equation for the stationary distribution P(x) with
x-dependent coefficients cannot be solved in general. In Sec.
IV we discuss the limiting situation with a very strong inten-
sity for the Poissonian fluctuations. In Sec. V we present two
asymptotic expansions for the current J with respect to a
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small ratio € of thermal-noise strength (proportional to tem-
perature) to the shot-noise strength. An equation determining
J is a singularly perturbed differential equation because €
enters the highest derivative. In Sec. VI we obtain the exact
results for a case of a piecewise linear potential. For this
stylized situation, we are able to evaluate analytically both
the stationary periodic distribution as well as the correspond-
ing current J. In Sec. VII we investigate the dependence of
the current on various parameters of the model such as the
temperature, the asymmetry of the potential, and the shot
noise intensity. In Sec. VIII we also compare the two
asymptotic expansions for J versus the exact stationary cur-
rent. Our findings are summarized in Sec. [X.

II. MODEL FOR RATCHET DYNAMICS

The ratchet-type system studied in the paper is modeled in

the presence of strong frictional forces M yx (M denotes the
mass of the particle and vy is the friction coefficient) by an
overdamped stochastic dynamics, i.e.,

x=f(x)+ &0+ (1), (1)
where
dVv
finy=- 10 )

and V(x)=V(x+L) is a rescaled (divided by M y) periodic
potential with a spatial period L. The process &(¢) is white
shot noise defined as [15,16]

n(t)
&)= ; 2:8(1—1;) = Nz). 3)

The Poissonian points ¢; are the arrival times of a Poissonian
counting process #n(t) with parameter \, i.e., the probability
that &k delta impulses occur in the interval (0,z) is given by
the Poissonian distribution Pr{n(¢)=k}=(\t)* exp(—\¢)
/k!. Then the distance s between successive Poissonian ar-
rival times s=¢;—¢;_; is exponentially distributed with the
probability density A exp(—As). The parameter N deter-
mines the mean number of the Dirac 6 pulses per unit time;
it equals the reciprocal of the average sojourn time between
two & kicks. The positive-valued amplitudes {z;} of the &
pulses are random variables independent of each other and of
the counting process n(¢). The weights {z,} are exponentially
distributed with the probability density

h(z)=A"'0(z)e 71, 4>0, (4)
where O (z) is the Heaviside step function. The moments of
amplitudes {z,}, according to Eq. (4), are given by the rela-
tions

(z5y=kl4A*, k=123, .... (5)

The quantity

a=NA=\(z;) (6)
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describes, according to Eq. (3), the (negative-valued) bias of
the shot-noise process realization between consecutive &
pulses.

From Eqgs. (3) and (4) it follows that the average and the
correlation of noise (3) are given by

(€(1))=0, (&(1)&(u))=2Dsd(t—u), (7
where the total shot-noise intensity Dg reads
Dg=\A42%. (8)

The process I'(¢) represents thermal fluctuations, i.e., it is
Gaussian white noise with

(T())y=0, (T'(OT(u)y=2D8(t—u), )
where the thermal-noise strength Dy is

Dr=MkgT/y, (10)

with T being temperature of the system. As usual, we assume
that I'(7) is not correlated with &(t).

A master equation for the probability distribution P(x,?)
of the process x(¢) defined by Eq. (1) has the form [15,17]

JP(x,t)
ot

d
=~ Hf(¥) = MIP(r)

+>\f h(2)[P(x—2z,t)— P(x,t)]dz
aZ
+ D757 P(x,0). (11)

The right-hand side of this equation consists of three parts:
The first term denotes the drift, including a Poissonian-noise-
induced part proportional to N4 =\{z;); the second term is
related to the Poissonian process; and the third term corre-
sponds to the thermal diffusion process. With nonzero ther-
mal noise the stationary probability has a support over the
whole x axis. Moreover, with the drift part being periodic,
the stationary probability for the one-dimensional Markov
process depends on the choice of the boundary conditions
(BC’s). With two reflecting BC’s at x;=x and x,=x+ L, the
probability current is zero; in contrast, a finite, stationary
probability current emerges if periodic BC’s are chosen.

III. CONTINUITY EQUATION FOR PROBABILITY
AND EQUATION FOR PARTICLE CURRENT

For studying transport characteristics of process (1), it is
useful to transform Eq. (11) to the continuity equation

&P(x,t)_ d
gy ——EJ(x,t). (12)

This conservation law defines the probability current
J(x,t). To obtain this current, let us introduce the shift op-
erator by the relation

exp(—zd/dx)P(x,t)=P(x—z,t). (13)
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Next we expand the shifted probability into a Taylor series.
After integration of the second line in Eq. (11) we can, upon
observation of the exponential form of the density /(z) for
the weights in Eq. (4) and the moments in Eq. (5), recast the
master equation in Eq. (11) into the form of a continuity
equation. In doing so, we use the identity

o an
2 (= A)" S 5P(x0)

xll

=A" lf dye Y 4exp[ —ydldx]P(x,t)
0

= f dyA~ e VAP(x—y,1)
0

- f h(x—z)P(z,t)dz. (14)

With this identity and the relation Adh(x—z)/dx
= —h(x—z) the probability current J(x,?) can be expressed
as

J(x,t)=f(x)P(x,t) —DS%f:ch(x—z)P(z,t)dz

d
—DTgP(x,t). (15)

Let us notice that Eq. (12) with Eq. (15) can be interpreted as
a spatially nonlocal diffusion equation, i.e.,

IP(x,t) 9 » N i F » Ped
&t - gf(x) (xat) F i (.X',Z) (Zat) z,
(16)
with an effective diffusion function
D(x,z)=Dsh(x—z)+D;8(x—z). (17)

It consists of nonlocal (Poissonian) and local (thermal) parts.
In the limiting case

AN—®, A—0, Dg=\A>=const (18)

the nonlocal part tends to a local diffusion function
Dg6(x—z). In this limit, a—0o° and Poissonian white shot
noise tends to Gaussian white noise with the diffusion
strength Dyg.

The solution P(x,t) of Eq. (16) is a periodic function of
x, i.e., P(x+L,t)=P(x,t), if we choose an initial distribu-
tion P(x,0) that is periodic with respect to x. Combining
Egs. (1) and (12) with Eq. (16) thus yields the relation be-
tween the average of the particle velocity (v(#)) and the
current J(x,¢), namely,

c+L
woy==to0)= [, a9)

which is valid for any real number c.
The stationary current J follows from Eq. (15) in the
long-time limit #— o with periodic boundary conditions im-
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posed on the corresponding stationary probability
P(x)=P(x+L). With h(z) given in Eq. (4), the current J is
determined by an ordinary differential equation of second
order, namely,

—DAP"(x)—[Dr+Ds—Af(x)]P'(x)
T x)+Af (x)]P(x)=J. (20)

Here and below the prime denotes a derivative with respect
to the argument of a function. This equation can be inte-
grated for temperature 7=0, i.e., when D;=0. In this case
the current J is obtained in closed form in terms of two
quadratures [10]. For 7>0, arbitrary values for the noise
parameters, and a general form for the periodic potential
V(x), Eq. (20) cannot be solved explicitly in closed form.

IV. ASYMPTOTIC REGIME
OF LARGE SHOT-NOISE INTENSITY

Let us consider the case with a finite thermal temperature

T. Then there is only one nontrivial limiting case of Poisso-

nian white fluctuations for which the current can be evalu-
ated analytically. This is the situation when

A—0, A—oo, NA=a (fixed), 21)

where a, by virtue of Eq. (6), characterizes the negative base

value of the white-shot-noise realization &(#). The above

limit means that the strength Dg=NA> of the Poissonian

white noise tends to infinity, while its value between J kicks

is fixed at —a. In the regime of very large values of Dy, the

stationary distribution P(x) is determined by the differential
equation [cf. Eq. (20)]

d? d
DTWP(XH E[a—f(x)]P(xFO, (22)

with two imposed conditions: periodicity and normalization
of P(x) to unity within a spatial period L of the potential
V(x). The resulting periodic solution is found to read

1 x+L
P(x)= We_ ¢(X)J ez, (23)

where W takes care of the normalization of P(x),
L x+L
W= f ef‘b(x)f e?9dz dx, (24)
0 X

and the generalized potential reads
¢(x)=[ax+V(x)])/Dy. (25)

Because ¢(x) is not periodic, the difference
d(x+L)— ¢p(x)#0. Hence the generalized potential pos-
sesses a slope (an average bias) and thus supports a nonzero
stationary current. Its value follows from Eq. (15) as [cf. Eq.

(19)],
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c+L
J=L—1<f(X)>=L_1J' S(x)P(x)dx. (26)

If the temperature 7 of the system tends to zero, i.c.,
D ;—0, we find from Eq. (22) in this asymptotic regime (we
recall here that the case with zero temperature can be solved
analytically in terms of two quadratures; see [10]) for the
periodic probability

[a—f(x)]P(x)=Co, 27)

where C, is a constant. Integrating this equation over the
interval [c,c+ L] yields

a

The first term a/L is due to forward transitions generated by
S kicks, i.e., the first term in Eq. (3). The second term C, is
due to backward transitions. If f(x)<<a for all x, then Cy is
different from zero, yielding

c+L

) . dx
with C, :L =70 (29)

In this case, Eq. (26) reduces to Eq. (14) in Ref. [10]. On the
other hand, if there is a subinterval of [¢,c+ L] for which
f(x)>a, shot-noise-activated backward transitions are im-
possible. Therefore, we have C,=0. This result follows also
from Eq. (27): Because P(x)=0 for any x and a—f(x)
changes sign while x changes in [c,c+ L], Eq. (27) can be
fulfilled only when C,=0, yielding for the current J=a/L.

In the Gaussian white-noise limit (18) or in the limit
D —0, the system is driven solely by Gaussian white noise;
consequently, the current J vanishes identically. In the limit
a—» and D¢—, i.e., when A— and 4 is fixed, or when
\ is fixed and 4 —, Eq. (20) reduces to P'(x)=0. Thus the
probability density is P(x)=L~', and as a consequence
J—0; see Eq. (26).

Co

a—f(x)

Plx)=

V. ASYMPTOTIC EXPANSIONS

The previously exactly solved case for 7=0 [10] suggests
that, instead of solving Eq. (20) directly, which, in general, is
not possible, one can attempt to determine an approximate
solution of Eq. (20) for small temperature by use of pertur-
bation techniques. To this aim, it is desirable to transform
Eq. (20) into a dimensionless form, i.e.,

—ep" () —Le+ 1= p' W)+ +F () 1p(y) =(j3,0)

where the rescaled quantities are defined by the relations
X o J ~ f(4y)
y="7> J=x pW)=APMAY), f)=" .
31
The non-negative parameter € is a ratio of the thermal noise
intensity to the intensity of shot noise, namely,
Dy

€= D_S (32)
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Next we treat Eq. (30) as a perturbed differential equation
with a small parameter €. It is a singularly perturbed equa-
tion because € occurs at the highest (second-order) deriva-
tive. A great deal of work in singular perturbations has been
devoted to boundary problems, as well as to initial-value
problems [18,19]. Our problem (30) belongs neither to the
former nor to the latter. In a perturbation problem an ap-
proximation is sought by solving the reduced problem ob-
tained from the original one by setting e=0. The solution of
the reduced problem in general is not an approximation to
the exact solution of the full problem on the whole intervals
of independent variables and parameters of the system. This
is why it is rather difficult to obtain a perturbation expansion
of a solution to Eq. (30) that is uniformly convergent. What
can be done is to construct an asymptotic solution as a for-
mal series using ad hoc arguments, but without proving the
validity of it and without error estimation of approximations.
Unfortunately, there is no systematic and unique approach
for constructing asymptotic expansions. Here we present two
such formal expansions.

A. Regular expansion
The first type of the expansion is an ansatz of the form

©

M) =poy)+ 21 €p,(»), jV=jo+ 21 €,
n= n=

(33)

where {p,(),jo} is a solution of the truncated system (when
€=0). For convenience, we call Eq. (33) a regular € expan-
sion. In this approach, two terms of Eq. (30), namely,
ep”(y) and ep’(y), are treated as a perturbation. Substitut-
ing Eq. (33) into Eq. (30) and equating coefficients of equal
power in €, we obtain equations determining successively
p.(y) and j, . They have the form

—Do(¥)ps(¥)+F(¥)po(¥)=jo,

—Dop, (W) +F3)p,(¥)=jnt Gui(¥),
n=123,... . (34)
The functions Dy(y), F(y), and G,(y) are given by
Do) =1-f(y), FO) =)+ (),

G, () =p,(»)+p,(y), n=012,.. .. (35)

The set of equations (34) is supplemented with the periodic-
ity conditions

p.y+D=p,(y), [=L/A, n=012,.... (36)

The normalization of the distribution p(y) over a rescaled
period / leads to the additional conditions

i
fopn(y)dyZ Son, n=0,12,.... (37)

Now the problem (34)—(37) can be solved and the zeroth-
order contribution emerges as
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Vv [P -1 0
po(y)=§€ v Dy '(2)e¥Pdz, (38)
y
where
i y+i
0= f e YWy f Dy (2)e"Pdz (39)
0 b

takes into account normalization of the probability distribu-
tion and

vy F(z2)
\If(y):— fo mdz (40)

is a generalized potential of the unperturbed system. The
zeroth-order approximation j, to the current j reads [10]

jozé[l_ewml (41)

It is a solution of the truncated system corresponding to the
case when I'(#)=0 in Eq. (1). Then the system is driven by
white shot noise only. This case has been analyzed in detail
analytically in Refs. [10,11]. It is assumed that the unper-
turbed diffusion function obeys Dy(y)>0. Then the current
of the unperturbed system at temperature 7=0 occurs non-
trivially [10,11].
The higher-order contributions to p(y) have the form

oY)
Pa(»)

v+l 1 v
= l_e\I’(l) jnf DO (Z)e (Z)dZ

y

y+i
+f Gnl(z)Dol(z)e“’<Z>dz],
y

n=12.3, ..., (42)

where the higher-order terms j, of the total current j are
determined by the relations

1 (! _w y+I 1 v
jn:_§ of (y)f G,-1(2)Dg ' (z)e¥Pdz dy,
y

n=123,... . (43)

Both p,(y) and j, depend on lower-order contributions via
the functions G,_ () expressed by p._,(») and p, _,(»);
cf. (35).

B. Renormalized expansion

The second type of the expansion is postulated in the form

[’ ©

p<2><y>=20 ep,(v.e), jP=2 €. (e), (44)

n= n=0

where the unknown functions are solutions to the set of dif-
ferential equations

Vo

V(z)

(S
o
x~

e~
8

FIG. 1. Spatially periodic sawtooth potential V'(x) of period L,
barrier height V,,, and asymmetry parameter 4.

—D(y,e)po(y,€)+F(y)po(y,€)=jo(€),
—D(y,e)p,(y,€)+F(y)p,(y,€)=j,(€)+p,_i(y,€),
n=123,..., (45)

subject to the periodicity condition (36) and the normaliza-
tion condition in Eq. (37).
The function D(y,€) has the form

D(y,e)=e+1—f(y) (46)

and may be called a renormalized diffusion function: A cor-
rection related to thermal noise is included in the shot-noise
diffusion function. In the second approach, only one term of
Eq. (30), i.e., €p”(y), is treated as a small perturbation. On
the contrary, the term ep’(y) is treated exactly and enters the
unperturbed diffusion function Dy=D(y,e=0), renormaliz-
ing it.

The solution of Eq. (44) has a similar form given to that
in Egs. (38)-(43), but with corresponding changes
Dy(»)—D(y,€) and G,(y)—pi(y,€) in all formulas (38)—
(43). A domain of validity of these two asymptotic expan-
sions is strongly restricted by the requirement that the diffu-
sion functions are positive: In nonrescaled variables,
Dg—Af(x)>0 for the regular expansion and Dy
+Dg—Af(x)>0 for the renormalized expansion. A com-
parison with exact results is discussed in Sec. VIII for a
particular form of the potential V(x).

VI. EXACT SOLUTION
FOR THE SAWTOOTH POTENTIAL

The problem (20) can be solved analytically for special
forms of the potential V(x) only. As an example, we present
analysis of the system (1) for a piecewise linear, sawtooth-
like potential (see Fig. 1)

2V k L/2,k]modL
_L+2k(x_ ), xe[—L/2,k]mo
Vix)= 2y (47)
0
L_2k(x—k), xe[k,L/2]modL,

where V(>0 and ke (—L/2,L/2) determines the asymmetry
of the potential: For k=0 it is reflection symmetric; for k
#0 the reflection symmetry of V(x) is broken.

Because the force (2) is periodic, the stationary distribu-
tion P(x) being a solution of Eq. (20) is periodic and it is
sufficient to consider the problem (20) on the interval
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[x0,xo+ L] for a fixed xy e (—L/2,k). It ensures the smooth-
ness of solutions at the boundaries of the interval. The cor-
responding force f(x) has the form

2V,
f(x)—L+2k®(x+L/2)@(k x)

- 2k@()c k)O(L/2—x)

+

L+2k®(x L2)O(L2+k—x)  (48)

for any x e[x(,xo+L]. This form of the force suggests the
ansatz

Px)=p,(x)O(x+L/2)O(k—x)+pr(x)O(x—k)
XO(LR2—x)+p3(x)O(x—L/2)O(L12+k—x)
(49)

for the solution of Eq. (20). In this equation, the relation

p3(x)=pi(x—L)

is fulfilled, due to the periodicity condition. Substituting Eq.
(49) into Eq. (20) leads to an equation of the structure

gx)+a;8(x—k)+a,8(x—L/2)+B,5 (x—k)
+B,0' (x—L/2)=0, (50)
with a given function g(x) and some constant coefficients

a; and B; (i=1,2). From the Lemma 3.1.2 in [20] it follows
that this equation holds when
g(x):(): ai:(): ﬁi:()’ l:1’2 (51)

From the first equation of Egs. (51) one obtains equations for
the functions p;(x) (i=1,2) in the form

Dodpl(0)—| Dyt Dy 22001 2V J,
rApi(x) stDr mpl(x) L+2kp1(x)

, vy, 2n
—DpApy(x)— DS+DT+L % pa(x)— mpz(x):i

(52)

Boundary conditions for these ordinary differential equations
follow from the remaining equations of Egs. (51) and read

pi(k)=ps(k), (53)
pi(—L/2)=p,(L72), (54)
4v,L

Dr[pl'(k)—Pﬁ(k)]Zmpl(k), (55)

, , 4V,L
Dopi(=L/2)=py(LI2)]= mm( —L/2).

(56)
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Normalization of P(x) leads to the following fifth condition,
namely,

—DALR+K)[p|(=L2)—p|(k)]+DA(L/2—k)

L
X[py(L/2) = py(l)]+ 5 (Dst D)l pa(L/2) = pa(k)

—p1(k)+p (= L/2)J+J(L2—k)*— (L/12+k)?]
= —7,. (57)
A solution of Eq. (52) has the form (for a similar solution
technique with the white shot noise substituted by a dichoto-
mous two-state process see Ref. [5])
pi1(x)=B eV +Bye" 2+ J(L+2k)/12V,, (58)
pa(x)=C e+ Cyre" 2" = J(L—2k)/12V,, (59)

where

~Q_— Q> +8D AV, /(L+2k)

Wi = 2D A ) (60)

—Q_+\O? +8D AV, /(L+2k)
W= 2D A ) (61)

—Q,—\O> —8D AV, /(L—2k)
W= ) (62)

2D A
=0 4O, 8D AV /(L—2k) )
W= 2D A >
24 VO

The current J and the four constants B;,C; (i=1,2) are de-

termined by five conditions (53)—(57). This yields a nonho-
mogeneous system of five linear algebraic equations. Hence
the problem is solved and evaluation of the current is a mat-
ter of linear algebra. Because J is a quotient of two determi-
nants of the fifth degree, the explicit form of J emerges as a
complex expression, which is not reproduced here. The
analysis of the current with its corresponding graphical rep-
resentation is the subject of the next section.

VII. DISCUSSION OF RESULTS

In this section we analyze transport properties in the
piecewise linear potential (47). There are six parameters in
our ratchet model, namely, Dy, the thermal-noise strength
proportional to temperature of the system; (Dg,a), which
characterize the Poissonian &-correlated fluctuations; and
(Vy,k,L), which determine the potential V(x). A general
note concerns the sign of the current: J is positive for any
(nonzero, finite) values of parameters. This is so because of
the positive-valued weights of the & kicks. The current is a
monotonically increasing function of the shot-noise intensity
Dy . Starting from zero at D ¢=0, it saturates to the maximal
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FIG. 2. Current J vs parameter a [which measures the negative
base value of the white-shot-noise realization &(¢) between the
positive-valued & kicks] for various thermal-noise intensities D,
fixed white-shot-noise intensity Dg=1, in the symmetric (k=0),
periodic sawtooth potential with period L=2 and barrier height
Vo=1.

value given by Eq. (26). Qualitatively, the same property has
been observed for zero thermal temperature 7=0 [10].

A. Current versus shot-noise bias level

The dependence of J versus the shot-noise bias level @ in
Eq. (6) is visualized in Fig. 2. Our figures have been ob-
tained by solving the above-mentioned system of five lin-
early coupled algebraic equations by straightforward, simple
numerical means. There is an optimal value a,,, for which
the current is maximal. As the temperature of the system
decreases to zero, a,,,, approaches the value 2V, /(L+2k)
from below. If a>2V,/(L+2k) at T=0, both backward
and forward transitions take place for the Brownian dynam-
ics of the particles. Throughout our discussion here, we
evaluate the analytic results for 7=0 by using, for conve-
nience, in our program a very small temperature of
D;=10"° On the contrary, if a<2V,/(L+2k) at T=0,
only forward transitions drive the particle [11]. If 7>0, this
no longer holds true. For any a, there are now both backward
and forward transitions being induced by nonzero Gaussian
white noise.

B. Current versus potential asymmetry

The current depends strongly on the asymmetry parameter
k of the potential. We define the asymmetry as being positive
if k<0 and vice versa. The case k=0 corresponds to a sym-
metric periodic potential. Positive asymmetry means that
when starting from minima of the potential its slope in the
x-increasing  (right) direction is less than in the
x-decreasing (left) direction or, put differently, climbing the
barrier is easier towards the right than towards the left. In
Figs. 3(a)-3(c) we depict the current dependence upon the
asymmetry parameter k£ of the potential. In a “‘hot’’ system,
i.e., when the temperature 7 is relatively high, the symmetric
thermal noise dominates so that the current is ruled increas-
ingly by an equilibrium dynamics. Hence the current tends to
zero independently of the specific form of the ratchet poten-
tial, which implies that the current is almost symmetric with
respect to asymmetry; see Figs. 3(b) and 3(c). Moreover, we
note that, at fixed temperature 7', the current increases with
increasing |k]|.

At T=0, as well as at low temperatures and for strong
intensity D g of Poissonian fluctuations, new effects arise; see
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O‘Gk 1

FIG. 3. Current J shown vs asymmetry parameter & of the saw-
tooth potential (47) for fixed a=2, L=2, and V=1, for (a)
D;=10"°% and various values of shot-noise strength Dg, (b)
Dg=1 and various values of thermal-noise strength D, and (c)
D¢=0.2 and various values of thermal-noise strength D .

the cases Dg=1 and Dg=0.5 in Fig. 3(a). As k changes
from a maximal positive asymmetry at k= — L/2, the current
grows to a (local or global) value. Next J diminishes, attain-
ing a (global or local) minimal value. The minimum is not
for a symmetric potential at k=0, but is shifted towards a
positive-k value, i.e., a negative asymmetry for the ratchet
potential. A further increase of asymmetry leads to an in-
crease of the current. This behavior is most pronounced at
T=0 and can be explained as follows: If k<V,/a—L/2,
there is no net flux in the left direction. Strong shot-noise
intensity Dy means that & pulses are rare (A is small) and
amplitudes z; in Eq. (3) are large (but N4 =a=const). Be-
tween o pulses and for k close to —L/2, particles are local-
ized near a minimum of the potential V(x) since the deter-
ministic relaxation times from the left and from the right
maxima to the minimum are shorter than 1/\. If k£ increases
then the distance between a minimum and the neighboring



4064

0.05

0.04

0.03

0.02 02 Dp 03

FIG. 4. Plot of the current J as a function of thermal-noise
intensity D (or rescaled temperature T) for fixed a=0.5, L=2,
Vo=1, k=0, and selected values of white-shot-noise strength Dy.
(a) three distinctive (monotonic decrease, minimum-maximum, and
bell-shaped) behaviors of J(D;) are depicted. (b) depicts how a
global maximum for J changes into a local maximum while in-
creasing the white-shot-noise intensity Dy .

right maximum becomes shorter. Smaller and more probable
amplitudes [cf. the distribution (4)] are able to displace par-
ticles over the maximum into the right direction. This feature
holds with k<0 up to k=Vy/a—L/2 at T=0. When
k>Vy/a—L/2, a flux arises also towards the left direction
and grows as k increases. As a consequence, the total current
in the right direction decreases as k increases; cf. in Fig. 3(a)
for Dg=1 and k> —0.5. Starting from a certain positive-k
value (negative asymmetry) the growth of k causes an in-
crease of the current up to the maximal value

P Yoo s kL2 65
TL  (L+2hL 1F B Ee (65)

Here v,. is the deterministic part of the particle velocity in the
right direction. This is so because the probability that, after a
o kick, the particle falls into the interval (k,L/2) is much less
compared to the case where it falls into the interval
(—L/2,k).

C. Current versus temperature

The stationary current J as a function of the thermal noise
intensity Dy (or rescaled temperature 7 of the system) is
plotted in Figs. 4(a) and 4(b) for several values of the shot-
noise strength Dy and fixed remaining parameters. One can
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observe three radically different types of the current behavior
as the control parameter Dy is varied.

(i) The current is a monotonically decreasing function of
temperature. (ii) As temperature increases from zero, the cur-
rent starts from a nonzero value, decreasing to a local mini-
mum,; next it grows, attaining a (local or global) maximum,
and then J approaches zero as T—. (iii) Increasing the
temperature from zero results first in a rise of the current and
then its fall. There is one unique temperature maximizing the
current. Put differently, the current J exhibits a bell-shaped
behavior versus increasing temperature.

VIII. APPROXIMATE SOLUTIONS

For a comparison between the two asymptotic expansions
presented in Sec. V with the exact results obtained for the
case of the piecewise linear potential (47), we truncate the
series (33) and (44) and restrict ourselves to terms of first
order with respect to the expansion parameter €. Within the
original, i.e., nonrescaled variables, indicated by J, and for
the potential barrier V,, the renormalized expansion, denoted
by the superscript 2 yields

DDy

a

JH=~Jy(Dy)+ Ji(Dy), (66)

where
_ (L= Rr=(LI2+K)s
D)= 6
Jo(Dr) N (67)
and
2
JI(DT): (L/2 k) V(V+S) e(L/z_k)"_e(L/Z—k)r—(L/2+k)s]

r
sVINg ot
X[— 1 +2I"(1 _ef(L/2+k)S)_ef(L/2+k)s

+ o (LR2RIr g p(LR=K)r=(L2+K)s]

(L2+ k) s(r+s)
+

[e(L/ka)rf(L/ZJrk)s
rVsN?

_e—(L/2+k)S][ -1 —2S(1 _e(L/Z—k)r) _ e(L/Z—k)r
+e(L/2+k)s+e(L/Z*k)r*(L/ZJrk)s] (68)
The normalization constant reads

2

L
N=N(Dy)= W(DTJFDS)[eWz—k)ur e~ (L2+k)s
0

— p(L2=kyr=(L12+k)s _ 1]

L
+2k70[1 _e(L/Z—k)r—(L/Z-Fk)S]' (69)

The quantities » and s are given by
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FIG. 5. Exact results (thick solid line) are compared against two
approximations obtained from the the first-order asymptotic expan-
sions: regular (thin solid line) and renormalized (dotted line) expan-
sions. The parameters are Dg=1, L=2, V(=1, and k=0 for two
values of the expansion parameter e=D;/D¢=D;=0.001 and
0.1.

-1

L D +D D
I"EV(DT)Z[(E—]C TTS‘F—S S (70)

L D+Dg Dg|™!
sEs(DT)=[<E+k)%——S (71)

The regular expansion, denoted by the superscript 1, leads to
the relation

D7Dy
a

JD=J,(0)+ J1(0). (72)

As we mentioned before, the expansions can be used only
when the unperturbed diffusion function in Eq. (35) and the
renormalized diffusion function in Eq. (46) are positive for
any x. For the sawtooth potential (47), this implies the con-
ditions
a>a,=2/(k+L/2), a>a,=2/[(k+L/2)(1+Dy/Dg)]
(73)

for the unperturbed and renormalized diffusion functions, re-
spectively. As depicted in Fig. 5, the regime of validity of
these two approximations is governed not only by the param-
eter € defined in Eq. (32) but also by the base level a of
white shot noise &(¢), which is restricted by Eq. (73). If € is
rather small (top two lines in Fig. 5), the two expansions
reproduce the exact result for @ decreasing from infinity up
to a~a;. With increasing €, the deviations from the exact
result become more pronounced. Note, however, that the
renormalized expansion (dotted lines) does provide better
agreement.
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IX. SUMMARY

We have studied properties of the current in periodic
structures generated by white shot noise and driven by ther-
mal fluctuations. The stationary current is determined by the
ordinary differential equation of second order; see Eq. (20).
Because this equation cannot be solved by analytical means
we have considered various specific situations. For an arbi-
trary form of the spatially periodic potential, the current can
be analytically described in closed form in the asymptotic
regime of very strong intensity for Poissonian J-correlated
fluctuations (Sec. IV). Two asymptotic expansions are con-
structed in Sec. V. The expansion parameter is defined as a
quotient of the Gaussian white-noise intensity and the white-
shot-noise intensity. These expansions are not uniformly
convergent and their domains of validity are determined not
only by the expansion parameter, but also by the remaining
parameters of the stochastic dynamics.

Exact analytical results are obtained for the piecewise lin-
ear sawtoothlike potential (47). The most interesting findings
are visualized in the figures. The current vs temperature char-
acteristics are strongly influenced by other parameters of the
model, such as the intensity Dg of Poissonian white fluctua-
tions. A notable feature of our ratchet model is the occur-
rence, for specific choices of the parameter set, of two char-
acteristic temperatures at which the current is locally
minimal and/or (locally or globally) maximal. The fact that
there exists a single characteristic temperature that maxi-
mizes the current has been emphasized in [3]. Nevertheless,
we believe that the existence of a temperature that locally
minimizes the current can have practical consequences too.
Such a temperature-induced minimum can play a useful role
in the design of devices that separate particles. For example,
the simultaneous presence of a minimum and a maximum
can be of use to separate, with minimal dispersion in veloc-
ity, two classes of particles. The corresponding regimes are
controlled by the value of the thermal noise intensity D,
which is governed by mass and friction strength parameters;
cf. Eq. (10). Suitable systems where these ideas may apply
are shot-noise-driven transport in periodic superlattices or
biological motor proteins that move along periodic track fila-
ments where shot noise mimics the nonequilibrium stochas-
tic hydrolysis of adenosine triphosphate.
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