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Abstract. – In a seminal experiment, Jaeger et al. (Phys. Rev. Lett., 62 (1989) 40) measured
the power spectrum of the velocity of avalanches along a granular pile in a rotating drum.
Although their findings started an actively discussed debate on whether self-organized criti-
cality rules granular avalanche dynamics, their experimental results have not been explained
in theoretical detail yet. By the use of a simple dynamical model that incorporates the basic
deterministic mechanisms of global avalanche flow as well as their stochastic aspects, we find
almost perfect agreement between the model results and Jaeger et al.’s experimental data. We
also discuss in detail the significance of the underlying physical mechanisms.

Granular matter such as beads, sand and powder can flow in a non-Newtonian way if
driven out of its (metastable) static equilibrium by large enough external forces [1]. A striking
example of the rheological complexity is that granular systems can exhibit stable static piling
up to a maximum angle of repose ϕs of the inclined surface. For pilings with an inclination
angle ϕ > ϕs the surface layer starts to slip in order to decrease the inclination angle until the
minimum angle of repose ϕr < ϕs has been reached. Then, the avalanche stops again. So far,
avalanching seems to be a fact of common sense. Highly non-trivial, however, is the problem
of the spectral properties of sequences of avalanches that are generated by continuous addition
of grains to the top of the pile or by slow rotation of the pile, e.g., in a drum [1]-[6].

A decade ago, Bak et al. [5] proposed the interesting scenario of self-organized criticality
(SOC) that some spatially extended dissipative systems (such as sandpiles) might evolve into
a critical state that does not possess characteristic time and length scales, and therefore, show
a 1/f power spectrum [5]. In a subsequent seminal experiment, Jaeger et al. [2] probed the
applicability of SOC to granular dynamics. They rotated a grain-filled semi-cylindrical drum
(with a lower half being closed off) about its horizontally aligned axis with a constant rotation
rate. By that, they created a well-defined sequence of discrete avalanches and measured the
avalanche flow by detecting the flow over the rim at the lower end of the pile. The power
spectrum of this velocity signal differs significantly from the 1/f power law decay suggested
by SOC [5] (or the 1/f2 decay suggested in ref. [6]) and therefore this result started a still
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ongoing debate on the applicability of SOC to avalanches along granular piles [2]-[4], [6].
Despite its fundamental importance, there does not seem to exist a clear detailed simple
theoretical explanation of Jaeger et al.’s result in the literature yet.

In this letter, we reconsider Jaeger et al.’s result [2] from a theoretical point of view, although
we start from a different concept than SOC. Our focus is to show that the power spectrum found
by Jaeger et al. [2] can be explained theoretically in all its major details by using a dynamical
model that incorporates the basic macromechanical mechanisms of the avalanche dynamics
such as viscoplastic yield, macromechanical friction, and small macromechanical stochastics.
Moreover, our investigation leads to a global picture of the influence of stochastics on the
power spectra of the global avalanche velocity for granular flow-over-the-rim experiments.

The model. – To model the statistics of sequences of discrete avalanches we start from the
previously proposed deterministic minimal model (DMM) for the ensemble-averaged dynamics
of avalanches [7] and combine it with the stochasticity of the individual avalanches. In the
DMM (for details cf. ref. [7]), surface flow along granular piles is described by two global
dynamical variables, the inclination angle ϕ(t) of the pile and the characteristic velocity v(t)
of the avalanche flow. The latter is basically determined by the square root of the kinetic energy
of the grain in motion. The DMM [7] generalizes Coulomb’s frictional motion of bodies on
inclined planes as follows: i) a velocity-dependent friction coefficient kd(v) which interpolates
between solid and Bagnold friction, kd(v) = b0 + b2v

2 (b0 > 0 and b2 > 0) [1], ii) a viscoplastic
yield condition such that an avalanche can only start if ϕ > ϕs and stops again if v(t) reaches
zero, and iii) a coupling of ϕ(t) to the velocity dynamics which counteracts the acceleration of
the avalanche.

Macromechanical stochasticity is rooted in the fact that moving granular matter consists of
closely packed grains which interact by inelastic collisions and friction. This leads to local and
(due to the finite extension of a pile) also to global fluctuations during avalanching. This effect,
nicely demonstrated in the experiments [8], leads effectively to a macromechanical stochastics
which can be modeled by a Langevin term, ζ̃(t), in the velocity equation. For the sake of
simplicity, we suppose that ζ̃(t) represents Gaussian white noise fluctuations with zero mean
and a correlation function 〈ζ̃(t)ζ̃(t′)〉 = ∆̃2δ(t− t′). Here, ∆̃ denotes the fluctuation strength.

The resulting model reads explicitly

v̇ = g
[
sinϕ− (b0 + b2v

2) cosϕ+ ζ̃(t)
]
χ(ϕ, v) , (1)

ϕ̇ = −av + ω , (2)

with the cut-off function (the viscoplastic yield conditions) χ(ϕ, v) = Θ(v) + Θ(ϕ − ϕs) −
Θ(v)Θ(ϕ − ϕs). Here, Θ(y) denotes Heaviside’s step function, a, b0 and b2 all denote positive
parameters, g is the gravitational acceleration, and ω the external constant rotation rate of
the semi-cylindrical drum. The dynamics of the avalanches of eqs. (1) and (2) is centered
around the angle ϕd = tan b0 [7]. Introducing the deviation from this angle, Φ(t) = ϕ(t)−ϕd,
non-dimensionalizing time by t → t/

√
ga and velocity by v → v

√
g/a, setting ω = ω/

√
ga,

and performing a small-angle approximation in Φ (since ϕs−ϕr ' 2◦), we obtain the following
stochastic extension of the DMM:

v̇ = [−δv2 +Ω2
0Φ+ ζ(t)]χ(Φ, v) , (3)

Φ̇ = −v + ω , (4)

where χ(Φ, Φ̇) = Θ(−Φ̇ + ω) + Θ(Φ − Φs) − Θ(−Φ̇ + ω)Θ(Φ − Φs), Φs = ϕs − ϕd, δ =
(gb2/a) cosϕd > 0, and Ω2

0 = 1/ cosϕd > 0. After non-dimensionalization, the fluctuation

strength is given by ∆ = ∆̃/g. In the deterministic limit (∆ = 0) and for small rotation rates
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ω, the model shows periodic global avalanches which start from Φs = ϕs − ϕd with v = 0
and decay to Φr = ϕr − ϕd ' −Φs when v = 0 has been reached again. They are separated
by rigid pile rotations until Φs is reached again. The duration of the rigid pile rotation is
determined by (Φs − Φr)/ω. For small fluctuation strength ∆, this basic mechanism is still
present in the extended model, eqs. (3) and (4), however, with superimposed small stochastic
variations of the velocity of the avalanches and the inclination angle of the surface. Note that
the fluctuations ζ(t) in eq. (3) only act when there is flow, v(t) 6= 0.

Power spectrum for zero fluctuations. – Here, we discuss the deterministic limit of the power
spectrum of v(t) of a sequence of discrete avalanches. Since the non-linearity δ in eq. (3) is
typically of the order 10−1 for the experiments [7], we approximate the model eqs. (3) and (4)
with δ = 0 by its deterministic limit ∆ = 0. For small rotation rates ω � Ω0, the resulting
velocity signal v(t) is a sequence of equally shaped successive avalanches (or half-oscillations
with a period Tav = π/Ω0) separated by rigid pile rotations with v = 0 that last Trpr = 2Φs/ω.
One obtains for a sequence of N avalanches

v(t) =

{
Ω0Φs sin[Ω0(t− nT )], nT ≤ t ≤ nT +

π

Ω0
,

0, elsewhere ,
(5)

where n = 0, . . . , N−1, with T = Tav +Trpr being the period of the avalanching process. With
the Fourier transform of the velocity, ṽ(f) =

∫∞
−∞ dt v(t)e2πift, given by

ṽ(f) =
Ω2

0Φs

Ω2
0 − 4π2f2

[
1 + e2π2if/Ω0

]N−1∑
n=0

e2πifnT , (6)

the power spectrum SN (f) ∝ |ṽ(f)|2 of a sequence of N avalanches reads (up to an arbitrary
normalization factor)

SN (f) ∝
2Ω4

0Φ
2
s

(Ω2
0 − 4π2f2)2

[
1 + cos

2π2f

Ω0

)][
sin(NπTf)

sin(πTf)

]2

. (7)

In deriving eq. (7), we have assumed that the first avalanche starts at t = 0. Started at
t = τ , an additional factor exp[2πifτ ] enters into ṽ(f); the power spectrum SN (f), however,
remains unchanged. The first two terms in the product on the rhs of eq. (7) determine the
power spectrum S1(f) of one single avalanche. For this contribution, logS1(f) is almost
flat for intermediate frequencies, f < Ω0/2π; for larger frequencies, f > Ω0/2π, the global
structure (not taking into account the spiky higher resonances caused by the zeroes of S1(f))
is a linear decay in f with a slope of four. This implies a 1/f4 decay of SN (f) for large f .
The contribution of the subsequent N − 1 avalanches is determined by the third and last term
of the product on the rhs of eq. (7). This term has a pronounced peak at f = 1/T and
further resonances at all multiples of f = 1/T . Due to the various zeroes and divergences
appearing in SN (f) as a function of f , the structure of logSN (f) looks rather rugged. To
extract the characteristic features of the power spectrum, a coarse-grained averaging over the
fine structure of SN (f) must be performed. In fig. 1, we show the logarithm of the smoothed
power spectrum, S(f), resulting from eq. (7) (dashed line) for parameter values extrapolated
from the experiment [2] and, for comparison, the experimental result (full line). There is some
similarity between these two curves; the deterministic limit of the power spectrum, however,
shows a more sharply pronounced transition from the flat shoulder to the roll-off and differs
in its decay behavior.
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Fig. 1. – Dashed line: logarithm of the smoothed deterministic power spectrum as a function of
the (re-dimensionalized) frequency. Full line: experimental data by Jaeger et al. [2] (adjusted in
such a way that the flat shoulders roughly agree). From the experiment [2], the following data are
known: maximum angle of repose ϕs = 27.8◦, mean minimal angle of repose ϕr = 25.6◦, rotation
rate ω = 1.3◦/min, and avaraged duration of an avalanche (with dimensions) T av = 1.3 s. This
implies for the model parameters used here ϕd = (1/2)(ϕs + ϕr) = 26.7◦, b0 = tanϕd = 0.503,

Ω0 = 1/ cosϕd = 1.12, a = π2/gΩ2
0T

2
av = 0.5/m, ω = ωg−1/2a−1/2 = 1.65× 10−4.

Power spectrum for non-zero fluctuations. – The sequence of avalanches for small non-
zero ∆ is distinct from its deterministic limit by several facts: i) The minimal angle of
repose Φr and the avalanche duration are not sharply determined, but basically Gaussian
distributed about their mean values 〈Φr〉 ' −Φs and 〈Tav〉 ' π/Ω0. ii) The duration of the
rigid pile rotation is not constant, but also basically Gaussian distributed about its mean
〈Trpr〉 ' (Φs − 〈Φr〉)/ω. The velocity signal of the individual avalanches and the intervals
between two successive avalanches are fluctuating too. To demonstrate these features, we
show in fig. 2 a) the numerically integrated velocity signal v(t) resulting from the stochastic
model, eqs. (3) and (4), for a sequence of 17 successive avalanches (as in ref. [2]), and a
fluctuation strength ∆ = 5× 10−4. All other model parameters have been extrapolated from
the experiment [2], except for δ that has been estimated from the experiment in ref. [8].

To investigate the power spectrum of the avalanching process, we take the fast-Fourier
transform of the velocity signal and compute the power spectrum by taking the square of
modulus of the Fourier-transformed velocity. The power spectrum S(f) of the successive
avalanches is depicted in fig. 2 b). Although the non-smoothed logarithm of S(f) looks rather
rugged, some basic structural features are visible: i) a pronounced first peak at low frequencies,
ii) a broad flat shoulder at intermediate frequencies and iii) a roll-off for large frequencies that
is weaker than a 1/f4 decay.

Smoothing of the small-scale variations in the power spectrum leads to the dashed curve
in fig. 3 a). Apparently, there is an almost perfect agreement of the smoothed computed power
spectrum (dashed curve) resulting from the model, eqs. (3) and (4), for ∆ = 5 × 10−4 and
the experimental data of Jaeger et al.’s power spectrum [2] (solid curve) in the experimentally
measured frequency range. Due to the high time resolution in our stochastic simulations, we
can calculate S(f) up to frequencies that are ten times larger than in ref. [2]. By that, we find
a saturation into a 1/f2 decay for S(f) for large frequencies.

The changes of logS(f) in comparison to the ∆ = 0 limit in fig. 1 are as follows. i) The
peak at low frequencies is broadened because the interval between two successive avalanches
is distributed about its mean value and not sharply determined. ii) The transition from
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Fig. 2. – a) Velocity v(t) for a sequence of 17 avalanches on a re-dimensionalized time scale, obtained
by numerical integration of eqs. (3) and (4). Model parameters as in fig. 1 except that ∆ = 5× 10−4

and δ = 0.1. Inset: a blow up of the first avalanche to demonstrate that v(t) consists basically of
non-linear half-oscillations with small superimposed stochastics. b) Logarithm of the power spectrum
S(f) of the velocity signal v(t) from a). The dashed lines represent decays ∝ f−2 and ∝ f−4.

the flat shoulder to the roll-off close to the inverse of the avalanche duration is less sharply
pronounced. This rounding effect originates from the fact that the avalanche duration varies
stochastically about its mean. iii) For slightly larger frequencies, the roll-off of S(f) decays
like 1/f4. This is the remnant of the decay behavior of the deterministic limit. iv) For even
larger frequencies, there is a crossover to a 1/f2 decay of S(f). This algebraic decay results
from the small-scale fluctuations of the velocity during flow and is analogous to the 1/f2 decay
of the power spectrum of a harmonic oscillator with a Langevin term.

The crossover to the 1/f2 decay and the frequency range with a decay being stronger than
1/f2 depends on the magnitude of ∆. For zero ∆, the 1/f4 decay is present. For larger ∆
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Fig. 3. – Dashed lines: logarithm of the smoothed power spectrum S(f) of a sequence of 17 successive
avalanches obtained by numerical integration of the model eqs. (3) and (4) for a fluctuation strength
a) ∆ = 5×10−4, b) ∆ = 5×10−3 and all other model parameters as in fig. 2. Full line: for comparison
the experimental result obtained by Jaeger et al. [2]. For the fluctuation strength ∆ in case a), there
is an almost perfect agreement with the experimental result [2]. The smoothed power spectrum S(f)
does not possess any significant dependence on the number of avalanches N if N > 5.
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(as in fig. 3 a)), the roll-off possesses both decay behaviors. Increasing ∆ further, the range
with a 1/f4 decay shrinks and finally disappears. For a fluctuation strength ∆ = 5× 103, the
logarithm of the power spectrum shown in fig. 3 b) only consists of a flat shoulder that crosses
over to a roll-off with a 1/f2 decay of S(f). The fluctuation strength∆ in our model is thus far
only a parameter, but it reflects aspects of the spatially averaged complex microdynamics of
the grains. Thus, the fluctuation strength ∆ depends on material properties such as inelasticity
and on the ratio of system size and typical grain size.

Setting the non-linearity δ equal to zero has no significant effect on the velocity signal and
the power spectrum. The power spectra for δ = 0 agree within line width with the power
spectra for δ = 0.1 depicted in figs. 2 and 3. Therefore, unlike in fast rotated drums [7],
the solid-like component in the friction coefficient is a dominant macromechanical friction
mechanism. Moreover, the fluctuation strength ∆ is effectively the only adjustable parameter
in our model; all other model parameters values are taken from the experiment [2].

Conclusions. – We have investigated the power spectrum of the velocity of global avalanches
along granular piles in slowly rotated drums within a comparably simple (physically motivated)
stochastic dynamical system. The power spectrum reflects a combination of deterministic
mechanisms (frictional surface flow, viscoplastic yield) and small macromechanical (but mi-
cromechanically generated) stochasticity. The inclusion of stochastics leads to a non-universal
roll-off of the power spectrum for large frequencies. The roll-off varies from a 1/f4 decay for
∆ = 0 to a 1/f2 decay for comparably large ∆ = 5 × 10−3. For intermediate ∆ there is a
crossover of these to different decay behaviors. For ∆ = 5× 10−4, there is an almost perfect
agreement of our model results and experimental results [2]. We hope that our results stimulate
further work on power spectra in the flow-over-the-rim experiments as well as investigations
on the micromechanical roots of the macromechanical stochastics.
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