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Symmetric white noise can induce directed current in ratchets
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Symmetric white noise can induce directed current in periodic potentials that lack reflection symmetry
~termed ratchets!. The requirement for this to occur is that the white noise possesses non-Gaussian statistical
properties with all its odd numbered cumulant correlation averages vanishing identically. The fluctuation-
induced current is elucidated for three types of white noise: ~i! symmetric white Poissonian shot noise with
exponentially distributed amplitudes, ~ii! two-state diffusion noise being composed of two thermal Nyquist
noise sources that successively are switched on and off by dichotomic noise, and ~iii! randomly flashing
Gaussian white noise. Because the latter two noise sources are not composed of independent increments, the
resulting ratchet dynamics x(t) is non-Markovian. The current versus white-noise intensity typically exhibits a
nonmonotonic dependence with a maximum assumed at a suitably tuned noise level.
@S1063-651X~97!06110-2#

PACS number~s!: 05.40.1j, 02.50.2r
I. INTRODUCTION

In spatially periodic structures, zero-mean nonequilibrium
fluctuations can induce nonzero macroscopic current
~Brownian ratchets! @1#. Periodic structures are described in
terms of a spatially periodic potential V(x)5V(x1L) of pe-
riod L . For systems with a reflection symmetry we have
V(c2x)5V(c1x) for some constant c . Periodic structures
that lack this reflection symmetry are termed ratchets. Fluc-
tuations driving the system can be symmetric or asymmetric
as well. Symmetric fluctuations j(t) are characterized by the
fact that all its odd numbered cumulant averages are identi-
cally vanishing; in contrast, asymmetric noise of zero mean
can possess nonvanishing odd-numbered higher-order cumu-
lants. It is a hallmark of thermal equilibrium dynamics that
~i! directed stationary motion cannot be generated by thermal
fluctuations ~Gaussian white noise!. With a nonequilibrium
thermodynamics, however, ~ii! directed motion can be
evoked by correlated symmetric noises in systems with a
broken spatial symmetry ~i.e., when the spatial potential is
asymmetric! @1–5#. Furthermore, it is known that ~iii! di-
rected motion can be induced by correlated asymmetric fluc-
tuations in reflection-symmetric systems @5# and also ~iv!
transport can be caused by uncorrelated ~or d-correlated!
asymmetric shot noise in systems with or without a broken
spatial symmetry @6#. Thus, for generation of directed trans-
port the breaking of at least one of these symmetries is nec-
essary. A fundamental question to be asked is what minimal
statistics of noise is needed for generation of a macroscopic
current. In particular, is there a possibility that a symmetric,
d-correlated additive noise does in fact evoke directed mo-
tion? This question will be answered with this work in the
affirmative.

Let us formulate the problem in greater detail by studying
the overdamped motion of Brownian particles in spatially
periodic potential V(x); namely, implicitly assuming a scal-
ing that leads to dimensionless variables ~see the Appendix!,
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we consider the stochastic flow

ẋ5 f ~x !1G~ t !1j~ t !, ~1!

where f (x)52dV(x)/dx and G(t) represents thermal fluc-
tuations that are modeled by Gaussian d-correlated noise of
zero mean,

^G~ t !&50, ^G~ t !G~u !&52DTd~ t2u !, ~2!

and of strength DT . This part models thermal Nyquist noise
with its intensity being proportional to the temperature T .
The process j(t) is a ‘‘driving force’’ and models a non-
equilibrum source of fluctuations.

We construct three models of symmetric and d-correlated
fluctuations j(t), which, by virtue of statement ~i!, have to
be nonequilibrium and non-Gaussian. The first model studied
in Sec. II is symmetric Poissonian white shot noise @7#. The
second noise source considered in Sec. III is composite white
noise made up of two-state diffusion noise @8#: In each state
the system is subject to white Gaussian noise with a given
diffusion coefficient and the system randomly jumps in a
dichotomic manner between these states. The third noise, the
so-called randomly interrupted ~or flashing! Gaussian white
noise, is a limiting process of two-state diffusion noise when
one of the diffusion coefficients tends to zero @9#. Then
jumps between the Brownian diffusional state ~a Feynman
ratchet carrying zero current! and a deterministic flow ~also
carrying zero current! are steered by a dichotomous Markov
process. It is investigated in Sec. IV. Our conclusions and a
summary are presented in Sec. V.

II. SYMMETRIC POISSONIAN WHITE NOISE

Poissonian white shot noise j(t) is defined as @7#

j~ t !5(
i51

N~ t !

z id~ t2t i!, ~3!
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where N(t) is a Poisson counting process with a parameter l
~it is equal to a mean number of d impulses per unit time,
i.e., a mean frequency of impulses or the reciprocal of the
average sojourn time between two d kicks! and $z i% are
weights of the d kicks distributed according to a probability
density r(z). For symmetric white Poissonian shot noise all
its odd-numbered statistical correlation cumulant averages
c2n11 are zero. This is the case when

r~z !5r~2z !. ~4!

The first two noise correlations of j(t) read

^j~ t !&50, ^j~ t !j~u !&52DSd~ t2u !, ~5!

where DS5(1/2)l^z i
2& is the shot-noise intensity. The

higher-order, even-numbered cumulants c2n(t1 ,t2 , . . . ,t2n)
are given by @7#

c2n~ t1 ,t2 , . . . ,t2n!5l^z i
2n&d~ t12t2!•••d~ t2n212t2n!.

~6!

For j(t) being Poissonian white noise, the output process
x(t) defined by Eq. ~1! is a Markovian stochastic process. A
master equation for the probability distribution P(x ,t) of it is
a partial integro-differential equation of the form @10,11#

]P~x ,t !
]t 52

]

]x f ~x !P~x ,t !1DT
]2

]x2 P~x ,t !

1lE
2`

`

@P~x2z ,t !2P~x ,t !#r~z !dz . ~7!

If one uses the relation exp(2z]/]x)P(x,t)5P(x2z,t) and the
identity

e2zB2152BE
0

z
e2sBds , ~8!

valid for any operator B , Eq. ~7! can be recast as a continuity
equation that defines the probability current J(x ,t). In the
stationary state, when P(x)5limt→` P(x ,t) and
J5limt→` J(x ,t), it takes the form

2DT
dP~x !

dx 1 f ~x !P~x !1lE
2`

`

r~z !E
0

z
P~x2y !dy dz5J .

~9!

The stationary probability current J is related to the averaged
stationary velocity ^v& of Brownian particles via the equality
J5^v&/L . Two conditions are imposed on the integro-
differential equation ~9!: ~i! the periodicity of the probability
P(x)5P(x1L) and ~ii! the normalization of P(x) over the
period interval L of the ratchet potential. At this point, the
above equation cannot be simplified further without specifi-
cation of the density r(z). Here we assume a two-sided ex-
ponential probabilty density, i.e.,

r~z !5~1/2A !e ~2uzu/A !, A.0. ~10!

Then Eq. ~9! can be recast as an ordinary differential equa-
tion of third order, i.e.,
DTDS

l
P-~x !2

DS

l
@ f ~x !P~x !#92~DS1DT!P8~x !

1 f ~x !P~x !5J , ~11!

where the prime indicates differentiation with respect to x
and DS5lA2.

A. Asymptotic expansions

1. High frequency of shot-noise impulses

In the limiting case l→` with DS5lA2 held fixed
@which implies A→0 and r(z)→d(z)# Poissonian white
shot noise tends to Gaussian white noise of intensity DS . As
a consequence, the current J approaches zero. When l@1,
one can expand P(x) and J in a power series with respect to
a small parameter l21, i.e.,

P~x !5 (
n50

`

l2nPn~x !, J5 (
n50

`

l2nJn . ~12!

Substituting Eq. ~12! into Eq. ~11! and equating coefficients
of equal power in l21 yield equations determining succes-
sively Pn(x) and Jn . They read

2~DT1DS!P08~x !1 f ~x !P0~x !5J0 ,

2~DT1DS!Pn8~x !1 f ~x !Pn~x !5Jn1Gn21~x !,

n51,2,3, . . . , ~13!

where

Gn~x !5DS@ f ~x !Pn~x !#92DTDSPn-~x !, n50,1,2, . . . .
~14!

This set is supplemented with the periodicity conditions

Pn~x1L !5Pn~x !, n50,1,2, . . . , ~15!

and the normalization of the distribution P(x) over the pe-
riod L , i.e.,

E
0

L
Pn~x !dx5d0n , n50,1,2, . . . . ~16!

The problem ~13!–~16! can be formally solved because Eq.
~13! is a ~nonhomogeneous! ordinary differential equation of
first order. The zeroth-order contribution is

J050, P0~x !5
U~x !

E
0

L
U~x !dx

, U~x !5expF2
V~x !

DT1DS
G .

~17!

The higher-order contributions assume the form
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Jn52

E
0

L
Gn21~x !U21~x !dx

E
0

L
U21~x !dx

,

Pn~x !5U~x !FCn2
Jn

DT1DS
E
0

x
U21~y !dy

2
1

DT1DS
E
0

x
Gn21~y !U21~y !dy G ,

n51,2,3, . . . , ~18!

and the constants Cn are determined from Eq. ~16!. Both
Pn(x) and Jn depend on lower-order contributions via the
functions Gn21(x) expressed by Pn21(x) and their deriva-
tives; cf. Eq. ~14!.

The form of the first-order contribution J1 can be simpli-
fied to a tractable form, reading

J152

DS
2E

0

L
f 3~x !dx

~DT1DS!3E
0

L
U~x !dxE

0

L
U21~x !dx

. ~19!

If the potential V(x) is reflection symmetric, the integral of
f 3(x) over the period vanishes. On the contrary, for an asym-
metric potential this integral does generally not vanish and a
nonzero current can occur.

2. Low frequency of shot-noise impulses

For low frequency of impulses, when l!1, we expand
P(x) and J in a power series with respect to the small pa-
rameter l,

P~x !5 (
n50

`

lnpn~x !, J5 (
n50

`

ln jn . ~20!

Equations determining pn(x) and jn have the form

DTp0-~x !2@ f ~x !p0~x !#950,

DTDSpn-~x !2DS@ f ~x !pn~x !#95 jn211Hn21~x !,

n51,2,3, . . . , ~21!

where

Hn~x !5~DT1DS!pn8~x !2 f ~x !pn~x !, n50,1,2, . . . .
~22!

In this case it is more difficult to obtain solutions via recur-
rence relations as compared to the previous case ~18!. How-
ever, we succeeded in solving the first three equations of the
system ~21!. The form of p0(x) follows from the first equa-
tion of Eqs. ~21! and reads
p0~x !5
W~x !

E
0

L
W~x !dx

, W~x !5expF2
V~x !

DT
G . ~23!

The zeroth-order contribution j0 follows from the second
equation of Eqs. ~21! for p1(x) and it turns out that j050.
The first-order contribution j1 is determined from the equa-
tion for p2(x) and takes the form

j152
1
2 1

E
0

L
W21~x !E

0

x
p0~y !dy dx

E
0

L
W21~x !dx

1
1
L F E

0

L
x W~x !dx

E
0

L
W~x !dx

2

E
0

L
x W21~x !dx

E
0

L
W21~x !dx

G . ~24!

The first term in the large square brackets is an equilibrium
average position ^x& of particles in the potential V(x) ~in the
absence of Poissonian fluctuations!, while the second term
corresponds to ^x& , but in the inverted potential 2V(x). Let
us note that j1 does not depend on the shot-noise intensity
DS . From the above two asymptotic expansions, one can
infer that the current J is a nonmonotonic function of l and
assumes an optimal value at some specific l because J→0
for both l→0 and l→` .

B. Sawtooth potential: Exact results

Equation ~11! can be solved exactly for special forms of
the potential V(x). We analyze the case of a piecewise linear
potential with dimensionless period L52 ~Fig. 1!, i.e.,

V~x !5H V0

L12k ~2x1L !, xP@2L/2,k#modL

2V0

L22k ~2x2L !, xP@k ,L/2#modL ,
~25!

where V0.0 and kP(2L/2,L/2) determines the asymmetry
of the potential: For k50 it is reflection symmetric; for k

FIG. 1. Spatially periodic sawtooth potential V(x) of period L ,
barrier height V0 , and negative asymmetry parameter k .
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Þ0 the reflection symmetry of V(x) is broken. The asymme-
try is positive if k.0 and vice versa. If k.0 then the deter-
ministic force u f (x)u is smaller in the left direction or, put
differently, when starting from minima of the potential V(x)
its slope in the x-increasing ~right! direction is less than in
the x-decreasing ~left! direction. To calculate the current in
this case, we proceed along the same way as in Sec. VI of
Ref. @12#. The exact results are visualized in Figs. 2–4. For
the potential ~25!, the asymptotics ~19! and ~24! read as fol-
lows: For large l,

J.2
16kDS

2b5eb

lL~L224k2!2~eb21 !2
, b5

V0

DT1DS
, ~26!

for small l,

J.2
lk
L Fueu~eu21 !221

1
2 coth~u/2!2

2
uG , u5

V0

DT
.

~27!

FIG. 2. Scaled, dimensionless probability current J vs switching
frequency l of d kicks of symmetric white shot noise, in the asym-
metric (k520.5) periodic sawtooth potential with period L52 and
barrier height V051, for fixed thermal-noise intensity DT50.1 and
selected values of white shot-noise intensity: ~a! DS510, ~b!
DS51, ~c! DS50.5, and ~d! DS50.1.

FIG. 3. Dimensionless probability current J vs white shot-noise
intensity DS for fixed l510, k520.5, L52, V051, and selected
values of thermal-noise strength: ~a! DT50.002, ~b! DT50.01, and
~c! DT50.1.
In contrast to Eq. ~26!, the current ~27! does not depend on
the period L of the potential itself, but only on the asymme-
try parameter k/L . If the potential is symmetric ~i.e., k50!,
the current is obviously zero. For a positive asymmetry k.0
the current is negative; conversely, if k,0 the resulting cur-
rent assumes positive values. This means that particles are
transported into the direction opposite to motion caused by
the larger force u f (x)u @into the direction of steeper slope of
the potential V(x)#. Essentially, it is the same mechanism as
in flashing ratchets @1#. From time to time particles are
kicked by d impulses symmetrically to the left and to the
right; between d kicks particles move towards a neighboring
minimum of V(x) and this mechanism determines the direc-
tion of the net flux of particles. Details of the dependence of
the current upon jumping frequency l are depicted in Fig. 2
for several values of the shot-noise intensity. The current
exhibits a bell-shaped behavior versus jump frequency l.

Next we focus on the current versus shot-noise intensity
DS . For a wide range of the parameters l and DT the current
grows monotonically, approaching a maximal value for an
infinitely large intensity of noise. Qualitatively the same ef-
fect is observed for systems driven by asymmetric Poisso-
nian white shot noise @6#. However, in some domain of val-
ues of the parameters, a different effect occurs ~see Fig. 3!:
There is an optimal shot-noise intensity that maximizes the
current J and approaches a nonzero value as DS→` . The
current versus thermal noise intensity ~or rescaled tempera-
ture! is depicted in Fig. 4. Like in the case of asymmetric
Poissonian shot noise @12#, there are two characteristic tem-
peratures at which the current assumes locally minimal and
locally ~or globally! maximal values. This dependence oc-
curs, however, for specific values of parameters. Generically,
the current is a monotonically decreasing function of tem-
perature of the system and approaches zero as DT→` .

III. TWO-STATE DIFFUSION NOISE

In the second model we use composite white-noise pro-
cess j(t) defined by the relation

FIG. 4. Plot of the dimensionless probability current J as a
function of thermal noise strength DT ~or rescaled temperature T!
for fixed l510, k520.3, L52, V051, and selected values of
shot-noise intensity: ~a! DS50.085, ~b! DS50.078, and ~c!
DS50.07.
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j~ t !5
1
2 @11h~ t !#G1~ t !1

1
2 @12h~ t !#G2~ t !, ~28!

where G i(t) (i51,2) are independent d-correlated Gaussian
white noises of strengths D1 and D2 , respectively. Their
probabilistic characteristics are completely determined by
the moments

^G i~ t !&50, ^G i~ t !G j~u !&52d i jD id~ t2u !, i , j51,2.
~29!

The process h(t)5$21,1% is a dichotomous Markovian pro-
cess, which switches back and forth between two states
1↔21 with the rate n. The process h(t) can be expressed
by a Poisson counting process N(t) with a parameter n, i.e.,
h(t)5(21)N(t). It has a zero average and is exponentially
correlated, i.e.,

^h~ t !&50, ^h~ t !h~u !&5exp@2ut2uu/t0!, ~30!

with the correlation time t05(2n)21. The composite pro-
cess j(t) is of zero mean and has a d-correlated correlation
~white noise!

^j~ t !&50, ^j~ t !j~u !&5~D11D2!d~ t2u !. ~31!

Its odd-numbered cumulants are all identically zero. More-
over, it possesses nonvanishing even-numbered d-correlated
cumulants. For example, the fourth-order cumulant has the
form

^j~ t1!j~ t2!j~ t3!j~ t4!&c

5~D12D2!
2@e22nut12t3ud~ t12t2!

3d~ t32t4!1e22nut12t4ud~ t12t3!d~ t22t4!

1e22nut12t2ud~ t12t4!d~ t22t3!], ~32!

where the subscript c indicates a cumulant average.
Interestingly enough, this white noise, although being d

correlated to all orders, is non-Markovian. Note that this
white noise is not made up of independent increments as
indicated by the exponential memory contributions occuring
in Eq. ~32!. Thus it generates a non-Markovian dynamics
x(t).

Two-state noise ~28! is a random counterpart of determin-
istically modulated white noise or, put differently, of thermal
fluctuations with a modulated temperature. Recently @13#,
ratchet systems driven by thermal noise with a periodically
modulated temperature have been studied. Randomly modu-
lated noise ~28! can be realized in electrical circuits with
random switching mechanisms between two different resis-
tors. It has been observed in ultrasmall metal-oxide-
semiconductor transistors in which random telegraph noise
drain current fluctuations occur ~fluctuations are induced by
the trapping-detrapping mechanism of electrons! @14#.

Next consider Eq. ~1! with j(t) substituted by composite
noise in Eq. ~28!. Moreover, we set G(t)[0, although this
does not imply a restriction. The resulting dynamics flips
between two Gaussian white-noise-driven ratchet dynamics
of different intensities. In other words, the process x(t)
jumps with Poissonian statistics between two dynamics
ẋ5 f (x)1G1(t) and ẋ5 f (x)1G2(t). Its probability distri-
bution p(x ,t)5p1(x ,t)1p2(x ,t) is determined by the two
equations @8#

]

]t p1~x ,t !52
]

]x f ~x !p1~x ,t !1D1
]2

]x2 p1~x ,t !

2n@p1~x ,t !2p2~x ,t !#,

]

]t p2~x ,t !52
]

]x f ~x !p2~x ,t !1D2
]2

]x2 p2~x ,t !

1n@p1~x ,t !2p2~x ,t !#, ~33!

where p1(x ,t)5p(x ,h511,t) and p2(x ,t)5p(x ,h
521,t). From the above equations one can construct an evo-
lution equation for p(x ,t) that has the form of a continuity
equation. In turn, from the continuity equation one can ob-
tain an expression for the current J(x ,t). In the stationary
state, J is determined by a set of two ordinary differential
equations, namely,

2~D12D2!p18 ~x !2D2p8~x !1 f ~x !p~x !5J , ~34a!

D1p19 ~x !2@ f ~x !p1~x !#822np1~x !1np~x !50,
~34b!

where p(x) and p1(x) are the long-time limits of p(x ,t) and
p1(x ,t), respectively.

A. Asymptotics

For large and small jump frequencies n between two
states @or, put differently, for small and large correlation
times t0 of the dichotomic process h(t), respectively#, we
expand p(x), p1(x), and J in a power series with respect to
n21 and n, respectively. From Eq. ~34! we then obtain

J;2n21

3

~D12D2!
2E

0

L
f 3~x !dx

~D11D2!
3E

0

L
e2V~x !/~D11D2!dxE

0

L
e22V~x !/~D11D2!dx

1O~n22!, ~35!

which is valid for an arbitrary form of the ratchet potential
V(x). The current is identically zero for D15D2 or/and for
reflection-symmetrical potentials. Let us note that the
leading-order correction is proportional to an integral of
f 3(x) like in Eq. ~19!.

For small n, the current behaves as

J;n@^P1~x !&11^P2~x !&22^P1~x !&22^P2~x !&1#

1O~n2!, ~36!

where for any function G(x)



56 3973SYMMETRIC WHITE NOISE CAN INDUCE DIRECTED . . .
^G~x !& i5

E
0

L
G~x !eV~x !/D idx

E
0

L
eV~x !/D idx

, i51,2, ~37!

and

P6~x !5E
0

x
p0

6~y !dy . ~38!

The probability densities

p0
1~x !5

e2V~x !/D1

2E
0

L
e2V~x !/D1dx

, p0
2~x !5

e2V~x !/D2

2E
0

L
e2V~x !/D2dx

~39!

are zeroth-order approximations to p1(x) and p2(x), re-
spectively. It is remarkable that for the corresponding system
driven by noise with a periodically modulated temperature of
frequency v @13#, the first-order contributions are propor-
tional to v22 for fast oscillations v@1 and to v2 for slow
oscillations v!1, respectively.

B. Sawtooth potential

We consider the piecewise linear potential ~25! and use
the same method as in the previous case. The periodic dis-
tribution p(x) is normalized to 1 over the interval @x0 ,
x01L#, while the periodic distribution p1(x) is normalized
to 1/2 over the same interval ~since it is the stationary prob-
ability Prob$h(t)51%51/2!. Exact results are presented in
Fig. 5.

For large n @cf. Eq. ~35!# one finds

FIG. 5. Dimensionless probability current J induced by two-
state diffusion noise as a function of the intensity D2 of one of two
Gaussian white noises for fixed mean switching frequency n55
between two Gaussian noises, in an asymmetric (k520.7) periodic
sawtooth potential with period L52 and barrier height V051, and
three values of other Gaussian noise strength: ~a! D150.2, ~b!
D150.3, and ~c! D150.4. For D2→` the current saturates to a
nonzero value. These saturation values for ~a! J50.032 . . . , and ~b!
J50.020 . . . , and ~c! J50.013 . . . have been evaluated analytically
from Eq. ~34! and are depicted by arrows in the figure.
J.2
16k~D12D2!

2b5eb

nL~L224k2!2~eb21 !2
, b5

2V0

D11D2
. ~40!

For small n @cf. Eq. ~36!# we arrive at

J.2
nk
2L FV0@D1

21eu1~eu121 !221D2
21eu2~eu221 !22#

2
D11D2

D12D2

eu22eu1

~eu121 !~eu221 !G , u i5V0 /D i , i51,2.

~41!

Modulated white noise generates transport in periodic struc-
tures with a broken reflection symmetry, that is, when k
Þ0. The direction of current is opposite the asymmetry di-
rection: If k.0 then J,0, and vice versa. If the two diffu-
sion coefficients obey D15D2 , then j(t) in Eq. ~28! reduces
to thermal equilibrium noise, yielding J50. If one of the
temperatures increases to infinity the current saturates. For
example, for fixed D1 and D2→` we find from Eq. ~34a!
that p(x) is related to p1(x) by p(x)5p1(x)11/2L .
The asymptotic current then emerges as
J5L21*0

L f (x)p1(x)dx . For a sawtooth potential it can be
evaluated analytically to give nonzero values, which are in-
dicated by the three arrows in Fig. 5. The current versus the
switching frequency n exhibits a bell-shaped behavior and
qualitatively is the same as in Fig. 2.

IV. RANDOMLY FLASHING GAUSSIAN WHITE NOISE

This is a limiting case of two-state diffusion noise when
one of Gaussian white noises is switched off, namely, if, e.g.,

j~ t !5
1
2 @11h~ t !#G1~ t !. ~42!

Moreover, we set G(t)50 for the ratchet dynamics in Eq.
~1!. The process ~42! is white noise as well. However, the
output process x(t) is again non-Markovian. The dynamics
of the resulting process x(t) consists of two parts: the deter-
ministic motion ẋ5 f (x) and the diffusional motion
ẋ5 f (x)1G1(t), with Poissonian statistics of jumping be-
tween them. The stationary current can be obtained from
Eqs. ~34! by setting D250. For the sawtooth potential ~25!,
the high- and low-frequency asymptotics can be obtained
from Eqs. ~40! and ~41!, carrying out the limit D2→0. Fol-
lowing the previous reasoning we find that for large n we
have

J.2
16kD1

2b5eb

nL~L224k2!2~eb21 !2
, b5

2V0

D1
~43!

and for small n we obtain

J.2
nk@11~u121 !eu1#

2L~eu121 !2
, u15V0 /D1 . ~44!
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From these two expressions it follows that the current exhib-
its a bell-shaped behavior versus increasing jump frequency
n.

V. CONCLUDING REMARKS

We have shown that symmetric but nonthermal ~non-
Gaussian! white noise can induce directed transport in peri-
odic structures. Three examples of such noise have been con-
structed: Poissonian shot noise with exponentially distributed
weights of the d kicks ~other distributions of weights can be
considered as well!, two-state ~modulated! diffusion noise,
and randomly flashing Gaussian white noise. As a general
property we find that the current is in the opposite direction
to asymmetry k of the potential. The asymptotic current in
presence of a high as well as low frequency l of impulses ~or
switching rate n between two states! has been derived. For
all examples considered, we find that in the limit of strong
switching rates the first-order contribution to the current in-
volves, via the integral of V8(x)3, the cubic power of the
ratchet force. Such a dependence is characteristic and occurs
in other ratchet problems as well @3#.

In conclusion, we find that symmetric non-Gaussian white
noise is sufficient to generate directed motion in periodic
structures that lack reflection symmetry. The symmetric
white Poissonian shot noise generates a Markovian ratchet
dynamics. The fluctuation-induced current typically exhibits
a bell-shaped behavior versus increasing switching fre-
quency l. At fixed shot-noise intensity, the current versus
thermal noise intensity is generally a nonmonotonic function,
approaching zero with increasing intensity DT of Nyquist
noise. For two-state diffusion noise, which is composed of
two thermal Nyquist noises the ratchet dynamics x(t) is non-
Markovian, leading to a finite current. This situation mimics
a random walker that succesively switches back and forth
between two Gaussian white-noise-driven ratchet dynamics.
An interesting limiting situation is obtained when one of the
thermal noise sources is set to zero: The ratchet dynamics
then statistically flips between a deterministic flow ~carrying
zero current! and an equilibrium ratchet dynamics ~again car-
rying zero flux!. Thus the resulting nonvanishing current is
solely due to the switching dynamics itself. Interestingly
enough, the non-Gaussian, white-noise-induced current is, as
pointed out above, directed opposite to the natural direction
of motion caused by the larger average force uV8(x)u. This
feature mimics the behavior in a ‘‘flashing’’ ratchet @1,15#
or, likewise, the behavior in a ‘‘diffusion’’ ratchet @1,13#.
This result is in clear contrast to the characteristic feature in
ratchets driven by additive colored noise ~correlation ratchets
@1–3#!. It can be visualized by noting that the addtional
source of white noise mimics a varying temperature, thus
ressembling closely the physics in a diffusion ratchet: The
direction of current is towards the shorter distance between
the locally stable well and the neighboring barrier top. This
is so because upon a ‘‘cooling’’ cycle from noise intensity
D1→D2 , where D1.D2 , the Brownian particles above and
near the potential maxima escape preferably over the barrier
top that is located closest to its average position.

The finding that additive white but non-Gaussian noise
does indeed induce a finite current is not in conflict with the
second law of thermodynamics: The non-Gaussian statistics
generates intrinsically a stationary nonequilibrium ratchet
dynamics that does not satisfy a fluctuation-dissipation rela-
tion between noise correlation and intrinsic constant friction
@1#. Put differently, with the ratchet flow in Eq. ~1! composed
of white thermal noise and white nonthermal noise it is not
possible to recast the dynamics in terms of a single additive
Gaussian white-noise source. The fact that two-state diffu-
sion noise and flashing Gaussian white noise can readily be
experimentally realized @14# provides a good prospect that
some of our results derived herein may find their way to-
wards alternative applications of ratchet devices that are able
to pump and separate mechanical or biological micropar-
ticles.
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APPENDIX

In accordance with the dissipation-fluctuation theorem,
the Langevin equation for a Brownian particle of mass m
reads in dimensional variables ~indicated by a caret!

mẍ̂1mg ẋ̂52
dV̂~ x̂ !

dx̂ 1~mgkBT !1/2Ĝ~ t̂ !1 ĵ~ t̂ !, ~A1!

where Ĝ( t̂) is zero-mean Gaussian white noise with the cor-
relation function ^Ĝ( t̂)Ĝ( ŝ)&52d( t̂2 ŝ) and ĵ( t̂) is the ad-
ditional nonthermal noise. The potential V̂( x̂) is spatially
periodic with period L .

In the overdamped limit m→0 and g→` in such a way
that the product mg is fixed, Eq. ~A1! reduces to the form

mg ẋ̂52
dV̂~ x̂ !

dx̂ 1~mgkBT !1/2Ĝ~ t̂ !1 ĵ~ t̂ !. ~A2!

Let us introduce next the dimensionless variables

t5g t̂ , x52 x̂/L . ~A3!

Then Eq. ~A2! assumes the dimensionless form ~1! with

V~x !5
4V̂~ x̂ !

mg2L2 , j~ t !5
2 ĵ~ t̂ !
mg2L ~A4!

and G(t) is rescaled zero-mean Gaussian white noise with
the correlation function ^G(t)G(s)&5DTd(t2s), where
DT54kBT/mg2L2.
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