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Abstract

The synthesis of overdamped Brownian motion in a periodic potential which lacks reflection symmetry (ratchet device)
with unbiased nonequilibrium forces e(t) yields an ordered, directed particle current. In this work, E(t) is made up of a
noisy oscillator dynamics (harmonic noise). Such noise is able to account for inertial dynamic features; as a consequence we
observe multiple current reversals upon varying the noise correlation time of the colored noise E(t). The precise form of the
particle current is determined by use of matrix-continued-fraction methods. As a function of noise color the current depicts a
characteristic bell-shaped behavior. The precise numerical results concur with both, limiting analytical exact results and with
an approximation scheme (unified colored noise approximation).

                                  
                                                                                 

1. Introduct ion

One of  the hallmarks of  equilibrium statistical mechanics is that, apart from ring currents (such as persistent
currents), directed currents do not occur. It thus appears at first sight paradoxical that such directed currents do
occur in periodic structures without the application of  external bias forces or thermal gradients, or alike, cf. the
recent reviews in [1]. Such devices recently have attracted interest [1-10] in view of potential biological transport
applications and novel mass separation techniques [10]. These systems are termed ratchets: The characteristic
features for such devices are (i) a spatially periodic structure that lacks reflection-symmetry (saw-tooth like structure)
and (ii) the action of  an additive, temporally varying force E (t) of  zero average. Usually these temporal forces are
assumed to be symmetric. Otherwise, a current emerges even in presence of  spatial reflection symmetry [6]. The
correlated nature of  e (t), whose autocorrelation is not  related - via detailed balance - to the dissipative mechanism,
brings the ratchet system away from a thermal equilibrium system. The source of  asymmetry, either for the ratchet
structure or the temporal perturbation e(t), is essential: Symmetric nonequilibrium forcing e(t) in a symmetric
periodic potential results in a zero net current.

In the following, we shall focus on an overdamped 'Brownian Rectifier' that is modeled by a periodic ratchet
potential V ( x )  = V ( x  + 1) of  period ]. This rectifier is exposed simultaneously to thermal Gaussian noise ~1 (t) of
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strength 2D and correlation {~1 (t)~l (s)) = 8 (t - s), and unbiased, colored Gaussian fluctuations E (t). This defines
a ratchet dynamics that - with all variables chosen in dimensionless form, for the scaling of ratchet parameters see
Appendix A - has the form of a Langevin equation with two additive noise sources, i.e.,

_ av(x) +~( t )+ J-z6~l(t). (1)
Ox

The two random sources are assumed to be independent. Eq. (1) describes a correlation ratchet [4-7,9]. In this work
we use for e(t)  a noisy oscillator dynamics, termed harmonic noise [11]. By doing so, we implicitly mimic a source
of inertia [8] via the coupling of the x-dynamics to the inertial dynamics inherent in harmonic noise ( ( t ) ,  see again
in Appendix A. Next we investigate the statistical properties of  this two-dimensional Gauss-Markov process.

2. Harmonic noise

2.1. Definition and properties

This harmonic noise process e (t) is defined through the stochastic differential equations [1 l]

= u, ~ = u ---- - - F u  -- I2~e + I2o2 2 x / ~ 2 ( t ) ,  (2)

where (2(t) is Gaussian white noise as ~1 (t), and independent of  ~1 (t). Eq. (2) yields a Gaussian process with zero
average, (e (t)) = 0, and autocorrelation

QS2°2 exp - Itl cos s21t + ~ sin s2alt[ (3)(e ( t )~(o) )  = r

when s2~ : =  S2o 2 F 2 / 4  > O. Likewise, for F 2 >__ 4S2o 2, we find with ~ := F a / 4  ~ ,

( F ) (  F s i n h ~ l l t l )  " (4)Q~°2 exp - Itl c o s h ~ l t  + 2S21 (~( t )e (o) )  = v

As a consequence, its spectral density can be evaluated to read

f 2Qf24
SEE(C0) := dt(~(t)~(0))e ic°~ = F Z C o  2 _ ( $ 2 2  _ o92) 2 . ( 5 )

It exhibits two peaks for F 2 < 2S-202 (or r < 2 / F ,  see Eq. (6) below) with a local minimum at co = 0. With
F 2 > 4~ '22 ,  the correlation function is semipositive valued for all times. The correlation time for harmonic noise z
:= f o  dt] ( e ( t )e (0) ) l / ( e  2) can be analytically evaluated to yield

r = F/~2~. (6)

2.2. Limiting behavior o f  harmonic noise

When F --~ oo, Y2~ -~  oo, and F/£22 = const = T. harmonic noise approaches Ornstein Uhlenbeck noise of
intensity (2 and correlation time r .  Consequently, if in addition r --~ 0, ~ (t) approaches white noise of  intensity Q.

The adiabatic limit occurs for F -+ 0 with r held fixed: With £202 = F/T ,  and thus ~02 >> F 2, we obtain
(~(t)¢(0)) = ( Q / r )  cos Hot.  Thus, E(t) takes on a Gaussian distribution of quasistatic values with (e2) = Q / r .
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A third limit of  harmonic noise corresponds to a limiting deterministic harmonic oscillator. This limit follows
from harmonic noise when F ~ O, Q -+ O, Q / F  = C finite, and X20 is held fixed. This procedure yields
<e(t)e(0)) --+ (QS22/F)cos S20t. The amplitude A of  the harmonic oscillator dynamics can correspondingly be
identified as A 2 ~ 2QS-22/F = 2S22C.

3. Numerical  solution with matrix-continued-fractions

The starting point for the numerical investigation of  the ratchet system (1), (2) is the corresponding Fokker-Planck
equation for the joint probability density W (x, e, u; t),

at -- ~xx ~ --eff-xx--Uff~-~ -I- ( F u +  - I -DTx2+ ~ O~u2j

In order to calculate the asymptotic probability current J = <2) along the ratchet potential, where (:~) denotes the par-
ticle current, only the x-periodic stationary distribution Wst(X, e, u) :=  W(x, e, u; t --~ oo) = Wst(X + 1, e, u) has

• . . l e oto be evaluated. We normalize Wst (x, e, u) to unity within one spatial period, 1.e., f0 dx f ~  de f-~o,~ du Wst (x, e, u)
~ l .

To apply the method of  matrix-continued-fractions (MCF) to the calculation of  Wst(X, e, u), we expand the
potential V(x) and the probability distribution into Fourier series in x, and into Hermite functions for the u- and
E-dependence [9,12]. The probability current in x-direction is given from (7) as Jx (x, e, u) :=  [ - 0  V(x)/Ox + e -

DO/Ox] Wst (x, e, u) and the total fluctuation-induced current J is obtained as

1 ~ o c

J : = f d x  f d e  f d u J x ( x , e , u ) .  (8)
0 -c~ - ~

For concrete calculations, we use the same examples of  ratchet potentials V(x) as in [7], namely

V2(x) ---- - [sin(2zrx) + 0.25 sin(4zrx)]/(2rr),  (9)

V3(x) ---- - {sin(2rcx) + 0.2 sin[4zr(x ± 0.45)] + 0.1 sin[67r (x - 0.45)]}/(270,  (10)

both with a smaller average force in ' forward'  direction (see Fig. 1).
For the potential 1/'3, it was shown in [7], that the current for Ornstein-Uhlenbeck noise exhibits a change of  its

direction (current reversal) upon variation of  z. This result for Omstein-Uhlenbeck noise is shown in Fig. 2 by the
solid line. The dashed, dotted and dashed-dotted lines present MCF-results for harmonic noise with F finite. A
second current reversal appears generically at small r-values. These two current reversals occur in a regime where

corresponding spectrum S~ (co) of  harrnonic noise is doubly peaked at co = ±~/~22 - F 2 / 2 .  Within our variationthe
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Fig. 1. The two types of ratchet potentials given in Eqs. (9) and (10) are shown as solid and dashed lines for V 2 (x) and 1/'3 (x), respectively.
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Fig. 2. The noise induced probability current J (which here is equivalent to the particle current (2)) is drawn versus the noise correlation
time r for the ratchet potential V(x) = V3(x). The dimensionless noise parameters, cf. Eqs. (1) and (2), are chosen as D = 0.05,
Q = 0.025, and different values for the damping: F = 20 (dashed), 50 (dashed-dotted), 100 (dotted), and F --+ oo (solid). The latter
corresponds to Ornstein-Uhlenbeck noise with correlation time r = F/K22, see Section 2.2. Two current reversals occur only when the
parameter regime covers the case of a doubly peaked spectral function S~ (w), cf. Eq. (5). The theoretical prediction of [5] is drawn for
F = 20 (circles) and for F = 50 (squares), note the description in the text.

of  the three parameters characterizing harmonic noise in Eq. (2) we did not detect triple and higher order subsequent
reversals of current. In this context, we remark that the inertial dynamics with deterministic rocking (possessing
with particle mass, frequency, and strength of  rocking also three independent parameters) is even richer [8]: When
driven in the regime of  chaotic transport trajectories the current exhibits (infinitely) many reversals. Flashing ratchets
which are driven by a cyclic 3-state noise [13] also are able to exhibit two subsequent reversals of  current. This
effect could be of  use for the selection of  a certain species of  particles, since the correlation time r depends on
the properties of  the particle such as the friction coefficient, cf. Appendix  A. Thus, particles whose friction values
vary within a characteristic 'window'  can be selected. The remaining lines in Fig. 2 give the theoretical predictions
of  [5]. After  correcting misprints in the prefaetor W~, i.e., instead of using W~ = 7rD/F(O)~/Utr(xo)lU"(x+)[ as
given in [5] we use the Smouchowski result Wk = ~/Ur'(xo)[U~r(x+)[/2Jr. The theory of  [51 predicts a current
reversal if  the quantity Ftt (co = 0) : =  Q [£20 (Q + D ) ] - 2  F (~ - 2 / F )  maxo) See (o9) is allowed to undergo a change
of  sign. In Fig. 2, the theory of  [5] predicts a single (and not two) reversal at r = 0.1 (for F = 20), and r = 0.04
(for F = 50), respectively. In clear contrast the numerical exact MCF-calculat ion yields r "" 1.3 x 10 .2  (for
F = 20), and r --~ 1.5 x 10 . 2  (for F = 50). Thus, although the current in this parameter  regime is governed by
Arrhenius-activated rates (the Arrhenius factor is of order 5 here) the regime of  validity for the theory in [5] does
not extend far enough to correctly predict the first current reversal. This finding is in accordance with previous
comparisons for the Ornste in-Uhlenbeck limit in [7]. For  F = 20, the second reversal around r ----- 0.1 happens to
coincide accidentally with the theoretical predictions; note, however, that this current reversal crosses the r -axes
with the wrong slope.

In Fig. 3 the crossover between the Ornste in-Uhlenbeck and the adiabatic limit is shown for V(x )  = V2(x). For
F -+  oc, the arrow indicates the current occurring in an Ornstein-Uhlenbeck noise driven ratchet with correlation
time r --- 1. The opposite limit, F -+  0, can be treated within the adiabatic approximation, see Section 2.2. The
mean current J is evaluated by averaging the (analytically given) currents over an ensemble o f  Gaussian distributed,
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Fig. 3. The dependence of  the probability current J versus the damping parameter F of  the noise e( t )  is depicted for fixed T = 1. The
ratchet potential is V(x) = V2(x), and the noise intensities are D = 0.1 and Q = 0.1. The arrow at F = 10 3 gives the current for
Orns te in-Uhlenbeck noise with r = 1, the arrow at F = 10 - 3  shows the adiabatic limit explained in the text. The characteristic crossover
between these two limits occurs at F = 2 / 3  = 2.

statically biased potentials U(x) : =  V(x) - xE [3,7]. The result for this limit is depicted by an arrow. The theory
in [5] again does not cover this parameter regime. It predicts a current reversal for F = 2, which does not Occur in
the numerical calculation.

4. Simulations and unified colored noise approximation

For the potential V(x) = V2(x), we compare in Fig. 4 the results of  MCF calculations (solid line) with direct
simulations of  the Langevin equations (1) and (2) (open circles), and with the 'unified colored noise approximation'
(UCNA) (dotted) [14]. For the latter approximation, we substitute the processes e(t) and v(t) in (2) by suitably
chosen auxiliary processes q(t) = q(x(t), e(t)) and w(t) = w(x(t), e(t), u(t)), yielding three new stochastic
differential equations for :~, q, and tb. For F >> 1 and r << 1, the auxiliary processes q(t) and w(t) can be
eliminated adiabatically. The resulting equation for .t(t) reads [15]

1
.~ = g ~ [ - - g t ( x )  + 2 ~ - D ~ I ( t  ) -t- 2 V ~ 2 ( t ) ] ,  (11)

where the prime ( ' ) denotes the derivative with respect to x, and

( 1 - ~ [ F + g ' ( x ) ]  ) (12)O V'(x) F + +g(x) = 1 -- O---x V " ( x )  ( 5YQ- ~ - ~ - q - - ~ )  [F  + V ' ( x ) ] }  "

This stochastic differential equation must be interpreted in the Stratonovich sense. Being one-dimensional, the
approximative probability current JUCNA can be obtained from (11) in closed form in terms of  two quadratures
[1,15]. This theoretical result is drawn as a dotted line in Fig. 4, the simulations and the MCF calculation for F = 20
are given as open circles and as a solid line, respectively. The MCF result for Ornstein-Uhlenbeck noise (see in [7])
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Fig. 4. The probability current J is drawn versus the noise parameter z for the ratchet potential V(x )  = V2(x), being driven by white
noise of intensity D = 0.1, and harmonic noise with parameters Q = 0.25 and F = 20. Again, the current reversal occurs only when
r < 2 / F .  The results were obtained from numerical MCF calculations (solid line) and from numerical simulations of the Langevin
equations, which are depicted by open circles; the dotted line corresponds to the UCNA in Eq. (i l).

does not exhibit a current reversal with increasing noise color r when the ratchet potential V (x) = V2 (x) is chosen.
In contrast, the harmonic noise induced current possesses a current reversal at small r which is only qualitatively
predicted by the UCNA. This property of  UCNA is remarkable because this approximation is a priori restricted in
parameter  space to very small r-values.

5. C o n c l u s i o n  and  out look

In this work we have presented precise numerical (MCF) calculations for the current arising in a ratchet system
driven by white and harmonic noise e (t). Several limits for harmonic noise were identified and corresponding results
for the current were calculated. Simulations of the Langevin dynamics and the analytical (UCNA) predictions are
found to be consistent with our precise MCF results. Our main findings is that Gaussian harmonic noise driven
systems can possess multiple current reversals. This reversal of  current occurs whenever the spectrum of  harmonic
noise is doubly peaked rather than decaying monotonically. The current reversals can be utilized for novel particle
separation schemes if  corresponding noise correlation times lie in disjunct parameter regimes, as indicated with
Fig. 2. Hence, with this Brownian rectifier we encounter yet  another case where the creative action of fluctuations
- without the help of  a Maxwell  demon - supports an ordered State. A finite-valued directed particle current (2),
from which we can extract useful work.
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Appendix A. Sealing of variables
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To show the correspondence be tween  the ' real '  parameters  appearing in an exper iment  and those in the overdamped
dimensionless  equat ions (1) and (2), we start f rom the equat ions of  mot ion  in real t ime ~ for a particle of  mass m
and frict ion coefficient ~, in a periodic potential  £' (J?) = !~ C~ + L)  of  per iod L, i.e.,

d2~ 01~ (~) d~
m a t 2  -- O} - - Y m - d ~ + ~ ( t " ) +  2~'2m-gkBT~l(t')" (A.1)

The absolute temperature is T and kB is the Bo l t zmann  constant.  Variables with hats denote quanti t ies which have
a d imension,  like the real posi t ion of  the particle ~2 or the harmonic  noise  force ~. For the latter, the dynamics  is
given by

d2~
_ dfi _ _ / z f i  _ ~ 2 ~  + ~02 2 ~ 2 ( t - ' ) .  (A.2)

d ~  - dt"

The Gauss ian  white noise  sources ~1,2 (t') are &correlated with respect to ~, (~i (t')~j (0)) = 8ij 8 (~ ,  i, j = 1, 2. For the
overdamped case y - +  ec,  we obtain  the d imensionless  equat ions (1), (2) f rom (A.1) and (A.2) by  in t roducing the
dimensionless  variables t = gt', x = ~ /L ,  V(x )  = fT(Yc)/my2L 2, D = k13 r / m g 2 L  2, e = ~ / m y 2 L ,  u = fi/m~,3L,
Q = O / m 2 g 3 L  2, F = F / y ,  and S20 = ~ o / g .  F rom these relations we immedia te ly  find r = ~,?/~2 Hence
it is evident  that particles with a different fr ict ion coefficient ~, possess different effective correlation t imes r ,  and
thus can be separated into different directions (see Figs. 2 and 4).
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