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Abstract. – We investigate the incoherent dissipative quantum transport of a particle in a
periodic lattice being driven nonlinearly by dc-ac fields. The particle always diffuses slower,
as compared to the force-free case, and the minimal diffusion is found for zero dc-bias and
ac-field parameters that lead to dynamical localization (DL) in the nondissipative case. A
current inversion occurs at weak dissipation. The amplitude of the negative current is maximal
for a characteristic value of the dissipative strength, resembling a “stochastic resonance” like
effect. For intermediate dissipation the current is positive and widely independent of both the
ac-frequency and the dissipation. The negative current, as well as the stability of DL against
dissipation are universal effects, in the sense that they are largely independent of the dissipative
mechanism.

The model of a quantum particle moving in a periodic tight-binding (TB) lattice while
coupled to a thermal bath is of great relevance in solid-state physics. It can serve as an
idealized model for the diffusion of a quantum particle among intersitials inside a crystal [1],
especially that of a charged particle in a metal [2]. It can also be invoked to investigate quantum
effects in the current-voltage characteristic of a small Josephson junction [3] or of semiconductor
superlattices driven by strong dc and ac fields [4], [5]. Finally, this multistate system can be
related to the Luttinger liquid model [6] for the conductance between two one-dimensional
quantum wires connected by a weak link.

The dissipative multistate system in the absence of time-dependent driving has been the
object of intense research during the past years [7]-[10]. In contrast, others investigated local-
ization effects in dc-ac–driven TB lattices in the absence of thermal noise and dissipation [11].
The effect of scattering on the driven TB particle has been included phenomenologically by
employing an ad hoc stochastic Liouville equation [12] or a classical Boltzman equation [4]. The
real-time path integral method has been recently used in [13], to evaluate the ac-conductance
of a Luttinger liquid. Here, generalizing [10] to the case of ac-dc driving, and in the spirit
of [13], we investigate the driven dissipative tunneling dynamics within a microscopic rigorous
approach to dissipation.

As a starting model we consider the one-dimensional infinite, single-band tight-binding
lattice described by the Hamiltonian H(t) = HTB + Hext(t) + HB. The first term HTB is
the Hamiltonian of the bare multistate system

HTB = −(h̄∆/2)
∑
n

(|n〉〈n+ 1|+ |n+ 1〉〈n|) , (1)
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where |n〉 denotes a (Wannier) state localized at the n-th site, while h̄∆ is the overlap integral
between two neighboring sites. The driving influence is described by

Hext(t) = −qh̄(ε0 + ε̂ cosΩt)/d, q = d
∑
n

n|n〉〈n| , (2)

where the operator q measures the particle’s position on the lattice, and h̄ε(t)/d = h̄(ε0 +
ε̂ cosΩt)/d is the potential drop per lattice period d due to externally applied dc-ac fields.
Finally, the term HB describes the heath bath environment as an ensemble of harmonic
oscillators bilinearly coupled to the particle’s coordinate, i.e. [14]

HB =
1

2

N∑
i=1

[
p2
i

mi
+miω

2
i

(
xi −

ci

miω
2
i

q

)2
]
. (3)

The environmental influences are then completely captured in the spectral density J(ω) =
π
2

∑
i(c

2
i /miωi)δ(ω − ωi), which will be assumed to be continuous henceforth.

Suppose now that the particle has been prepared at time t0 = 0 at the origin with the bath
having a thermal distribution at temperature T . Then, the dynamical quantity of interest is
the probability Pn(t) for finding the particle at site n at time t > 0. In turn, the knowledge of
Pn(t) enables the evaluation of all the statistical quantitites of interest in the problem, as, for
example, the position’s expectation value P (t), as well as the variance S(t), i.e.

P (t) := 〈q〉t = d

n=∞∑
n=−∞

nPn(t) , (4)

S(t) := 〈q2〉t − 〈q〉
2
t = d2

n=∞∑
n=−∞

n2Pn(t)− P 2(t) . (5)

A calculation of the quantities (4), (5) is indeed very complicated. In ref. [13] the ac-
conductance of a Luttinger liquid was evaluated by path-integral methods to the lowest per-
turbative order ∆2. As demonstrated in ref. [10] for the case of a dc-field, this approximation
is equivalent to assume that the particle tunnels incoherently from site to site. This turns out
to be a good approximation for high temperatures and/or strong enough dissipation [8]-[10].
In this case, the resulting dynamics is identical to that of a nearest-neighbor hopping model in
which the occupation probabilities obey rate equations. Generalizing the reasoning of [10], and
previous results on the driven, dissipative two-state system [15], in the regime where incoherent
tunneling dominates (in addition to the conditions of the dc-field case, it is assumed that the
bath correlations between tunneling transitions decay on a faster time scale as compared to the
time scale 2π/Ω of the driving-induced correlations) we find that

Ṗn(t) = γf(t)Pn−1(t) + γb(t)Pn+1(t)− γ(t)Pn(t) . (6)

Here, γb(t) and γf(t), are the time-dependent backward and forward rates, respectively, and
γ(t) = γf(t) + γb(t) is the incoherent tunneling rate in a dc-ac–driven two-state system [15].
The rates γf(t), γb(t) are conveniently expressed in terms of

γ(t) = ∆2

∫ ∞
0

dτ exp[−Q′(τ)] cosQ′′(τ) cos η(t+ τ, t) ,

ρ(t) = ∆2

∫ ∞
0

dτ exp[−Q′(τ)] sinQ′′(τ) sin η(t+ τ, t) ,
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where ρ(t) = γf(t) − γb(t) and η(t, t′) =
∫ t
t′

dt′′ε(t′′). Here Q′(t) and Q′′(t) represent the real
and the imaginary part, respectively, of the bath correlation function (β = 1/kBT )

Q(t) =
d2

π

∫ ∞
0

dω
J(ω)

ω2

cosh[h̄ωβ/2]− cosh[h̄ω(β/2− it)]

sinh[h̄ωβ/2]
. (7)

The general solution of eq. (6) can now be obtained in the form

Pn(t) = exp[−[F (t) +B(t)]]
(
F (t)/B(t)

)−n/2
In

(
2
√
F (t)B(t)

)
,

with In(z) the modified Bessel function of order n, and

B(t) =

∫ t

0

dt′γb(t′), F (t) =

∫ t

0

dt′γf(t
′) . (8)

This in turns leads to the results

P (t) = d [F (t)−B(t)] , S(t) = d2[F (t) +B(t)] . (9)

In the dc-limit ε̂ ≡ 0 one recovers the known relations P(t) = dρ0 t and S(t) = d2γ0 t, where
we set ρ0 = ρ(ε̂ = 0) and γ0 = γ(ε̂ = 0). Hence the particle diffuses linearly in time with
nonlinear dc-mobility µ0(ε0) = d2ρ0(ε0)/h̄ε0 and dc-diffusion coefficient D0(ε0) = d2γ0(ε0)/2.
In the following we investigate the mean square deviation S(t) in the presence of dc-ac fields,
as well as the time-averaged nonlinear mobility

µ(ε0, ε̂) = lim
t→∞

d

h̄ε0

Ω

π

∫ t+2π/Ω

t

dt′ Ṗ (t′) , (10)

and the nonlinear diffusion coefficient

D(ε0, ε̂) = lim
t→∞

Ω

π

∫ t+2π/Ω

t

dt′ Ṡ(t′) . (11)

Incidently, the time-averaged nonlinear current I(ε0, ε̂) of an ensemble of charged particles
immediately follows from I = e(h̄ε0/d)µ, where e is the elementary electronic charge. From (9)
we obtain

µ(ε0, ε̂) =
d2∆2

h̄ε0

∫ ∞
0

dτJ0

( ε̂
Ω

sin
Ωτ

2

)
e−Q

′(τ) sinQ′′(τ) sin ε0τ , (12)

D(ε0, ε̂) =
d2

2
∆2

∫ ∞
0

dτJ0

( ε̂
Ω

sin
Ωτ

2

)
e−Q

′(τ) cosQ′′(τ) cos ε0τ , (13)

where J0 is the zeroth-order Bessel function.
Up to now our results have been general. To make quantitative calculations we restrict

ourselves to the specific case of Ohmic dissipation with an exponential cut-off ωc [14]

J(ω) = (2πh̄/d2) αωe−ω/ωc , (14)

where α is the Ohmic phenomenological dimensionless damping strength. Then, the real and
the imaginary part Q′(τ) and Q′′(τ) of Q(τ) in (7) assume the form

Q′(t) = α ln(1 + ω2
c t

2) + 4α ln

∣∣∣∣ Γ (1 + 1/h̄βωc)

Γ (1 + 1/h̄βωc + it/h̄β)

∣∣∣∣ ,
Q′′(t) = 2α arctan(ωct) , (15)

where Γ (z) denotes the gamma function. For our simulations we choose ωc = 20∆.
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Fig. 1. – Dimensionless variance S(t)/d2 = (〈q2〉t−〈q〉2t )/d2 vs. time (full straight line and dot-dashed
curves). S/d2 is reduced as compared to the force-free case. It assumes its minimal values for
zero dc-bias, high ac-frequencies Ω and when ε̂ ' 2.4 Ω, corresponding closely to the conditions for
dynamical localization in the nondissipative case. The dashed straight lines depict the curve 2D(ε0, ε̂)t,
where D is the diffusion constant in eq. (13).

The mean square deviation S(t) vs. time is shown in fig. 1. For generic ε0, ε̂ and Ω values,
the diffusion is reduced as compared to the force-free case. For values of ε̂ and Ω such that
J0(ε̂/Ω) ' 0, i.e. ε̂/Ω ' 2.4, see the dot-dashed curves in fig. 1, the diffusion becomes very slow,
especially for zero dc-bias and high driving frequencies Ω. This choice for ε̂/Ω corresponds
to the condition for dynamical localization (DL) found for nondissipative TB systems [11].
Finally, the average slope of the curves in fig. 1 is well approximated by twice the diffusion
coefficient (13).

In fig. 2 a) the dimensionless current I(ε0, ε̂;α)/ed∆, is plotted vs. the dissipative strength
α for different driving frequencies Ω. Two striking effects occur for weak damping and strong
damping, respectively. i) A negative current at weak dissipation is observed. Moreover, for
fixed ε̂ and Ω the amplitude of the negative current is maximal for a characteristic value
α = α∗ of the Ohmic strength. ii) For stronger dissipation the current becomes independent
of the ac-frequency and on dissipation on a wide range. As the frequency is increased further,
the linear response regime ε̂/Ω � 1 is approached and the current moves towards its dc-limit
(full-line in fig. 2 a)). In fig. 2 b) I(ε0, ε̂;α)/ed∆ is plotted vs. the applied dc-voltage ε0 for
different values of the applied ac-voltage ε̂. Again, a current reversal is observed.

To explain the results of figs. 1 and 2 it is convenient to expand J0

(
ε̂
Ω sin Ωτ

2

)
in Fourier

series to obtain

R(ε0, ε̂;α) = J2
0

( ε̂
Ω

)
R0(ε0;α) +

∞∑
n=−∞,n6=0

J2
n

( ε̂
Ω

)
R0(ε0 + nΩ;α) , (16)

where R0(ε0;α) := R(ε0, ε̂ = 0;α), and R = I or D. Thus, the ac-voltage produces new
channels for dc-current flow or dc-diffusion due to photon emission (n > 0) and absorption
(n < 0), each weighted by the factor J2

n(ε̂/Ω).

Let us focus on the time-averaged current. The current inversion is due to the competition
between the channels with n = 0, n > 0, each of which always gives a positive contribution to
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Fig. 2. – Dimensionless time-averaged current I/ed∆ plotted vs. the dissipative Ohmic strength α
(fig. 2 a)) and vs. the dc-bias ε0 (fig. 2 b)). For weak dissipation a negative current, which is maximal
for an optimal value of α is found. For stronger dissipation the current becomes independent of the
ac-frequency and on dissipation on a wide range.

the total current, and higher-order channels with n < 0 which may give a negative contribution.
In fact, with the help of the blocking effect (i.e. J0(ε̂/Ω) ' 0) of the n = 0 channel it can be
more favorable in current-gain (in absolute value) to absorb n photons than to emit n of them,
even if the weight of the sidebands is the same and given by J2

n(ε̂/Ω). For example, for the
dot-dashed curves of fig. 2 a), 2 b) (Ω = 4.5∆) the main contribution to the current is found
to come from the first negative channel (n = −1) (not shown). Correspondingly, the maximal
negative inversion occurs for α = α∗ 6= 0 such that |I0(ε0 −Ω;α)| is maximal as a function of

α (cf. fig. 2 a)). For fixed ε̂, I(ε0, ε̂;α) vs. ε0 may have several minima ε
(n)
min determined by

the condition ε
(n)
min + ε∗ = nΩ, where ε∗ is the maximum of the dc-current I0 vs. the dc-bias

(see fig. 2 b)). Note that the position of these minima does not depend on the strength ε̂ of the
ac-field. The ac-field strength determines instead the weight of the different channels. For the
parameters chosen in fig. 2 b), the maximal negative current occurs when ε̂ is chosen such that
the first channel dominates (J2

n(ε̂/Ω) ' 0, n 6= 1). The same line of reasoning can be used to
explain the behaviour of the variance in fig. 1.

Finally, we observe that the structure (16) is universal, i.e. it does not depend on the specifics
of the thermal bath. Dissipation determines instead the shape of the dc-current I0, and of
the dc-diffusion D0. Hence, as long as the dc-current vs. the dc-bias presents the (physical)
characteristics of being antisymmetric, positive for ε0 > 0 with a maximum at ε0 = ε∗, a
current reversal is possible even for a dissipative mechanism which is different from the Ohmic
one we choose. In the same way the nonlinear diffusion will always be strongly reduced in the
parameter regime of dynamical localization.

Indeed, a similar behaviour for the current vs. the dc-bias in semiconductor superlattices
at room temperature has been predicted in [4] within a phenomenological approach based
on a classical Boltzman equation with a single collision time ansatz. On the contrary, our
results were obtained starting from a full microscopic analysis, with the only restriction being
that of an incoherent tunneling dynamics. Recently, such a time-averaged negative current,
(i.e. an absolute negative conductance) vs. the dc-bias has been very recently predicted the-
oretically and observed experimentally in semiconductor superlattices [4], [5], and in double
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quantum wells [16].
In conclusion, starting from a pure microscopic model, we investigated the quantum current

as well as the diffusion of dissipative particles in TB lattices under the combined effects of dc-ac
electric fields. For generic dc-ac fields, the particle diffuses slower, as compared to the force-free
case, and it can be almost localized for appropriate values of the dc and ac driving strengths and
driving frequencies. In addition, a negative current may occur, whose amplitude is maximal
for an optimal value of the dissipative strength. Finally, for moderate-to-strong damping the
current is positive and widely independent of the applied ac-frequency and dissipation.

Thus, our work provides a great potential for applications: It can be used to build quantum
Brownian rectifiers moving particles “up-hill” in a tilted washboard potential, or to obtain
a “down-hill” current, which is largely independent of the noise of the experimental device
without the need of much fine tuning for the external ac-frequency.
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