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1. Introduction

During the last few decades we could bear witness to an immense research activity, both in
experimental and theoretical physics, as well as in chemistry, aimed at understanding the detailed
dynamics of quantum systems that are exposed to strong time-dependent external fields. The
quantum mechanics of explicitly time-dependent Hamiltonians generates a variety of novel
phenomena that are not accessible within ordinary stationary quantum mechanics. In particular,
the development of laser and maser systems opened the doorway for creation of novel effects in
nonlinear quantum systems which interact with strong electromagnetic fields [1—7]. For
example, an atom exposed indefinitely to an oscillating field eventually ionizes, whatever the
values of the (angular) frequency and the intensity of the field. The rate at which the atom ionizes
depends on both, the driving frequency and the intensity. Interestingly enough, in a pioneering
paper by H. R. Reiss in 1970 [8], the seemingly paradoxical result was established that extremely
strong field intensities lead to smaller transition probabilities than more modest intensities, i.e.,
one observes a declining yield with increasing intensity. This phenomenon of stabilization that is
typical for above threshold ionization (ATI) is still actively discussed, both in experimental and
theoretical groups [9,10]. Other activities that are in the limelight of current topical research
relate to the active control of quantum processes; e.g. the selective control of reaction yields of
products in chemical reactions by use of a sequence of properly designed coherent light pulses
[11—13].

Our prime concern here will focus on the tunneling dynamics of time-dependently driven
nonlinear quantum systems. Such systems exhibit an interplay of three characteristic components,
(i) nonlinearity, (ii) nonequilibrium behavior (as a result of the time-dependent driving), and (iii)
quantum tunneling, with the latter providing a paradigm for quantum coherence phenomena.

By now, the physics of driven quantum tunneling has generated widespread interest in many
scientific communities [1—7] and, moreover, gave rise to a variety of novel phenomena and effects.
As such, the field of driven tunneling has nucleated into a whole new discipline.

Historically, first precursors of driven barrier tunneling date back to the experimentally observed
photon-assisted-tunneling (PAT) events in 1962 in the Al—Al

2
O

3
—In superconductor—insula-

tor—superconductor hybrid structure by Dayem and Martin [14]. A clear-cut, simple theoretical
explanation for the step-like structure in the averaged voltage—tunneling current characteristics
was put forward soon afterwards by Tien and Gordon [15] in 1963, who introduced the physics of
driving-induced sidechannels for tunneling across a uniformly, periodically modulated barrier. The
phenomenon that the quantum transmission can be quenched in arrays of periodically arranged
barriers, e.g. semiconductor superlattices, leading to such effects as dynamic localization or absolute
negative conductance have theoretically been described over twenty years ago [16—18]; but these
have been verified experimentally only recently [19—22].

The role of time-dependent driving on the coherent tunneling between two locally stable wells
[23] has only recently been elaborated [24]. As an intriguing result one finds that an appropriately
designed coherent cw-drive can bring coherent tunneling to an almost complete standstill, now
known as coherent destruction of tunneling (CDT) [24—26]. This driving induced phenomenon in
turn yields several other new quantum effects such as low frequency radiation and/or intense,
nonperturbative even harmonic generation in symmetric metastable systems that possess an
inversion symmetry [27—29].
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We shall approach this complexity of driven quantum tunneling with a sequence of sections. In
the first half of seven sections we elucidate the physics of various novel tunneling phenomena in
quantum tunneling systems that are exposed to strong time-varying fields. These systems are
described by an explicitly time-dependent Hamiltonian. Thus, solving the time-dependent
Schrödinger equation necessitates the development of novel analytic and computational schemes
which account for the breaking of time translation invariance of the quantum dynamics in
a nonperturbative manner. Beginning with Section 8 we elaborate on the effect of weak, or even
strong dissipation, on the coherent tunneling dynamics of driven systems. This extension of
quantum dissipation [30—35] to driven quantum systems constitutes a nontrivial task: Now, the
bath modes couple resonantly to differences of quasienergies rather than to unperturbed energy
differences. The influence of quantum dissipation to driven tunneling is developed theoretically in
Sections 8—11, and applied to various phenomena in the remaining Sections 12—14.

The authors made an attempt to comprise in this review many, although necessarily not all
important developments and applications of driven tunneling. In doing so, this review became
rather comprehensive.

As an inevitable consequence, the authors realize that not all readers will wish to digest the
present review in its entirety. We trust, however, that a reader is able to choose from the many
methods and applications covered in the numerous sections which he is interested in.

There is the consistent underlying theme of driven quantum tunneling that runs through all
sections, but nevertheless, each section can be considered to some extent as self-contained. In this
spirit, we hope that the readers will be able to enjoy reading from the selected fascinating
developments that characterize driven tunneling, and moreover will become invigorated doing own
research in this field.

2. Floquet approach

2.1. Floquet theory

In presence of intense fields interacting with the system it is well known [37—39] that the
semiclassical theory (i.e., treating the field as a classical field) provides results that are equivalent to
those obtained from a fully quantized theory, whenever fluctuations in the photon number (which,
for example, are of importance for spontaneous radiation processes) can safely be neglected. We
shall be interested primarily in the investigation of quantum systems with their Hamiltonian being
a periodic function in time, i.e.,

H(t)"H(t#T) , (1)

withT being the period of the perturbation. The symmetry of the Hamiltonian under discrete time
translations, tPt#T, enables the use of the Floquet formalism [36]. This formalism is the
appropriate vehicle to study strongly driven periodic quantum systems: Not only does it respect the
periodicity of the perturbation at all levels of approximation, but its use intrinsically avoids also the
occurrence of so-called secular terms (i.e., terms that are linear or not periodic in the time variable).
The latter characteristically occur in the application of conventional Rayleigh—Schrödinger time-
dependent perturbation theory. The Schrödinger equation for the quantum system with coordinate
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q may be written as

(H(q, t)!i+ /t)W(q, t)"0 . (2)

For the sake of simplicity only, we restrict ourselves here to the one-dimensional case. With

H(q, t)"H
0
(q)#H

%95
(q, t), H

%95
(q, t)"H

%95
(q, t#T) , (3)

the unperturbed Hamiltonian H
0
(q) is assumed to possess a complete orthonormal set of eigen-

functions Mu
n
(q)N with corresponding eigenvalues ME

n
N. According to the Floquet theorem, there

exist solutions to Eq. (2) that have the form (so-called Floquet-state solution) [36]

Wa(q, t)"exp(!ieat/+)Ua(q, t) , (4)

where Ua(q, t) is periodic in time, i.e., it is a Floquet mode obeying

Ua(q, t)"Ua(q, t#T) . (5)

Here, ea is a real-valued energy function, being unique up to multiples of +X, X"2p/T. It is
termed the Floquet characteristic exponent, or the quasienergy [37—39]. The term quasienergy
reflects the formal analogy with the quasimomentum k, characterizing the Bloch eigenstates in
a periodic solid. Upon substituting Eq. (4) into Eq. (2) one obtains the eigenvalue equation for the
quasienergy ea, i.e., with the Hermitian operator

H(q, t),H(q, t)!i+ /t , (6)

one finds that

H(q, t)Ua(q, t)"eaUa(q, t) . (7)

We immediately notice that the Floquet modes

Ua{(q, t)"Ua(q, t) exp(inXt),Uan(q, t) (8)

with n being an integer number n"0,$1,$2,2 yield the identical solution to that in Eq. (4), but
with the shifted quasienergy

eaPea{"ea#n+X,ean . (9)

Hence, the index a corresponds to a whole class of solutions indexed by
a@"(a, n), n"0,$1,$2,2 The eigenvalues MeaN therefore can be mapped into a first Brillouin
zone, obeying !+X/24e(+X/2. For the Hermitian operator H(q, t) it is convenient to intro-
duce the composite Hilbert space R?T made up of the Hilbert space R of square integrable
functions on configuration space and the space T of functions which are periodic in t with period
T"2p/X [40]. For the spatial part the inner product for two square integrable functions f (q) and
g(q) is defined by

S f DgT :"Pdq f *(q)g(q) , (10)
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yielding with f(q)"u
n
(q) and g(q)"u

m
(q)

Su
n
Du

m
T"d

n,m
. (11)

The temporal part is spanned by the orthonormal set of Fourier vectors
StDnT"exp(inXt), n"0,$1,$2,2, and the inner product in T reads

(m, n) :"
1
TP

T

0

dt(e*mXt)*e*nXt"d
n,m

. (12)

Thus, the eigenvectors of H obey the orthonormality condition in the composite Hilbert space
R?T, i.e.,

|Ua{DUb{} :"
1
TP

T

0

dtP
=

~=

dqU*
a{(q, t)Ub{(q, t)"da{,b{"da,bdn,m , (13)

and form a complete set in R?T,

+
a

+
n

U*
an(q, t)Uan(q@, t@)"d(q!q@)d(t!t@) . (14)

Note that in Eq. (14) we must extend the sum over all Brillouin zones, i.e., over all the representa-
tives n in a class, cf. Eq. (9). For fixed equal time t"t@, the Floquet modes of the first Brillouin zone
Ua0(q, t) form a complete set in R, i.e.,

+
a

U*
a(q, t)Ua(q@, t)"d(q!q@) . (15)

Clearly, with t@Ot#mT"t (modT), the functions MU*
a(q, t), Ua(q@, t@)N do not form an orthonor-

mal set in R.

2.2. General properties, spectral representations

With a monochromatic perturbation

H
%95

(q, t)"!Sq sin(Xt#/) , (16)

the quasienergy ea is a function of the parameters S and X, but does not depend on the arbitrary,
but fixed phase /. This is so because a shift of the time origin t

0
"0Pt

0
"!//X will lift

a dependence of ea on / in the quasienergy eigenvalue equation in Eq. (7). In contrast, the
time-dependent Floquet function Wa(q, t) depends, at fixed time t, on the phase. The quasienergy
eigenvalue equation in Eq. (7) has the form of the time-independent Schrödinger equation in the
composite Hilbert space R?T. This feature reveals the great advantage of the Floquet formalism:
It is now straightforward to use all theorems characteristic for time-independent Schrödinger
theory for the periodically driven quantum dynamics, such as the Rayleigh—Ritz variation principle
for stationary perturbation theory, the von-Neumann-Wigner degeneracy theorem, or the Hellmann—
Feynman theorem, etc.
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With H(t) being a time-dependent function, the energy E is no longer conserved. Instead, let us
consider the averaged energy in a Floquet state Wa(q, t). This quantity reads

HM a,
1
TP

T

0

dtSWa(t)DH(t)DWa(t)T"ea#TTUaKi+

tKUaUU . (17)

If we invoke a Fourier expansion of the time-periodic Floquet function
Ua(q, t)"+

k
c
k
(q) exp(!ikXt), +

k
:dqDc

k
(q)D2"1"+

k
Sc

k
Dc
k
T, Eq. (17) can be recast as a sum over

k, i.e.,

HM a"ea#
=
+

k/~=

+kXSc
k
Dc
k
T"

=
+

k/~=

(ea#+kX)Sc
k
Dc
k
T . (18)

Hence, HM a can be looked upon as the energy accumulated in each harmonic mode of
Wa(q, t)"exp(!ieat/+)Ua(q, t), and averaged with respect to the weight of each of these harmonics.
Moreover, one can apply the Hellmann—Feynman theorem, i.e.,

dea(X)
dX

"TTUa(X)K
H(X)

X KUa(X)UU . (19)

Setting q"Xt and H(q, q)"H(q, q)!i+X/q, one finds

A
H
X Bq"!i+


q

"!i+
1
X


t

, (20)

and consequently for Eq. (17) [42]

HM a"ea(S,X)!X
ea(S, X)

X
. (21)

This connection between the averaged energy HM a and the quasienergy ea in addition provides
a relationship between the dynamical phase sa

D
of a Floquet state Wa, i.e., [41]

sa
D
"!

1
+P

T

0

dtSWaDH(t)DWaT"!

1
+
THM a , (22)

and a nonadiabatic (i.e. generalized) Berry phase sa
B
, where

s"sa
D
#sa

B
"!eaT/+ ; (23)

thus yielding

sa
B
"iTTTWaK


tKWaUU"!

2p
+

ea(S, X)
X

. (24)

The part sa
B
of the overall phase s describes an intrinsic property of a cyclic change of parameters in

the periodic Hamiltonian H(t)"H(t#T) that explicitly does not depend on the dynamical time
interval of cyclic propagation T.
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Next we discuss general features of quasienergies and Floquet modes with respect to their
frequency and field dependence. As mentioned before, if ea"ea0 possesses the Floquet mode
Ua0(q, t), the modes

Ua0PUak"Ua0(q, t) exp(iXkt), k"0,$1, 2,2 , (25)

are also solutions with quasienergies

eak"ea0#+kX , (26)

yielding identical physical states,

Wa0(q, t)"exp(!iea0t/+)Ua0(q, t)"Wak(q, t) . (27)

For an interaction SP0 that is switched off adiabatically, the Floquet modes and the quasienergies
obey

Uak(q, t) S?0PU0ak(q, t)"ua(q) exp(iXkt) (28)

and

eak(S,X) S?0Pe0ak"Ea#k+X , (29)

with Mua, EaN denoting the eigenfunctions and eigenvalues of the time-independent part H
0

of the
Hamiltonian in Eq. (3). Thus, when S"0, the quasienergies depend linearly on frequency so that at
some frequency values different levels e0ak intersect. When SO0, the interaction operator mixes
these levels, depending on the symmetry properties of the Hamiltonian. Given a symmetry for
H(q, t), the Floquet eigenvalues eak can be separated into symmetry classes: Levels in each class mix
with each other, but do not interact with levels of other classes. Let us consider levels e0an and e0bk of
the same group at resonances, i.e.,

Ea#n+X
3%4
"Eb#k+X

3%4
, (30)

with X
3%4

being the frequency of an (unperturbed) resonance. According to the von-
Neumann—Wigner theorem [43], these levels of the same class will no longer intersect for finite
SO0. In other words, these levels develop into avoided crossings, cf. Fig. 1a. If the levels obeying
Eq. (30) belong to a different class, for example to different generalized parity states, the quasiener-
gies at finite SO0 exhibit exact crossings; cf. Fig. 1b.

These considerations, conducted without any approximation, leading to avoided vs. exact
crossings, determine many interesting and novel features of driven quantum systems. Some
interesting consequences follow immediately from the structure in Fig. 1: Starting out from
a stationary state W(q, t)"u

1
(q) exp(!iE

1
t/+) the smooth adiabatic switch-on of the interaction

with X(X
3%4

(X'X
3%4

) will transfer the system into a quasienergy state W
10

[44—48]. Upon
increasing (decreasing) adiabatically the frequency to a value X'X

3%4
(X(X

3%4
) and again

smoothly switching off the perturbation, the system generally jumps to a different state
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Fig. 1. Quasienergy dependence on the frequency X of a monochromatic electric-dipole perturbation near the unpertur-
bed resonance X

3%4
between two levels. The dashed lines correspond to quasienergies for SP0. In panel (a), we depict an

avoided crossing for two levels belonging to the same symmetry related class. Note that with finite S the dotted parts
belong to the Floquet mode U

2m
, while the solid parts belong to the state U

1n
. In panel (b), we depict an exact crossing

between two members of quasienergies belonging to different symmetry-related classes. With SO0, the location of the
resonance generally undergoes a shift d"X

3%4
(SO0)!X

3%4
(S"0) (so-called Bloch—Siegert shift [66]) that depends on

the intensity S. Only for SP0 does the resonance frequency coincide with the unperturbed resonance X
3%4

.

W(q, t)"u
2
(q) exp(!iE

2
t/+). For example, this phenomenon is known in NMR as spin exchange;

it relates to a rapid (as compared to relaxation processes) adiabatic crossing of the resonance.
Moreover, as seen in Fig. 1a, the quasienergy e

2k
and Floquet mode U

2k
as a function of frequency

exhibit jump discontinuities at the frequencies of the unperturbed resonance, i.e., the change of
energy between the two parts of the solid lines (or dashed lines, respectively).

2.3. Time-evolution operators for Floquet Hamiltonians

The time propagator º(t, t
0
), defined by

DW(t)T"º(t, t
0
)DW(t

0
)T, º(t

0
, t

0
)"1 , (31)

assumes special properties when H(t)"H(t#T) is periodic. In particular, the propagator over
a full period º(T, 0) can be used to construct a discrete quantum map, propagating an initial state
over long multiples of the fundamental period by observing that

º(nT, 0)"[º(T, 0)]n . (32)

This important relation follows readily from the periodicity of H(t) and its definition. Namely, we
find with t

0
"0 (Á denotes time ordering of operators)

U(nT,0)"Á expC!
i
+ P

nT

0

dt H(t)D"Á expC!
i
+

n
+
k/1
P

kT

(k~1)T
dtH(t)D ,

which with H(t)"H(t#T) simplifies to

º(nT, 0)"Á expC!
i
+

n
+
k/1
P

T

0

dtH(t)D"Á
n
<
k/1

expC!
i
+P

T

0

dt H(t)D . (33)
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Because the terms over a full period are equal, they do commute. Hence, the time-ordering operator
can be moved in front of a single term, yielding

º(nT, 0)"
n
<
k/1

Á expC!
i
+P

T

0

dtH(t)D"[º(T, 0)]n . (34)

Likewise, one can show that with t
0
"0 the following relation holds:

º(t#T,T)"º(t, 0) , (35)

which implies that

º(t#T, 0)"º(t, 0)º(T, 0) . (36)

Note that º(t, 0) does not commute with º(T, 0), except at times t"nT, so that Eq. (36) with the
right-hand-side product reversed does not hold. A most important feature of Eqs. (30)—(36) is that
the knowledge of the propagator over a fundamental period T"2p/X provides all the informa-
tion needed to study the long-time dynamics of periodically driven quantum systems. That is, upon
a diagonalization with an unitary transformation S,

Ssº(T, 0)S"exp(!iD) , (37)

with D a diagonal matrix, composed of the eigenphases MeaTN, one obtains

º(nT, 0)"[º(T, 0)]n"S exp(!inD)Ss . (38)

This relation can be used to propagate any initial state

DW(0)T"+
a

caDUa(0)T, ca"SUa(0)DW(0)T , (39)

in a stroboscopic manner. This procedure generates a discrete quantum map. With
Wa(q, t"0)"Ua(q, t"0), its time evolution follows from Eq. (4) as

W(q, t)"+
a

ca exp(!ieat/+)Ua(q, t) . (40)

With W(q, t)"SqDº(t, 0)DW(0)T, a spectral representation for the propagator, i.e.,

K(q, t; q
0
, 0) :"SqDº(t, 0)Dq

0
T , (41)

follows from Eq. (41) with W(q, 0)"d(q!q
0
) as

K(q, t; q
0
, 0)"+

a
exp(!ieat/+)Ua(q, t)U*

a(q0, 0) . (42)

This relation is readily generalized to arbitrary propagation times t't@, yielding

K(q, t; q@, t@)"+
a

exp(!iea(t!t@)/+)Ua(q, t)U*
a(q@, t@) . (43)
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This intriguing result generalizes the familiar form of time-independent propagators to time-
periodic ones. Note again, however, that the role of the stationary eigenfunction ua(q) is taken over
by the Floquet mode Ua(q, t), being orthonormal only at equal times t"t@modT.

2.4. Generalized Floquet methods for nonperiodic driving

In the previous subsections we have restricted ourselves to pure harmonic interactions. In many
physical applications, e.g. see in [7,11—13], however, the time-dependent perturbation has an
arbitrary, for example, pulse-like form that acts over a limited time regime only. Clearly, in these
cases the Floquet theorem cannot readily be applied. This feature forces one to look for a generaliz-
ation of the quasienergy concept. Before we start doing so, we note that the Floquet eigenvalues
ean in Eq. (9) can also be obtained as the ordinary Schrödinger eigenvalues within a two-
dimensional formulation of the time-periodic Hamiltonian in Eq. (3). Setting Xt"h, Eq. (3) is
recast as

H(t)"H
0
(q, p)#H

%95
(q, h(t)) . (44)

With hQ "X, one constructs the enlarged Hamiltonian HI (q, p; h, ph)"H
0
(q, p)#H

%95
(q, h)#Xph,

where ph is the canonically conjugate momentum, obeying

hQ "HI /ph"X . (45)

The quantum mechanics of HI acts on the Hilbert space of square-integrable functions on the
extended space of the q-variable and the square-integrable periodic functions on the compact space
of the unit circle h"h

0
#Xt (periodic boundary conditions for h). With H

%95
(q, t) given by Eq. (16),

the Floquet modes Uak(q, h) and the quasienergies eak are the eigenfunctions and eigenvalues of the
two-dimensional stationary Schrödinger equation, i.e., with [h, ph]"i+,

G
!+2

2m
2

q2
#»

0
(q)!Sq sin(h#/)!i+X


hHUak(q, h)"eakUak(q, h) . (46)

This procedure opens a door to treat more general, polychromatic perturbations composed of
generally incommensurate frequencies. For example, a quasiperiodic perturbation with two incom-
mensurate frequencies X

1
and X

2
, e.g.

H
%95

(q, t)"!qS sin(X
1
t)!qF sin(X

2
t) , (47)

can be enlarged into a six-dimensional phase space (q, p
q
; h

1
, ph1; h2

, ph2), with Mh
1
"X

1
t; h

2
"X

2
tN

defined on a torus. The quantization of the corresponding momentum terms yield a stationary
Schrödinger equation in the three variables (x, h

1
, h

2
) with a corresponding Hamiltonian operator

HI given by

HI "H(q, h
1
, h

2
)!i+X

1
(/h

1
)!i+X

2
(/h

2
) (48)

with eigenvalues Mea,k1,k2N and generalized stationary wavefunctions given by the generalized
Floquet modes Ua,k1,k2(q, h

1
, h

2
)"Ua,k1,k2(q; h

1
#2p;h

2
#2p). An application of this extended two-

frequency Floquet theory could be invoked to study the problem of bichromatic field control of
tunneling in a double well [49].
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There are important qualitative differences between the periodic and the quasi-periodic forcing
cases. Let us consider a Hilbert space of finite dimension, such as e.g., a spin 1

2
system or a N-level

system in a radiation field. For a periodic time-dependent driving force the corresponding Floquet
operator is a finite-dimensional unitary matrix. Thus, the corresponding quasienergy spectrum is
always pure point. This, however, is no longer the case for quasi-periodic forcing [50]. We note that
a point spectrum implies stable quasiperiodic dynamics (i.e., almost-periodic evolution); in con-
trast, a continuous spectrum signals an instability (leading to an unstable chaotic behavior) with
typically decaying asymptotic correlations. With two incommensurate driving frequencies X

1
and

X
2

the spectrum of the generalized Floquet operator in Eq. (48) can be pure point, absolutely
continuous or also purely singular continuous [51—53].

A general perturbation, such as a time-dependent laser-pulse interaction, consists (via Fourier-
integral representation) of an infinite number of frequencies, so that the above embedding ceases to
be of practical use. The general time-dependent Schrödinger equation

i+(/t)W(q, t)"H(q, t)W(q, t) , (49)

with the initial state given by W(q, t
0
)"W

0
(q), can be solved by numerical means, by a great variety

of methods [25,54—56]. All these methods must involve efficient numerical algorithms to calculate
the time-ordered propagation operator º(t, t@). Generalizing the idea of Shirley [37] and Sambe
[40] for time-periodic Hamiltonians, it is possible to introduce a Hilbert space for general
time-dependent Hamiltonians in which the Schrödinger equation becomes time independent.
Following the reasoning by Howland [57], we introduce the reader to the so-called (t, t@)-formalism
[58].

2.5. The (t, t@)-formalism

The time-dependent solution

W(q, t)"º(t, t
0
)W(q, t

0
) (50)

for the explicitly time-dependent Schrödinger equation in Eq. (49) can be obtained as

W(q, t)"W(q, t@, t)D
t{/t

, (51)

where

W(q, t@, t)"exp[(!i/+)H(q, t@)(t!t
0
)]W(q, t@, t

0
) . (52)

H(q, t@) is the generalized Floquet operator

H(q, t@)"H(q, t@)!i+ /t@ . (53)

The time t@ acts as a time coordinate in the generalized Hilbert space of square-integrable functions
of q and t@, where a box normalization of length T is used for t@ (0(t@(T). For two functions
/a(q, t),/b(q, t) the inner, or scalar product reads

|/aD/b}"

1
TP

T

0

dt@P
=

~=

dq /*
a(q, t@)/b(q, t@) . (54)
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The proof for Eq. (51) can readily be given as follows [58]: Note that from Eq. (52)

i+

t

W(q, t@, t)"H(q, t@) exp[!iH(q, t@)(t!t
0
)/+]W(q, t@, t

0
)

"!i+

t@

W(q, t@, t)#H(q, t@)W(q, t@, t) . (55)

Hence,

i+A

t
#


t@BW(q, t@, t)"H(q, t@)W(q, t@, t) . (56)

Since we are interested in t@ only on the contour t@"t, where t@/t"1, one therefore finds that

W(q, t@, t)
t@ K

t{/t

#

W(q, t@, t)
t K

t{/t

"

W(q, t)
t

, (57)

which with Eq. (56) for t"t@ consequently proves the assertion in Eq. (51).
Note that a long time propagation now requires the use of a large box, i.e., T must be chosen

sufficiently large. If we are not interested in the very-long-time propagation, the perturbation of
finite duration can be embedded into a box of finite length T, and periodically continued. This so
constructed perturbation now implies a time-periodic Hamiltonian, so that we require time-
periodic boundary conditions

W(q, t@, t)"W(q, t@#T, t) , (58)

with 04t@4T, and the physical solution is obtained when

t@"tmodT . (59)

Stationary solutions of Eq. (55) thus reduce to the Floquet states, as found before, namely

Wa(q, t@, t)"exp(!ieat/+)Ua(q, t@) , (60)

with Ua(q, t@)"Ua(q, t@#T), and t@"tmodT. We remark that although W(q, t@, t), Wa(q, t@, t) are
periodic in t@, the solution W(q, t)"W(q, t@"t, t) is generally not time periodic.

The (t, t@)-method hence avoids the need to introduce the generally nasty time-ordering proced-
ure. Expressed differently, the step-by-step integration that characterizes the time-dependent
approaches is not necessary when formulated in the above generalized Hilbert space where H(q, t@)
effectively becomes time-independent, with t@ acting as coordinate. Formally, the result in Eq. (55)
can be looked upon as quantizing the new Hamiltonian HK , defined by

HK (q, p;E, t@)"H(q, p, t@)!E , (61)

using for the operator EPEK the canonical quantization rule EK "i+ /t; with [EK , tK ]"i+ and
tK/(t)"t/(t). This formulation of the time-dependent problem in Eq. (49) within the auxiliary t@
coordinate is particularly useful for evaluating the state-to-state transition probabilities in pulse-
sequence-driven quantum systems [11,13,58].
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We conclude this section by commenting on exactly solvable driven quantum systems. In
contrast to time-independent quantum theory, such exactly solvable quantum systems with
time-dependent potentials are extremely rare. One such class of systems are (multidimensional)
systems with at most quadratic interactions between momentum and coordinate operators, e.g. the
driven free particle [59,60], the parametrically driven harmonic oscillator [61,62], including
generalizations that account for quantum dissipation via bilinear coupling to a harmonic bath
[63]. Another class entails driven systems operating in a finite or countable Hilbert space, such as
some spin system, cf. Sections 3.4 and 7.4, or some tight-binding models, cf. Section 4.

3. Driven two-level systems

3.1. Two-state approximation to driven tunneling

In this section we shall investigate the dynamics of driven two-level-systems (TLS), i.e., of
quantum systems whose Hilbert space can be effectively restricted to a two-dimensional space.

The most natural example is that of a particle of total angular momentum J"+/2, as for
example a silver atom in the ground state. The magnetic moment of the particle is l"1

2
+cr, where

c is the gyromagnetic ratio and r"(p
x
,p

y
, p

z
) are the Pauli spin matrices.1 When the particle is

placed in a time-dependent magnetic field B(t) the time-dependent magnetic Hamiltonian H
M

thus
reads

H
M
(t)"!l )B"!1

2
+c(p

z
B
z
(t)#p

x
B
x
(t)#p

y
B
z
(t)) . (62)

For a generic quantum system one considers the case in which only a finite number of quantum
levels strongly interact under the influence of the time-dependent interaction. This means that
a truncation to a multi-level quantum system in which only a finite number of quantum states
strongly interact is adequate. In particular, the truncation to two relevant levels only is of
enormous practical importance in nuclear magnetic resonance, quantum optics, or in low temper-
ature glassy systems, to name only a few. Setting +D

0
"E

2
!E

1
, this truncation in the energy

representation of the ground state D1T and excited state D2T is in terms of the Pauli spin matrices
p
z
, p

x
and p

y
given by

H
E
"!1

2
+D

0
p
z
, (63)

where the subscript “E” indicates that this is the energy representation.
Very frequently in the chemical literature the effects of a static electric field E

0
coupling to the

transition dipole moment k between the two levels of a molecule are investigated. Setting

1We use for the Pauli matrices the representation

p
x
"A

0 1

1 0B, p
y
"A

0 !i

i 0 B, p
z
"A

1 0

0 !1B .

That is, p
z
is chosen to be diagonal.
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!+e
0
/2"E

0
k, we end up with the TLS Hamiltonian

H
015

"!1
2
+(D

0
p
z
!e

0
p
x
) , (64)

which is widely used to investigate optical properties.
Diverse physical or chemical systems can be described by the Hamiltonian (63). In particular,

a very important class concerns those systems moving in an effective double well potential in the
case in which only the lowest energy doublet is occupied. These systems are the simplest one
exhibiting quantum interference effects: a system which is initially localized in one well will oscillate
clockwise between the eigenstates in the left and right well due to quantum mechanical tunneling.
A well-known example is the ammonia molecule NH

3
: The nitrogen atom, much heavier than its

partners is motionless; the hydrogen atoms form a rigid equilateral triangle whose axis passes
through the nitrogen atom. The potential energy is thus only a function of the distance q between
the nitrogen atom and the plane defined by the hydrogen atoms. Hence, the potential energy of the
system has two equivalent configurations of stable equilibrium, which are symmetric respect to the
q"0 plane. Quantum mechanically the hydrogens can tunnel back and forth between the two
potential minima [23].

To be more explicit, we characterize the double well by the barrier height E
B
, by the separation

+u
0
;E

B
of the first excited state from the ground state in either well, and by an intrinsic

asymmetry energy +e
0
;+u

0
between the ground states in the two wells. At zero temperature, the

system will be effectively restricted to the two-dimensional Hilbert space spanned by the two
ground states. Taking into account the possibility of tunneling between the two wells, the TLS is
then governed by the pseudospin Hamiltonian (tunneling or localized representation)

H
TLS

"!1
2
+(D

0
p
x
#e

0
p
z
) . (65)

This is the representation which is convenient to investigate tunneling problems. Here the basis is
chosen such that the states DRT (right) and D¸T (left) are eigenstates of p

z
with eigenvalues 1 and !1,

respectively. Hence, p
z

is related to the position operator q in this discretized representation by
q"p

z
d/2, with d being the spatial distance between the two localized states. The interaction energy

+D
0

is the energy splitting of a symmetric (i.e., e
0
"0) TLS due to tunneling.

We observe now that the unitary transformation

R(h)"exp(!ihp
y
/2), !tan h"D

0
/e

0
, (66)

tranforms H
TLS

as

RH
TLS

R~1"!1
2
Ep

z
, E"+JD2

0
#e2

0
, (67)

which is of the same form of Eq. (63) with energy splitting E. Note that if the static asymmetry
e
0

originates from an externally applied dc-field it may be convenient to apply the transformation
RI "exp(ipp

y
/4) to the Hamiltonian H

TLS
. Such a procedure yields

RI H
TLS

RI ~1"!1
2
+(D

0
p
z
!e

0
p
x
)"H

015
. (68)

Hence, the two transformations R and RI coincide when e
0
"0.

At this point it is indeed interesting to recall that for the two-level problem, the corresponding
density matrix o is a 2]2 matrix with matrix elements op,p{ (where p, p@"$1 are the eigenvalues
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of p
z
), whose knowledge enables the evaluation of the expectation value of any observable related

to the TLS. In particular, because any 2]2 matrix can be written as a linear combination of the
Pauli matrices and of the unit matrix I, one has o(t)"I/2#+

i/x,y,z
Sp

i
T
t
p
i
/2, where

Sp
i
T
t
:"TrMo(t)p

i
N (with Tr denoting the trace). This yields

Sp
z
T
t
"o

1,1
(t)!o

~1,~1
(t), Sp

x
T
t
"o

1,~1
(t)#o

~1,1
(t),

Sp
y
T
t
"i[o

1,~1
(t)!o

~1,1
(t)] , (69)

where we denoted by o
~1,~1

, and o
1,1

the diagonal matrix elements of the density matrix, and by
o
~1,1

, o
1,~1

the off-diagonal elements (so-called coherences). We have then for the expectation
values P(t) of the position operator

P(t) :"TrMo
TLS

(t)p
z
N" cos hTrMo

E
(t)p

z
N# sin h TrMo

E
(t)p

x
N , (70)

where o
2

is the density matrix in the corresponding representation. Hence, in the localized basis
Sp

z
T
t
describes the population difference of the localized states. It provides direct informations on

the dynamics of the TLS. In the same way, one obtains for the difference N(t) in the population of
the energy levels

N(t) :"TrMo
E
(t)p

z
N" cos hTrMo

TLS
(t)p

z
N! sin hTrMo

TLS
(t)p

x
N . (71)

In particular, N(t) coincides with TrMo
TLS

(t)p
x
N for the case of a symmetric (e

0
"0), undriven TLS.

In the absence of driving, the density matrix can be evaluated straightforwardly. A TLS prepared in
a localized state at an initial time t"t

0
will exhibit an oscillatory, undamped, behavior due to

quantum interference effects. One finds in the localized basis

Sp
z
T
t
"

+2e2
0

E2
#

+2D2
0

E2
cos [E(t!t

0
)/+] , (72)

Sp
x
T
t
"+2

e
0
D
0

E2
M1! cos [E(t!t

0
)/+]N , (73)

Sp
y
T
t
"

+D
0

E
sin [E(t!t

0
)/+] . (74)

Hence, a TLS prepared in a localized state at an initial time t
0

will undergo quantum coherent
oscillations between its localized states with frequency E"+(D2

0
#e2

0
)1@2, corresponding to the

energy splitting of the isolated TLS. Correspondingly, as follows from Eq. (71), the difference
population of the energy levels is constant for an initially localized state, and given by N(t)"+e

0
/E.

In the following, we shall investigate the evolution of some observables related to the driven TLS
in the presence of different kinds of driving forces.

3.2. Linearly polarized radiation fields

Let us next consider, for example, the interaction of the TLS with a classical electric field E(t). We
end up with the time-dependent Hamiltonian

H
E
(t)"!1

2
+D

0
p
z
!kE sin (Xt#/)p

x
, (75)
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with k,S2DqD1T being the transition dipole moment, and D1T, D2T the energy eigenstates. Here we
have used a scalar approximation of the electric field E along the q-direction. The linearly polarized
field in Eq. (75) can, with +eL /2,kE, be regarded as a superposition of left- and right-circularly
polarized radiation. Namely, setting /"p/2, we have

eL cos Xt"eL [exp(!iXt)#exp(iXt)]/2 . (76)

The effects of the two contributions exp($iXt) can be better understood if one considers the
quantized version, cf. Eq. (103) below, of the time-dependent Hamiltonian (75). Let us next
introduce the product states Di, nT :"DiTDnT, with (i"1, 2) and with DnT being a Fock state of the
quantized electric field with occupation number n. For the absorption process D1, nTPD2, n!1T,
the term eL exp(!iXt) supplies the energy +X to the system. It corresponds to the rotating-wave
(RW) term, while the term eL exp(iXt) is called the anti-rotating-wave term. This anti-RW term
removes the energy +X from the system, i.e., D1, nTPD2, n#1T, and is thus energy nonconserving.
Likewise, the term exp (iXt) governs the process of emission D2, nTPD1, n#1T, i.e., it is a RW term,
while the second-order process D2, nTPD1, n!1T is again an energy-nonconserving anti-RW term.

Another example of a driven TLS can be obtained in the context of electron-spin resonance
(ESR), nuclear magnetic-spin resonance (NMR) or atomic-beam spectroscopy. In this case the TLS
is a particle of total angular momentum J"+/2 placed in both a static magnetic field B

0
in the

z-direction, and a time-dependent oscillating magnetic field 2B
1
cos (Xt) in x-direction. The mag-

netic moment of the particle is k"cJ, where c is the gyromagnetic ratio. The Hamiltonian
H

NMR
for the particle in the time-dependent magnetic field thus reads, cf. Eq. (62),

H
NMR

(t)"!l )B"!1
2
+cp

z
B

0
!+cp

x
B

1
cos (Xt) . (77)

With

D
0
"cB

0
, kE"+eL /2"+cB

1
, (78)

this Hamiltonian coincides with the laser-driven TLS in Eq. (75) with /"n/2.
Finally, if one considers the effects of an ac electric field which is modulating the asymmetry

energy of the underlying bistable potential, one ends up, in the tunneling representation, with

H
TLS

(t)"!1
2
+(e

0
#eL cosXt)p

z
!1

2
+D

0
p
x
. (79)

Note that the same form of the Hamiltonian (79) is obtained if one considers the combined effect of
a dc—ac electric field on a symmetric TLS.

3.2.1. Time evolution of the population of the energy levels
The driven two-level system has a long history, with recent reviews being available [64].

A pioneering piece of work must be attributed to Rabi [65], who considered the two-level system in
a circularly polarized magnetic field, a problem that he could solve exactly, see below in Sec-
tion 3.4. He thereby elucidated how to measure simultaneously both the sign as well as the
magnitude of magnetic moments. However, as Bloch and Siegert experienced soon after [66], this
problem is no longer exactly solvable in analytical closed form when the field is linearly polarized,
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rather than circularly. Let us start with the linearly polarized case as given by the driven
Hamiltonian (75), (76). We set for the wave function in the energy basis D1T, D2T,

W(t)"c
1
(t) exp(iD

0
t/2)A

1

0B#c
2
(t) exp(!iD

0
t/2)A

0

1B , (80)

where Dc
1
(t)D2#Dc

2
(t)D2"1. The Schrödinger equation thus has the form

i+
d
dtA

c
1
(t) exp(iD

0
t/2)

c
2
(t) exp(!iD

0
t/2)B"!

+
2A

D
0

eL cosXt

eL cosXt !D
0
BA

c
1
(t) exp(iD

0
t/2)

c
2
(t) exp(!iD

0
t/2)B , (81)

and provides two coupled first-order equations for the amplitudes,

dc
1
/dt"1

4
ieL [exp[i(X!D

0
)t]#exp[!i(X#D

0
)t]]c

2
,

dc
2
/dt"1

4
ieL [exp[!i(X!D

0
)t]#exp[i(X#D

0
)t]]c

1
.

(82)

With an additional differentiation with respect to time, and substituting cR
2

from the second
equation, we readily find that c

1
(t) obeys a linear second order ordinary differential equation with

time periodic (T"2p/X) coefficients (so termed Hill equation). Clearly, such equations are
generally not solvable in analytical closed form. Hence, although the problem is simple, the job of
finding an analytical solution presents a hard task! To make progress, one usually invokes, at this
stage, the so-called rotating-wave approximation (RWA), assuming that X is close to D

0
(near

resonance), and eL not very large. Then the anti-rotating-wave term exp[i(X#D
0
)t] is rapidly

varying, as compared to the slowly varying rotating-wave term exp [!i(X!D
0
)t]. It thus cannot

transfer much population from state D1T to state D2T. Neglecting this anti-rotating contribution one
finds in terms of the detuning parameter d,X!D

0
(rotating-wave approximation),

dc
1

dt
"i

eL
4

exp(idt)c
2
,

dc
2

dt
"i

eL
4

exp(!idt)c
1

. (83)

From Eq. (83) one finds for c
1
(t) a linear second-order differential equation with constant coeffi-

cients — which can be solved readily for arbitrary initial conditions. For example, setting
c
1
(0)"1, c

2
(0)"0, we arrive at

c
1
(t)"exp(idt)[cos (1

2
X

R
t)!i(d/X

R
) sin (1

2
X

R
t)] ,

c
2
(t)"exp(!idt)(ieL /2X

R
) sin (1

2
X

R
t) ,

(84)

where X
R

denotes the celebrated Rabi frequency

X
R
"(d2#eL 2/4)1@2 . (85)

The populations as a function of time are then given by

Dc
1
(t)D2"(d/X

R
)2#(eL /2X

R
)2 cos2(1

2
X

R
t) , (86)

Dc
2
(t)D2"(eL /2X

R
)2 sin2(1

2
X

R
t) . (87)
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Fig. 2. The population probability of the upper state Dc
2
(t)D2 as a function of time t at resonance, i.e., d"0 (solid line),

versus the non-resonant excitation dynamics (dashed line) at d"eL /2O0.

Note that at short times t, the excitation in the upper state is independent of the detuning, i.e.,
Dc
2
(t)D2PXRt;1eL 2t2/16. This behavior is in accordance with perturbation theory, valid at small times.

Moreover, the population at resonance X"D
0

completely cycles the population between the two
states, while with dO0, the lower state is never completely depopulated, see Fig. 2.

Up to now, we have discussed approximate RWA solutions. Explicit results for the time-periodic
Schrödinger equation require numerical methods, i.e., one must solve for the quasienergies ean and
the Floquet modes Wan(q, t). Without proof we state here some results that are of importance in
discussing driven tunneling in the deep quantum regime. For example, Shirley [37] already showed
that in the high-frequency regime D

0
;max[X, (eLX)1@2] the quasienergies obey the difference

e
2,~1

!e
1,1

"+D
0
J
0
(eL /X) , (88)

where J
0

denotes the zeroth-order Bessel function of the first kind. The sum of the two quasiener-
gies obeys the rigorous relation [37]

e
2n
#e

1k
"E

1
#E

2
"0 (mod +X) . (89)

For weak fields, one can evaluate the quasienergies by use of the stationary perturbation theory
in the composite Hilbert space R?T. In this way one finds:

1. Exact crossings at the parity-forbidden transitions where D
0
"2nX, n"1, 2,2 , so that

e
2,1

"0 (mod +X) . (90)

2. At resonance X"D
0
:

e
2,1

"$

1
2
+D

0
(1#(eL /2D

0
)J1!eL 2/64D2

0
) (mod +X) . (91)

3. Near resonance, one finds from the RWA approximation

e
2,1

"$1
2
+X(1#X

R
/X) (mod +X) , (92)
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where X
R

denotes the Rabi frequency in Eq. (85). Correcting this result for counterrotating terms,
an improved result, up to order O(eL 6), reads [64]

e
2,1

"$1
2
+X(1#XM /X) (mod +X) , (93)

with the effective Rabi frequency XM given by

XM 2"d2#
D

0
eL 2

2(X#D
0
)
!

D
0
eL 4

32(X#D
0
)3

. (94)

Notice that the maximum of the time-averaged transition probability in Eq. (87) occurs within
RWA precisely at X"D

0
. This result no longer holds with Eq. (94) where the maximum with

X
R
PXM

R
in Eq. (86) undergoes a shift, termed the Bloch—Siegert shift, i.e., X

3%4
OD

0
[64,66]. From

(XM 2/D
0
)eL"0 this shift is evaluated as [64,66]

X
3%4

"D
0
#

eL 2
16D

0

#

(eL /4)4
4D3

0

. (95)

This Bloch—Siegert shift presents a characteristic measure of the deviation beyond the RWA-
approximation, as a result of the nonzero anti-rotating-wave terms in Eq. (82).

3.2.2. Coherent destruction of tunneling (CD¹)
Let us now consider the influence of a monochromatic perturbation on the quantum coherent

motion of a tunneling particle between the localized states D¸T and DRT. This problem is conve-
niently addressed within the localized basis for the TLS Hamiltonian, cf. Eq. (79). We consider for
simplicity only the case of a symmetric TLS, i.e., e

0
"0 in Eq. (79). In this case we have

D¸T"2~1@2(D1T!D2T), and DRT"2~1@2(D1T#D2T), with D1T and D2T being the unperturbed energy
eigenstates. For the state vector in this localized basis D¸T and DRT, we set

DW(t)T"c
L
(t)exp[!i(eL /2X) sin (Xt)]D¸T#c

R
(t)exp[#i(eL /2X) sin (Xt)]DRT . (96)

Given the cos(Xt) perturbation (i.e., /"p/2), we consequently obtain from the Schrödinger
equation for the amplitudes Mc

R,L
(t)N the equation

i(d/dt)c
L,R

(t)"!1
2
D

0
exp[$i(eL /X) sin (Xt)]c

R,L
(t) . (97)

For large frequencies X<D
0
, we average Eq. (97) over a complete cycle to obtain the high-

frequency approximation

i(d/dt)c
L,R

(t)"!1
2
D

0
J
0
(eL /X)c

R,L
(t) , (98)

where J
0
(x)"(X/2p):T

0
ds exp[ix sin (Xs)], is the zeroth-order Bessel function of the first kind. This

yields equations of motion that mimick those of a static TLS — which are different from the RWA in
Eq. (83) — with a frequency-renormalized splitting, cf. also Eq. (88), i.e.,

D
0
PJ

0
(eL /X)D

0
:"D

%&&
. (99)
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The static TLS is easily solved to give with the initial preparation c
L
(t"0)"1 for the return

probability P
L
(t) the approximate result

P
L
(t)"Dc

L
(t)D2" cos2(J

0
(eL /X)D

0
t/2) . (100)

Thus, at the first zero j
0,1

of J
0
(x), i.e. when eL /X"2.404822, P

L
(t) in Eq. (100) precisely equals

unity, i.e., the effective tunnel splitting vanishes, in agreement with the result in Eq. (88). Thus, one
finds a complete coherent destruction of tunneling (CDT) [24,25,67—72].

This high-frequency TLS approximation for the localization manifold M1
-0#

(eL , X), as determined
by the first root of J

0
(eL /X), is depicted in Fig. 10a in Section 6.3 by a solid line, and is compared

with the result for CDT in a continuous bistable system, cf. Section 6. Higher roots j
0,n

yield an
approximation for the localization manifold Mn

-0#
(eL ,X) with n'1. Moreover, we note that

J
0
(x)&x~1@2 as xPR. This implies, within the TLS-approximation to driven tunneling, that

tunneling is always suppressed for X'D
0

for appropriate values of the ratio eL /X. An improved
formula for P

L
(t) in Eq. (100) that contains also higher odd harmonics of the fundamental driving

frequency X has recently been given in [71].
This driven TLS is closely connected with the problem of periodic, nonadiabatic level crossing. In

the diabatic limit d,D2
0
/(eLX)P0, corresponding to a large amplitude driving, the return probabil-

ity has been evaluated by Kayanuma [72]. In our notation and with eL'max(X,D
0
) this result

reads

P
L
(t)& cos2G(2X/eL p)1@2C sinA

eL
X
#

p
4BD

D
0
t

2 H . (101)

With J
0
(x)&J2/px sin (x#p/4), for x<1, Eq. (101) reduces for eL /X<1 to Eq. (100). Here, the

phase factor of p/4 corresponds to the Stokes phase known from diabatic level crossing [72,73],
and eL /X is the phase acquired during a single crossing of duration T/2. The mechanism of coherent
destruction of tunneling in this limit eL'max(X,D

0
) is related, therefore, to a destructive interfer-

ence between transition paths with eL /X"np#3p/4.
Additional insight into CDT has been provided by Wang and Shao [69]: They discussed the

phenomenon by mapping the driven quantum dynamics to the classical movement of a charged
particle moving in a two-dimensional harmonic oscillator potential under a periodically acting,
perpendicular magnetic field. The motion of the particle is constrained to the interior of a unit
circle in the plane. The behavior of tunneling and localization is described by the radial trajectory
of the classical particle. In doing so, the authors have demonstrated that for a particle that starts at
the edge of the unit circle localization happens only if the radial trajectory is periodic and
essentially runs in a narrow concentric ring within the unit circle.

Finally, for the case of an asymmetric TLS (e
0
O0), one finds for the resonant case, i.e.,

e
0
/X"n (n"1, 2,2), that tunneling is still coherently suppressed at high driving frequencies

X<D
0

whenever the condition

J
n
(eL /X)"0 (102)

is fulfilled. Here, J
n
denotes the Bessel function of order n [74,75]. Other forms of quasi-localized

tunneling dynamics, such as motion with period qT'T, with q being a prime number, or
quasi-periodic motion have been reported for driven tunneling in the presence of asymmetry [75].
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3.3. Tunneling in a cavity

The phenomenon of coherent destruction of tunneling also persists if we use a full quantum
treatment for the semiclassical description of the field: For an electric field operator defined as
EK "(+g/k)(as#a), where k is the dipole matrix element between the TLS eigenstates D1T and D2T,
the quantized version of Eq. (75) reads, see e.g. in [76],

H"!1
2
+D

0
p
z
#+Xasa!+g(as#a)p

x
, (103)

where a, as are the bosonic creation and annihilation operators for the field mode with frequency X.
With SnT"SasaT being the average value of the occupation number n for a coherent state DnT of
the field, the coupling constant g is related to the semiclassical field strength eL by

4gJSnT"eL . (104)

The vanishing of the quasienergy difference D
%&&

is then controlled by the roots of the Laguerre
polynomial ¸

n
of the order of the photon number n [77—79], i.e.,

D
%&&
"D

0
exp(!2a)¸

n
(4a) , (105)

where a"(g/X)2. Note that the semiclassical limit is approached with gP0, nKSnTPR, such
that 4gJn"eL"const, with ¸

n
converging to the zeroth order Bessel function. Hence, we recover

the effective tunneling splitting inherent in Eq. (99), i.e., D
%&&
"D

0
J
0
(eL /X).

The mechanism of CDT has been investigated in [79] from the viewpoint of quantum optics by
studying the photon statistics of the single-mode cavity field in terms of the product states
DiTDnT :"Di, nT, with i"¸,R. Given the initial preparation DW(t"0)T"D¸TDnT, the transition
probability P

n?m
(t) to find the system in the product state Di,mT for any i"¸,R after the interaction

time t is given by

P
n?m

(t)" +
i/L,R

DSi,mD exp(!iHt/+)D¸, nTD2 . (106)

For fixed t this quantity yields the photon number distribution with P
n?m

(t"0)"d
n,m

. For fixed
m, this transition probability describes the cavity mode-TLS interaction. The tunneling dynamics is
then characterized by an amplitude modulation of the (fast) cavity oscillations. The authors in [79]
have demonstrated that CDT manifests itself in the limit of large n in a characteristic slowing down
of the amplitude modulation of the quantity P

n?n
(t) monitored versus interaction time t.

The dynamics of the Hamiltonian in Eq. (103) is very rich: As a function of its parameters is able
to depict quantum revivals, regular and irregular behavior of occupation probabilities of the TLS,
non-integrable semiclassical dynamics, etc. [80]. As such, this simple model constitutes an arche-
type for studying different aspects of quantum chaos.

3.4. Circularly polarized radiation fields

Here, we explicitly consider the case pioneered by Rabi [65], i.e., a TLS driven in a spatially
homogeneous, circularly polarized external radiation field. This represents, for example, the case of
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a spin 1
2
subject to a static magnetic field B

0
along the z direction, and to a time-dependent magnetic

field in the x and y directions, i.e., cf. Eq. (77),

H(t)"!l )B"!1
2
+cp

z
B

0
!+cB

1
[p

x
cos (Xt)!p

y
sin (Xt)] . (107)

With

D
0
"cB

0
, eL /2"cB

1
, (108)

this leads, in the energy representation, to the Hamiltonian

H(t)"!

1
2
+D

0
p
z
!

1
2
+eL [p

x
cos (Xt)!p

y
sin (Xt)]

"!

1
2
+A

D
0

eL exp(iXt)

eL exp(!iXt) !D
0

B . (109)

Absorbing the phase exp($iD
0
t) into the time dependence of the coefficients, i.e., setting

a
1,2

(t)"c
1,2

(t) exp($iD
0
t), we rotate the states around the z-axis by the amount Xt. With

S
z
"1

2
+p

z
, one has

A
b
1
(t)

b
2
(t)B"expA!

i
+
S
z
XtBA

a
1
(t)

a
2
(t)B"A

a
1
(t) exp(!iXt/2)

a
2
(t) exp(#iXt/2)B . (110)

Upon a substitution of Eqs. (109) and (110) into the time-dependent Schrödinger equation, and
collecting all the terms, results in a time-independent Schrödinger equation for the states
(b

1
(t), b

2
(t)), which reads

!ibQ
1
"!1

2
(X!D

0
)b

1
#1

4
eL b

2
,

!ibQ
2
"1

4
eL b

1
#1

2
(X!D

0
)b

2
.

(111)

Thus, one obtains a harmonic oscillator equation for b
1
(t) (and similarly for b

2
(t)), i.e.,

b®
1
#A

eL 2
16

#

d2

4 Bb1"0 . (112)

It describes an oscillation with frequency X
R
"JeL 2/4#d2, where X

R
coincides precisely with the

previously found Rabi frequency in Eq. (85). With c
1
(0)"a

1
(0)"b

1
(0)"1, and

c
2
(0)"a

2
(0)"b

2
(0)"0 the populations are given by the corresponding relations in Eq. (86),

which in this case are exact. In particular, the transition probability ¼
1?2

(t)"
DS2DW(t)TD2"Da

2
(t)D2"Db

2
(t)D2"Dc

2
(t)D2 obeys

¼
1?2

(t)"(eL 2/4X2
R
) sin2(1

2
X

R
t) . (113)

At resonance, d"0, X"D
0
, it assumes with X2

R
"eL 2/4 its maximal value ¼

1?2
(tK )"1 at times

tK obeying eL tK /2"p (mod 2p).
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We point here to the importance of initial preparation: The coherence effects of a circularly
polarized radiation field for an initially localized TLS has been investigated in [81]: Interestingly
enough, one again finds the phenomenon of CDT if, for sufficiently strong driving strength eL , the
driving frequency X matches precisely the Rabi frequency X

R
.

3.5. Curve crossing tunneling

In this subsection we shall investigate the problem proposed by Landau [82], Zener [83] and
Stückelberg [84], known as the Landau—Zener—Stückelberg problem of nonadiabatic crossing of
energy levels. Put differently, we consider the explicit time-dependent situation in which the
(parametric) energy levels of a quantum mechanical Hamiltonian are brought together in the
course of time by means of an external perturbation. The original work by Zener concentrates on
the electronic states of a bi-atomic molecule, while in that by Landau and Stückelberg one
considers two atoms which undergo a scattering process. Because Zener, Landau and Stückelberg
restrict themselves to the Hilbert space generated by two electronic functions only, we have to deal
with a two-level system. Quantitatively, for a two-level crossing, the problem is described by the
time-dependent Hamiltonian

H
LZS

(t)"!1
2
+(vtp

z
#D

0
p
x
) , (114)

where D
0

is the coupling between the two levels, and +v is the rate of change of the energy of the
uncoupled levels due to an external driving bias. In this representation the eigenstates of p

z
are the

diabatic states D¸T, DRT which satisfy p
z
D¸T"!D¸T (p

z
DRT"DRT), while the eigenstates of H

LZS
(t),

at fixed time t are the adiabatic states D$T with adiabatic energies E
B
(t)"$+(D2

0
#v2t2)1@2/2, cf.

Fig. 3. Note that in the infinite past and future the diabatic and adiabatic representations coincide.
We assume that at an initial time far away in the past the system is in the lower state. We then ask
for the transition probability

¼
~?`

(tPR)"DS#Dº(R,!R)D!TD2"DS¸Dº(R,!R)D¸TD2 :"P
LZS

(115)

of finding the system in the excited level in the far future, cf. Fig. 3. º(t
2
, t

1
)"

Á expM(i/+):t2
t1
H

LZS
(t) dtN denotes the time evolution operator. To obtain this transition probability,

we follow here closely the approach by Kayanuma [85]. To start, it is convenient to split the
Hamiltonian (114) as H

LZS
(t)"H

$
(t)#HD, where H

$
(t) is the time-dependent diagonal part.

Hence, the propagator can be expressed by use of Feynman’s disentangling theorem [86] as

º(R,!R)"º
$
(R,!R)ºD(R,!R)

"expA!
i
+P

=

~=

H
$
(t) dtBÁ expA!

i
+P

=

~=

HI D(t) dtB ,
(116)

where

HI D(t)"expA
i
+P

t

~=

H
$
(t@) dt@BHD expA!

i
+P

t

~=

H
$
(t@) dt@B . (117)
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Fig. 3. Crossing of the diabatic energy levels (solid lines) in the Landau—Zener—Stückelberg problem in the course of
time. D

0
is the coupling between the levels, while the time q

LZS
characterizes the time spent in the crossover region. The

dashed lines represent the adiabatic energy levels E
B
(t).

Expanding the time-ordered exponent in Eq. (116) one obtains

S¸Dº
$
(R,!R)ºD(R,!R)D¸T"

=
+
n/0
A!

i
+B

n

]P
`=

~=

dt
nP

tn

~=

dt
n~12P

t2

~=

dt
1
S¸Dº

$
(R,!R)HI D(tn

)HI D(tn~1
)2HI D(t1

)D¸T . (118)

We observe that the operator º
$

is diagonal, i.e.,

Sº
$
(t
j
, t

j~1
)D¸T"expA!

iv
4

(t2
j
!t2

j~1
)BD¸T ,

Sº
$
(t
j
, t

j~1
)DRT"expA#

iv
4
(t2
j
!t2

j~1
)BDRT , (119)

while the operator HD is non-diagonal and generates spin flips, i.e., HDD¸T"
(+D

0
/2)DRT, HDDRT"(+D

0
/2)D¸T. Thus, only an even number of spin flips contribute to the matrix

element (118). One finds

S¸Dº
$
(R,!R)ºD(R,!R)D¸T"

=
+
n/0
A!

D2
0

4 B
n

]P
`=

~=

dt
2nP

t2n

~=

dt
2n~12P

t2

~=

dt
1
expC!

iv
2

2n
+
j/1

(!1)jt2
j D . (120)

By making the variable transformation

x
1
"t

1
, x

p
"t

1
#

p~1
+
j/1

(t
2j`1

!t
2j

), y
p
"t

2p
!t

2p~1
, (121)
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and upon noting that the resulting integrand is symmetric under exchange of the integration
variables x

p
, one can perform the integrations to obtain

S¸Dº
$
(R,!R)ºD(R,!R)D¸T"

=
+
n/0

1
n!A

pD2
0

2DvDB
n
. (122)

This result is recast as

P
LZS

"exp(!2pc) , (123)

where c"D2
0
/(2DvD). Note that this result is exact. The transition probability P

LZS
depends only on

the ratio between the time q
LZS

"D
0
/DvD spent in the crossover region and the coherent tunneling

time q
#0)

"2D~1
0

, i.e., c"q
LZS

/q
#0)

.

3.6. Pulse-shaping strategy for control of quantum dynamics

The phenomenon of coherent destruction of tunneling discussed previously in Section 3.2.2 is an
example of a dynamical quantum interference effect by which the quantum dynamics can be
manipulated by an observer. More generally, the dependence of quasienergies on field strength and
frequency can be used to control the emission spectrum by either generating or by selectively
eliminating specific spectral lines. For example, the near crossing of quasienergies in a symmetric
double well generates anomalous low-frequency lines and — at exact crossing — doublets of intense
even-harmonic generation (EHG) [27], see Section 7.3.

This control by a periodic continuous-wave driving can be generalized by recourse to more
complex perturbations. The goal by which a pre-assigned task for the output of a quantum
dynamics is imposed from the outside by applying a sequence of properly designed (in phase and/or
shape) pulse perturbations is known as quantum control [11,13]. For example, a primary goal in
chemical physics is to produce desired product yields or to manipulate the atomic and molecular
properties of matter [11,13,87,88]. As an archetype situation, we present the control of the
quantum dynamics of two coupled electronic surfaces — assuming throughout validity within
a rotating wave approximation — i.e.,

i+

tA

W
1

W
2
B"C

H
1
(R) !k(R)E(t)

!k(R)E*(t) H
2
(R) DA

W
1

W
2
B , (124)

where R denotes the nuclear coordinates and H
1
, H

2
are the Born—Oppenheimer Hamiltonians for

the ground and excited field free surfaces, respectively. The surfaces are coupled within the dipole
approximation by the transition dipole operator k(R) and the radiation field E(t). Notice that the
structure in Eq. (124) is identical to that obtained in the driven TLS. Following Kosloff et al. [88],
the rate of change to the ground state population n

1
(t)"SW

1
(t)DW

1
(t)T is readily evaluated to read

dn
1
/dt"2ReSW

1
DWQ

1
T"!(2/+)Im(SW

1
(t)Dk(R)DW

2
(t)TE(t)) . (125)

If we now choose E(t) as a control, i.e.,

E(t)PE
#
(t)"SW

2
(t)Dk(R)DW

1
(t)TC(t) , (126)
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with C(t) a real-valued function, we can freeze the population transfer (null-population transfer),
i.e., with Eq. (126),

dn
1
/dt"0 , (127)

for all times t. In other words, the population in the ground electronic surface, and necessarily also
the population of the excited surface, remains fixed. If we were to choose E(t)PiE

#
(t), it would

cause population to be transferred to the upper state, while E(t)P!iE
#
(t) would dump popula-

tion down to the ground state. Hence, by controlling the phase of a laser, we can control the
population transfer at will. This phenomenon applies equally well to driven tunneling in a TLS.
What can we achieve if we manipulate the amplitude C(t)? The change in the energy of the ground
state surface, which can be varied by exciting specific ground-state vibrational modes, is obtained
as

dE
1

dt
"

d
dt

SW
1
(t)DH

1
DW

1
(t)T

SW
1
(t)DW

1
(t)T

. (128)

Under the null-population-transfer condition in Eq. (126), this simplifies to [88]

dE
1

dt
"!

2C(t)
+n

1

ImSW
1
(t)DH

1
k(R)DW

2
(t)TSW

2
(t)Dk(R)DW

2
(t)T . (129)

It follows that the sign of C(t) can be used to “heat” or “cool” the ground-state wavepacket; the
magnitude of C(t) in turn controls the rate of heating (or cooling). With this scheme of phase and
amplitude control of a laser pulse it is possible to excite vibrationally the lower state surface while
minimizing radiation damage either by ionizing or by dissociating the corresponding quantum
system.

4. Driven tight-binding models

In the previous section we have considered driven two-state systems. Here we shall consider the
driven, infinite tight-binding (TB) system. Similar to the case of a two-state system, the infinite TB
system can result from the reduction of the tunneling dynamics of a particle moving in an infinite
periodic potential »

0
(q)"»

0
(q#d) within its lowest energy band. To be definite, if one fixes the

potential depth such that the Wannier states DnT building up the lowest band have appreciable
overlap only with their nearest neighbors Dn$1T, one obtains the Hamiltonian H

TB
of the bare

multistate system, i.e.,

H
TB
"!

+D
0

2
=
+

n/~=

(DnTSn#1D#Dn#1TSnD) , (130)

where 2+D
0
is the width of the lowest energy band. The influence of the driving force is described by

the perturbation

H
%95

(t)"!q+[e
0
#eL cos (Xt)]/d, q"d+

n

nDnTSnD , (131)
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Fig. 4. A periodic potential with lattice constant d and potential drop +e
0
per period. Within the miniband, tight-binding

approximation, the Wannier state DnT localized at the site nd has appreciable overlap only with its nearest neighbors
Dn$1T.

where the operator q measures the position of the particle on the lattice, while
+e(t)/d"+(e

0
#eL cosXt) measures the potential drop per lattice period d due to externally applied

dc- and ac-fields, cf. Fig. 4. In order for the single band approximation to be still consistent, the
driving frequency X, as well as the ac and dc-bias strengths e

0
and eL , respectively should be chosen

much smaller than the gap between the lowest two bands. The problem described by
H(t)"H

TB
#H

%95
(t) has a great variety of applications as, for example, in the investigation of the

dynamics of ultracold atoms in standing light waves [89,90], where lattice defects are absent, in
high-quality superlattices [16,19—22,91—98], or in thin crystals [99].

Suppose now that the particle has been prepared at time t
0
"0 at the origin Dn"0T. Then, the

dynamical quantity of interest is the probability P
n
(t) for finding the particle at site n at time t'0. In

turn, the knowledge of P
n
(t) enables the evaluation of all the dynamical quantities of interest in the

problem as, for example, the position’s expectation value P(t), as well as the diffusive variance S(t), i.e.,

P(t) :"SqT
t
"d

=
+

n/~=

nP
n
(t) ,

S(t) :"Sq2T
t
!SqT2

t
"d2

=
+

n/~=

n2P
n
(t)!P2(t) .

(132)

The expectation value P(t) represents the generalization of the quantity P(t)"Sp
z
T
t
, cf. Eq. (70),

introduced in the study of the dynamics of a two-state system.
If there is no external ac—dc field, then the Bloch waves [100]

s
k
"+

n

exp(!iknd)DnT (133)

solve the stationary Schrödinger equation H
TB

s
k
"E(k)s

k
with E(k) an absolutely continuous

spectrum, i.e., E(k)"!+D
0
cos (kd). Thus, 2+D

0
is the width of the resulting energy band. For this

problem the propagator º0
l,l{

(t, t@) from state DlT to state Dl@T is explicitly evaluated to read

º0
l,l{

(t, t@)"J
l~l{

(D
0
(t!t@))e(*p@2)(l~l{) , (134)

where J
l
(x) is the lth-order Bessel function. Given the initial condition P

n
(t"0)"d

n,0
, one then

finds P(t)"0 and

S(t)"d2D2
0
t2/2 , (135)

i.e., the variance of an initially localized wave packet spreads ballistically in time (superdiffusion).
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In presence of a dc-field +e
0
/d, the Wannier—Stark states [101,102]

/
m
"+

n

J
n~m

(D
0
/e

0
)DnT (136)

constitute a complete set of energy eigenstates with corresponding — now discrete — eigenvalues
E
m
"m+e

0
forming the Wannier—Stark ladder [101—103]. A particular Wannier—Stark state /

m
is

localized around the mth site with a localization length of the order of 2D
0
/e

0
lattice periods. In this

case the propagator takes the form

ºDC
l,l{

(t@t@)"J
l~l{A

2D
0

e
0

sinA
e
0
(t!t@)

2 BB expGi(l!l@)C
p!e

0
(t!t@)
2 D!il@e

0
(t!t@)H , (137)

which, with the initial condition P
n
(t"0)"d

n,0
, leads to

P
n
(t)"J2

n
((2D

0
/e

0
)sin (e

0
t/2)) . (138)

Because Eq. (138) is symmetric in n, one obtains P(t)"0 and

S(t)"2d2(D
0
/e

0
)2sin2(e

0
t/2) . (139)

Hence, a wavepacket which is initially localized on one site spreads in space and returns back to its
initial shape after the Bloch period T

B
"2p/e

0
. The center of the wavepacket, though, remains

fixed. On the contrary, if one considers a wavepacket which initially is not sharply localized, one
finds that the center of the wavepacket oscillates in space with an amplitude which is inversely
proportional to the dc-field strength e

0
, and with temporal periodT

B
. The shape of the wavepacket

remains almost invariant. This is the famous Bloch oscillation that was first discussed by Zener
[104]. It has been observed only recently in semiconductor superlattices through the emission of
THz radiation by the electrons [91], as well as in optical lattices [89,90].

If only an ac-field is applied, the Floquet states W
k
(t) solve the time-dependent Schrödinger

equation. They read

W
k
(t)"+

n

DnT expA!iq
k
(t)nd!(i/+)P

t

0

dqE(q
k
(q))B , (140)

with q
k
(t)"k#(eL /X)sin (Xt)/d. Setting W

k
(t)"U

k
(t) exp(!ie(k)t/+) with U

k
(t#T)"U

k
(t), the

quasienergies form again an absolutely continuous spectrum which reads

e(k)"J
0
(eL /X)E(k), mod +X . (141)

Given the initial condition P
n
(t"0)"d

n,0
, one finds for the two transport quantities in

Eq. (132) [105]

P(t)"0, S(t)"d2(D2
0
/2)[u2(t)#v2(t)] , (142)

where

u(t)"P
t

0

dt@sin [eL /X sin (Xt@)] ,

v(t)"P
t

0

dt@cos [eL /X sin (Xt@)] .
(143)
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The above equations, Eqs. (142) and (143), can be simplified at long times t<2p/X to yield

S(t)"d2D2
%&&

t2/2, D
%&&
"J

0
(eL /X)D

0
, (144)

i.e., the problem of diffusion reduces effectively to that of an undriven particle, cf. Eq. (135), with
a renormalized energy bandwidth 2+D

%&&
42+D

0
. In particular, when eL /X coincides with a kth zero

j
0,k

of the Bessel function J
0
, the wavepacket reassembles itself after a period, as it can be verified

from the exact result (142). Hence, on a long time average, it neither moves nor spreads. This
phenomenon, termed dynamic localization (DL) [16,92,105,109,110], resembles the phenomenon of
coherent destruction of tunneling (CDT) discussed for the two-state system in Section 3.2.2. Note,
however, that the two phenomena are very distinct: The DL is based on a collapse of a band, cf.
Eq. (141), while CDT necessitates the crossing of two tunneling related discrete quasienergies.
More importantly, the probability of an initially localized preparation P

n
(t"0)"d

n,0
does not

stay localized. To be definite, with the probability to stay at site n"0 given by [105]

P
0
(t)"J2

0
(D

0
Ju2(t)#v2(t)) , (145)

P
0
(t) at band collapse becomes an oscillating function with period 2p/X varying between zero and

one. It exhibits stroboscopic localization only at multiples of the driving period, i.e., at
t
n
"n2p/X, n"0, 1, . . ; cf. also Fig. 3a in Ref. [105]. Further, we remark that, while for the

two-state system the renormalization (89) of the intersite coupling leading to CDT is a perturbative
result in the ratio (D

0
/X) between the intersite coupling and the external frequency, the correspond-

ing equation (141) for the quasienergy band is an exact result. This is due to exact translational
symmetry of an infinite tight-binding lattice with nearest-neighbor intersite interactions.

Finally, in the presence of both ac- and dc-fields the Houston states [106] solve the time-
dependent Schrödinger equation. They have the same form as the Floquet states in Eq. (140)
solving the Schrödinger equation in the absence of a dc-field, but with q

k
(t) in Eq. (140) substituted

by

q
k
(t)"k#[e

0
t#(eL /X)sin (Xt)]/d . (146)

However, it must be recognized that the problem now contains two frequencies, the ac-frequency
X and the Bloch frequency X

B
"e

0
. As a consequence, it turns out that the Houston states coincide

with the Floquet states of H
TB
#H

%95
(t) only at resonance, when multiples of the driving frequency

match the rungs of the Wannier—Stark ladder, i.e., e
0
"nX [96,107], see Fig. 5. In this case

W
k
(t)"U

k
(t) exp(!ie(k)t/+) assumes the Floquet form with U

k
(t#T)"U

k
(t) and corresponding

quasienergies given by

e(k)"
1
TP

T

0

dtE(q
k
(t))"(!1)nJ

nA
eL
XBE(k), mod +X . (147)

The quasimomentum k then remains a good quantum number for the eigenfunctions U
k
(t) despite

the presence of the dc-field. Whereas the Wannier—Stark states are localized, an additional resonant
ac-field leads again to extended quasienergies states that form quasienergy bands of finite width.
Therefore, a resonant ac-field can destroy Wannier—Stark localization even if its amplitude is
infinitesimally small [111].
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Fig. 5. A tight-binding lattice driven by dc- and ac-fields exhibits quasi-energy bands if the energy n+X of n photons
precisely matches the energy difference +e

0
between adjacent rungs of the Wannier—Stark ladder. The emergence of the

quasi-energy band occurs because, as depicted schematically in this figure for n"1, at resonance, the energies of the
atomic states “dressed” by the ac-field are exactly aligned with the rungs of the Wannier—Stark ladder.

In presence of random static disorder these delocalized states tend to localize again [95,96,108],
and it is even possible to control the degree of localization, i.e., the localization length, by
appropriately varying the ac-field amplitude [95—97].

An arbitrary, initially localized wavepacket W(t"0) can be represented as a superposition of
Floquet states with a certain momentum distribution fK (k, 0), and the time evolution of each
component is given by fK (k,T)"fK (k, 0) exp(!ie(k)T/+). Assuming that the initial momentum
distribution is sharply peaked around k

0
, the time-averaged group velocity of the wavepacket is

vN"K
de(k)
dk K

k0

"(!1)n
D
0
d

2
J
nA

eL
XBsin (k

0
d) . (148)

Hence, the wavepacket generally moves along the whole lattice, and simultaneously is spreading.
When eL /X coincides with a kth zero j

n,k
of the Bessel function J

n
the wavepacket reassembles itself

after a period. Hence, on average, it neither moves nor spreads and the dynamic localization
phenomenon occurs.

We observe that interesting new features occur when coupling to higher bands start to play
a role. As pointed out in [112], in the presence of a static electric field the spectrum consists of two
interpenetrating Wannier—Stark ladders. In the presence of ac-fields, quasienergy bands occur
[103,113,114] whose bandwidth can be controlled by appropriately tuning of the ac-field para-
meters.

Finally, a nonperturbative investigation of the influence of a strong laser field on the band
structure of a one-dimensional Kronig—Penney periodic delta potential has been investigated in
[115].

5. Driven quantum wells

With the recent advent of powerful radiation sources, which are able to deliver extremely strong
and coherent electric driving fields, the quantum transport in solid state devices, such as in
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superconductors and semiconductor heterojunctions, has been revolutionalized. The latter, by
now, can even be nanostructured. Of particular interest is the role of photon-assisted tunneling
(PAT) in single, double-barrier and periodic superlattice-like structures. The mechanism of PAT
has originally been observed in the experiments by Dayem and Martin [14] in the stationary
dc-current—voltage characteristics of a superconductor (Al)—insulator (Al

2
O

3
)—superconductor (In)

(SIS)—structure. Motivated by this very experiment, Tien and Gordon [15] put forward a simple
theory, which continues to enjoy great popularity up to these days.

5.1. Driven tunneling current within Tien—Gordon theory

Following Tien and Gordon [15] one considers two (superconducting) films A and B with
a time-dependent electric field acting normal to their surface. In doing so, one neglects the
intermediate insulating regime where the wave functions drop off sharply. Neglecting electron—field
interactions in this region one can use the potential of film A as a reference, and the main effect of
the electromagnetic field is accounted for by adding a time-dependent, but spatially constant,
potential that is being built up across the insulator in regions with coordinates q in film B. Hence,
neglecting the interface, the total Hamiltonian reads, see Fig. 6,

H(t)"G
H

0
(q)#»K cosXt, q in B ,

H
0
(q), q in A .

(149)

Note that this Hamiltonian describes driven quantum transport that does not involve the spatial
dependence. Hence, within the region of the film B, the wave function simply assumes an overall
phase factor given by

expM!ig(t)/+N"expG(!i/+)P
t

0

ds»K cos (Xs)H , (150)

meaning that the wave function with coordinates q in part of film B is given exactly by

W(q, t)"u(q) expM!iEt/+N expM!ig(t)/+N . (151)

Put differently, the interaction in Eq. (149) does clearly not change the spatial dependence of the
unperturbed Hamiltonian H

0
, whose wave function is given by the first two contributions in

Eq. (151). Note however, that the solution in Eq. (151) is not an exact wave function W(q, t) in all
space of film A (where H(t) equals H

0
) and film B, because no wave function matching at the

interface has been accounted for. The phase can be readily written as expM!ig(t)/+N"
expM!i(»K /+X)sin (Xt)N, which, by use of the generating function of ordinary Bessel functions, is
recast as

expM!ig(t)/+N"
=
+

n/~=

J
n
(»K /+X) exp(!inXt) . (152)

This form allows for a simple interpretation for PAT: In this theory, photon absorption (n'0) or
emission (n(0) is viewed as creating a new set of (electron) eigenstates of energy E#n+X, where
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Fig. 6. The Tien—Gordon model: a time-dependent uniform electric field acting normal to the surfaces A and B of two
superconducting films builds up a potential modulation across the tunneling barrier separating the two films. The
potential of film A is taken as a reference. The electric field then sets up a potential difference »K cos(Xt) in film B.

E denotes the eigenenergy of the original state with H(t)"H
0
throughout A and B. The probability

of absorbing (or emitting) n photons equals each other, and is given by the weight J2
n
(a), with a being

the dimensionless radiation quantity

a :"»K /+X . (153)

We remark that this argument is inversely proportional to the first power in X. The theory allows
for a straightforward evaluation of the average dc-current I

0
(»

0
,»K ,X) in presence of an additional

applied dc-bias »
0
. In terms of the dc-tunneling-current, i.e.,

I$#
AB

(»
0
)"CP

=

~=

dE[ f (E!»
0
)!f (E)].

A
(E!»

0
).

B
(E) , (154)

where C is a proportionality constant, the f ’s are the Fermi factors, and .
A,B

are the densities of
states in A and B, respectively, the effect of an ac-modulating voltage drop in film B results in
a nonzero, average tunneling current. It explicitly reads [15]

I
0
(»

0
,»K , X)"

=
+

n/~=

J2
n
(»K /+X)I$#

AB
(»

0
#n+X) . (155)

We note that such SIS-structures are commonly used for high-frequency detection [116].
The Tien—Gordon theory — for additional insight into this approach see also [116,117] — has
recently been successfully applied in explaining qualitatively the experimental findings of PAT
through quantum dots [118—120], in quantum point contacts [121], for stimulated emission and
absorption in THz-irradiated resonant tunneling diodes [122]. Interestingly enough, the simple
theory in Eq. (154) for the average dc-current also qualitatively describes the experimentally
observed PAT-phenomena in superlattices, particularly the emergence of “absolute negative
conductance” near zero bias voltage »

0
. In other words, it might occur that I

0
(»

0
,»K ,X)(0 for

small but positive applied dc-bias »
0

[16—22,98]; see also in Section 13. In recent years, more
realistic theoretical descriptions beyond the Tien—Gordon level have been developed by various
groups [123—138].
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Fig. 7. Driven quantum wells: An infinite high square well sandwiched between two walls at q"$¸/2, and driven by
(a) an external field !qS cos(Xt), or (b) driven by a uniform in space, time-dependent potential »K (t)"»K cos(Xt). The
situation in (b) is generally referred to as “Tien—Gordon” case. The location of the lowest quasienergy e

0
is indicated by

the dashed line. For case (a) one has e
0
"E@

0
#S2/(4mX2), and e

0
(S,X)S?0

P E
0
"+2p2/2m¸2, being the ground state

energy of an undriven square well. For case (b) one has e
0
"E

0
.

In principle, the exact description of strong ac-field interactions necessitates a full treatment in
terms of Floquet theory for the total Schrödinger equation of system — leads — ac-field interactions,
which generally constitutes a difficult task. In the following we address in some detail such analysis
for a strongly driven quantum well.

5.2. Floquet treatment for a strongly driven quantum well

In the previous subsection we considered the effects of a — spatially constant — time-dependent
modulation across a tunneling barrier. In cases where the coherence length of the wave function is
smaller than the region of uniform modulation, boundary conditions at the interfaces must be
taken into account. The case of a quantum well of width ¸ and finite height »

0
, where only the

quantum well but not the neighboring regions is subject to a uniform bias modulation has been
considered in [127,128,133,134], see Fig. 7b for the case of a quantum well with infinte high walls.
This situation is of interest, for example, to investigate transmission probabilities through
a double-barrier resonant tunneling diode [122], or driven tunneling through a quantum dot
[118—120]. The Hamiltonian inside the quantum well reads

H(t)"!

+2

2m
2

q2
#»K cos(Xt), !

¸

2
4q4

¸

2
, (156)

with m denoting the effective mass. At the interfaces, q"$¸/2, the wave function and its flux
must be continuous. To satisfy these requirements, one needs to superimpose many wave functions
of the general form (151) inside the quantum well. This yields for the wave function inside the
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quantum well the solution

W
E
(q, t)"

=
+

n/~=

exp[!i(E#n+X)t/+][A
n
exp(ik

n
q)#B

n
exp(!ik

n
q)]

] expA!i
»K
+X

sin(Xt)B ,
(157)

where E denotes a bound state energy in the undriven quantum well. Hence, the wave function
W

E
(q, t) is of the Floquet form

W
E
(q, t)"exp(!iet/+)U

E
(q, t) , (158)

with U
E
(q, t) periodic in T"2p/X, and with quasienergy e"Emod +X. In the form given by

Eq. (157) the full wave function is built up by an infinite sum over transport sidebands, where the
nth transport sideband is characterized by the quasiwavevector k

n
, defined as

+k
n
"J2m(E#n+X) . (159)

The coefficients A
n
and B

n
are determined by the matching conditions for the wave function and its

flux at the interfaces q"$¸/2. Hence, when time-dependent transport through a barrier is
investigated, transport sidebands with a definite quasiwavevector k

n
must be considered. It is

important to notice that because of the residual periodic time dependence carried by each transport
sidebands, these transport sidebands are not obtained by a Fourier decomposition of the periodic
Floquet mode, in contrast to the Tien—Gordon case discussed in the preceding subsection. For this
problem the probability S

n
to find the particle in a particular transport sideband n has been

evaluated in [133,134] under the assumption that n+X;E and n+X;»
0
!E, for all sufficiently

populated sidebands. To lowest order in the quantities n+X/E and n+X/(»
0
!E), one obtains

S
n
"J2

n
(c»K /+X) , (160)

where the coefficient c41 depends on the characteristics of the quantum well. In the limit ¸PR

the Tien—Gordon problem discussed in the previous section is recovered. Correspondingly, cP1.
One can directly apply these results to the problem of evaluating the transmission probability of

an electron traversing a double-barrier structure with a central oscillating quantum well. Assuming
that the incoming electron enters the quantum well in the channel n

*/
and exits via the channel n

065
,

the total transmission probability ¹
n*/,n065

from channel n
*/

to channel n
065

is

¹
n*/,n065

"¹
0
S
n*/

S
n065

, (161)

where ¹
0
(E) denotes the transmission probability n

*/
"0Pn

065
"0 for a static double barrier

structure at a corresponding energy E. With incoming energy E of the scattering particle taken at
resonance, the transmission probability ¹

0
(E) in a symmetric double barrier equals one. Hence, for

an incoming electron in the sideband n
*/

quenching of the transmission probability ¹
n*/n065

occurs at
the zeros of J

n*/
(c»K /+X) and/or J

n065
(c»K /+X).
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Qualitative new results are obtained when the assumption of a uniform spatial modulation of the
quantum well is abandoned. In the following we consider the problem of a strongly driven
quantum well of width ¸, sandwiched between two infinitely high walls at q"$¸/2, as depicted
in Fig. 7a, being harmonically driven by an electric field !Sq cos(Xt), i.e., its Hamiltonian reads

H(t)"!

+2

2m
2

q2
#Sq cos(Xt), !

¸

2
4q4

¸

2
. (162)

The Hamiltonian in Eq. (162) appears very simple. Nevertheless, in contrast to the familiar
time-independent case with S"0, no exact solutions are known when SO0 [139—142]. Usually,
only perturbative solutions valid to first order in the driving strength S, i.e., a linear response
treatment, is deduced [144,145]. As mentioned earlier, with continuous coordinates q and corre-
sponding continuous momenta p, the total time-dependent Hamiltonian must contain interactions
that are constant, linear, or at most quadratic in q and/or p for it to be exactly solvable, see Refs.
[59—63]. The Hamiltonian in Eq. (162) possesses a generalized parity symmetry P, where
P : qP!q; tPt#p/X. The lowest discrete quasienergy e

0
associated to the Floquet state

W
0
(q, t)"exp(!ie

0
t/+)U

0
(q, t), with U

0
(q, t) periodic in T"2p/X, can be expressed in the form

[142]

e
0
"E@

0
(S,X)#S2/4mX2, mod +X , (163)

where E@
0
(SP0,X) approaches the lowest unperturbed bound state E

0
"+2p2/2m¸2. The periodic

Floquet mode U
0

of even parity reads

U
0
(q, t)"

=
+

n/~=

A
n
Mexp[!ik

n
(q!S cos(Xt)/mX2)]

#(!1)n exp[!ik
n
(q!S cos(Xt)/mX2)]N exp(!inXt)

] exp(!iSq sin(Xt)/+X) exp(iS2 sin(2Xt)/8+mX3) , (164)

where

+2k2
n
(S,X)"2m[E@

0
(S, X)#n+X] . (165)

In the form given by Eq. (164) the wave function is built up by an infinite sum over sidebands
which, due to the residual q-dependence and periodic t-dependence of the phase, cf. last line in
Eq. (165), can neither be interpreted as energy sidebands as in the Tien—Gordon case, nor as
transport sidebands as for the spatially uniform driven quantum well. The set of coefficients
MA

n
(S,X)N and the energy E@

0
(S,X) must be obtained from the boundary condition that a Floquet

mode of even parity (odd parity) U
%7%/

(q, t)(U
0$$

(q, t)) obeys U
%7%/

($¸/2, t)"U
%7%/

(G¸/2, t#
p/X)"0, (U

0$$
($¸/2, t)"!U

0$$
(G¸/2, t#p/X)"0), at all times t. This set MA

n
(S,X)N is conve-

niently obtained by using again the generating function of Bessel functions J
n
occurring implicitly

in Eq. (164), cf. Eq. (152); however, the resulting system of equations is far too complicated to be
solved exactly in analytical terms, see Ref. [142] where an explicit approximation valid to order
v2 of the relative spacing v"+X/E@

0
is presented. In terms of the quantities

v"+X/E@
0
(S, X), u"k

0
(S,X)S/mX2 , (166)
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and observing that k
n
"k

0
(1#nv)1@2, see Eq. (165), one finds from this approximative solution to

leading order

E@
0
(S,X)"E

0A1!
u2v2
8 B, k

0
(S, X)"

p
¸A1!

u2v2
16 B . (167)

In the same way, the coefficients A
n

can be evaluated to second order in v [142]. Finally, much
information on the transmission probability can be gained from an investigation of the side-bands
weights S

n
, where S

n
is the probability of the nth sideband, i.e.,

S
n
"w

n
DA

n
D2/+

n

w
n
DA

n
D2 , (168)

where w
n
"D1#(!1)nJ

0
(2k

n
S/mX2) sin(k

n
¸)/k

n
¸D. With v;1, the weights S

n
go to zero at the

roots of J
n
(k

0
S/mX2). The weights S

n
of these sidebands are depicted in Fig. 8. These weights

strongly vary as a function of the driving strength S. In particular, we observe that channels with
n(0 are generally stronger than those with n'0. This is in contrast to the case of a spatially
uniform driven quantum well. The latter predicts from Eq. (160) equal weights for the side-
channels. Most importantly, the transport side-band amplitudes are a nonmonotonic function of
the driving strength S, see Fig. 8, and these sidebands scale with Sk

0
/mX2JX~2 rather than with

a"»K /+XJX~1, being typical for a situation which is ruled by a uniform potential modulation as
in the Tien—Gordon theory, see in this context also the corollary in Ref. [131].

This reasoning can be extended to include Floquet states originating from higher levels. In this
case the original spectrum of bound states E

n
"+2(n#1)2p2/2m¸2 evolves into a discrete

quasienergy spectrum

e
n
(S,X)"E@

n
(S,X)#S2/4mX2, mod +X , (169)

with E@
n
(S,X) :"(+k(n)

0
(S, X))2/2m, i.e., with vanishing field e

n
(S,X)PS?0 E

n
and k(n)

0
(S,X)¸PS?0(n#1)p,

and corresponding Floquet modes of even and odd generalized parity symmetry. For a numerical
study of E@

n
(S,X) vs. S see Ref. [141]. Next, we note that in the case of a uniform potential

modulation, and infinite height walls at q"$¸/2, cf. part b in Fig. 7, the Tien—Gordon theory
becomes exact, yielding the quasienergies

e
n
(S,X)"E

n
, mod +X , (170)

with corresponding Floquet modes, which simply acquire a time-dependent phase, i.e.,

U
n
(q, t)"u

n
(q) expM!i»K sin(Xt)/+XN . (171)

Here, u
n
(q) are again the unperturbed wave functions of an infinitely high square well. Clearly, due

to the q-independent, uniform interaction »K cos(Xt) the spatial dependence of the Floquet modes
U

n
(q, t) cannot be affected, nor is the value of the quasienergy, i.e., e

n
"E

n
.

We end this section by addressing the relevance of these results for PAT in realistic situations
with a single quantum well of finite barrier height, as it occurs with a double-barrier structure. As
shown in Ref. [142], the analytical prediction for quenching the PAT-assisted tunneling current,
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Fig. 8. Weights of the sidebands, see Eq. (168), of a driven single electron square quantum well. The weights S
n

are
evaluated for a well of width ¸"16 nm (yielding for the static ground state energy E

0
"21 923meV) vs. driving laser

field strength F :"S/e and with photon energy +X"5.38 meV. The top panel depicts the numerical exact solution; the
lower panel shows the analytic prediction valid up to fourth order in v"+X/E@

0
&1

4
. Note that the weights are different

for $n.

implying that S
n
P0, are in good agreement whenever the photon energy +X exceeds the tunneling

linewidth D
0

of a static resonance. Note that the case with an infinitely high quantum well
implicitly assumes that D

0
"0. The theory outlined in this section also applies to multiple

quantum wells as they occur in PAT in superlattices: There, quantum ac-transport predominantly
proceeds via sequential resonant tunneling. Hence, here too, it is sufficient to consider the physics
in a single driven quantum well to describe the main features of PAT.

6. Tunneling in driven bistable systems

In this section we address the physics of coherent transport in bistable systems. These systems
are abundant in the chemical and physical sciences. On a quantum mechanical level of description
bistable, or double-well potentials, are associated with a paradigmatic coherence effect, namely
quantum tunneling. Here we shall investigate the influence of a spatially homogeneous monochro-
matic driving on the quantal dynamics in a symmetric, quartic double well. This archetype
system is particularly promising for studying the interplay between classical nonlinearity — its
classical dynamics exhibits chaotic solutions — and quantum coherence. Its Hamiltonian reads
[24,25]

H(q, p; t)"(p2/2m)#»
0
(q)#qS sin(Xt#/) , (172)
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with the quartic double-well potential

»
0
(q)"!(mu2

0
/4)q2#(m2u4

0
/64E

B
)q4 . (173)

Here, m denotes the mass of the particle, u
0

is the classical frequency at the bottom of each well,
E
B
the barrier height, and S, X and / are the amplitude, angular frequency and phase of the driving.

The number of doublets with energies below the barrier top is approximately given by D"E
B
/+u

0
.

The classical limit hence amounts to DPR.
For ease of notation, we introduce the dimensionless variables

qN "
Jmu

0
+

q
, pN "

p

Jmu
0
+

(174)

and

tM"u
0
t, uN "

X
u

0

, SM "
S

Jmu3
0
+

, (175)

where the overbar is omitted in the following. This is equivalent to setting in Eq. (173) formally
m"+"u

0
"1.

As discussed in Section 2, the symmetry of H(t) reflects a discrete translation symmetry in
multiples of the external driving period T"2p/X, i.e., tPt#nT. Hence, the Floquet operator
describes the stroboscopic quantum propagation

º(nT, 0)"[º(T, 0)]n . (176)

Besides the invariance under discrete time translations, this periodically driven symmetric system
exhibits a generalized parity symmetry P, i.e.,

P : qP!q; tPt#T/2 . (177)

This generalized parity is a symmetry in the composite Hilbert space R?T. Denoting the
reflection at the origin, i.e., qP!q by the ordinary operator P, Eq. (177) implies

H(t#T/2)"PH(t)P . (178)

From this identity it follows that the second half of a full period T can be expressed by the
propagator over the first half, i.e., º(T,T/2)"Pº(T/2, 0)P, yielding

º(T, 0)"º(T,T/2)º(T/2, 0)

"(Pº(T/2, 0)P)º(T/2, 0)"(Pº(T/2, 0))2 .
(179)

Just as in the unperturbed case with S"0, this allows the classification of the corresponding
quasienergies ean into an even and an odd subset. For very weak fields SP0, the quasienergies
eak follow from Eq. (29) as

e0ak(S,X)"Ea#kX, k"0,$1,$2,2 , (180)

with MEaN being the unperturbed eigenvalues in the symmetric double well. As pointed out in
Eq. (9), this infinite multiplicity is a consequence of the fact that there are infinitely many
possibilities to construct equivalent Floquet modes, cf. Eq. (8): The multiplicity is lifted if we
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consider the cyclic quasienergies mod X. Given a pair of quasienergies ea,k, ea{,k{, aOa@, a physical
significance can be attributed to the difference Dk"k@!k. For example, a crossing ea,k"ea{,k`Dk
can be interpreted as a (Dk)-photon transition. With S'0, the equality in Eq. (180) no longer
provides a satisfactory approximation. Nevertheless, the driving field is still most strongly felt near
the resonances ea,k+ea{,k{. The physics of periodically driven tunneling can be qualified by the
following two properties:

(i) First we observe, by an argument going back to von Neumann and Wigner [43], that, in
absence of any asymmetry, two parameters must be varied independently to locate an accidental
degeneracy. In other words, exact quasienergy crossings are found at most at isolated points in the
parameter plane (S,X), i.e., the quasienergies exhibit typically avoided crossings. In presence of the
generalized parity symmetry in Eq. (177) in the extended space R?T, however, this is true only
among states belonging to the same parity class, or for cases of driven tunneling in presence of an
asymmetry (then Eq. (177) no longer holds). With the symmetry in Eq. (177) present, however,
quasienergies associated with eigenstates of opposite parity do exhibit exact crossings and form
a one-dimensional manifold in the (S,X)-plane, i.e., Me(S,X)N exhibit an exact crossing along lines.
With SP!S, implying e(S,X)"e(!S,X), these lines are symmetric around the X-axis.

(ii) Second, the effective coupling due to the finite driving between two unperturbed levels at the
crossing Ea"Ea{!DkX, as reflected in the degree of splitting of that crossing at SO0, rapidly
decreases with increasing Dk, proportional to the power law SDk. This suggests the interpretation as
a (Dk)-photon transition. Indeed, this fact can readily be substantiated by applying the usual
(Dk)th-order perturbation theory. As a consequence, for small driving S only transitions with Dk
a small whole number do exhibit a significant splitting.

6.1. Limits of slow and fast driving

In the limits of both slow (adiabatic) and fast driving, we have a clearcut separation of time scales
between the inherent tunneling dynamics and the external periodic driving. Hence, the two
processes effectively uncouple. As a consequence, driven tunneling results in a mere renormaliz-
ation of the bare, lowest order, tunnel splitting D

0
, and likewise for higher-order tunnel splittings

D
n
"E

n`2
!E

n`1
. This result can be substantiated by explicit analytical calculations [25]. Let us

briefly address the adiabatic limit, i.e., the driving frequency X satisfies X;D
0
. Setting

/I ,(Xt#/), the tunneling proceeds in the adiabatic potential

»(q,/I )"»
0
(q)#qS sin /I . (181)

The use of the quantum adiabatic theorem predicts that W(q, t) will cling to the same instantaneous
eigenstates. Thus, the evaluation of the periodic-driving renormalized tunnel splitting follows the
reasoning used for studying the bare tunnel splitting in presence of an asymmetry e

0
,

e
0
"»(q

~
,/I )!»(q

`
, /I ) , (182)

with q
B

denoting the two minima of the symmetric unperturbed metastable states. With
the instantaneous splitting determined by D(S,/)"(D2

0
#e2

0
)1@2, the averaging over the phase /

between [0, 2p] yields for the renormalized tunnel splitting D
!$

(S), the result [25]

D
!$

(S)"(2D
0
/p)(1#u)1@2E[Ju/(1#u)]5D

0
, (183)
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with u"32S2D/D2, and E[x] denoting the complete elliptical integral. This shows that D
!$

in-
creases proportional to S2 as u;1, and is increasing proportional to S for u<1. Hence, a particle
localized in one of the two metastable states will not stay localized there (this would be the
prediction based on the classical adiabatic theorem) but rather will tunnel forth and back with an
increased tunneling frequency D

!$
'D

0
. Obviously, with the slowly changing quantum system

passing a near degeneracy (tunnel splitting) the limits +P0, X fixed and small (classical adiabatic
theorem) and XP0, + fixed (quantum adiabatic theorem) are not equivalent.

The limit of high-frequency driving can be treated analytically as well. The unitary transforma-
tion

W(q, t)"exp(!i(S/X) cos(Xt#/)q)g(q, t) (184)

describes the quantum dynamics within the familiar momentum coupling in terms of an electro-
magnetic potential A(t)"!(S/X) cos(Xt#/), i.e., the transformed Hamiltonian reads

HI (q, t)"H
0
(q, p)!A(t)p , (185)

with H
0

the Hamiltonian in the absence of the driving field. We drop all time-dependent
contributions that do not depend on q and p. Next we remove this A(t)p-term by
a Kramers—Henneberger transformation [143], i.e.,

g(q, t)"expA!iP
t
dt@A(t@)pB f (q, t) (186)

to yield

HK (q, t)"1
2
p2#»

0
(q!(S/X2) sin(Xt#/)) , (187)

resulting in a removal of the A(t)p-term, and the time dependence shifted into the potential »(q, t).
After averaging over a cycle of the periodic perturbation we obtain an effective Hamiltonian

H
H
"

1
2
p2!

1
4
q2C1!

3
16DA

S
X2B

2

D#
1

64D
q4 , (188)

with a frequency-dependent curvature. This large-frequency approximation results in a high-
frequency renormalized tunnel splitting [25],

D
H
"D

0A1!
3

16DA
S
X2B

2

B exp(2S2/X4)5D
0

. (189)

Hence, fast driving results in an effective reduction of barrier height, thereby increasing the net
tunneling rate. Note here the different behavior of the effective tunnel splitting on the angular
frequency of periodic driving: In the two-state model (99), the argument in the function yielding the
driving induced, effective tunnel splitting for fast fields X'D

0
exhibits a scaling proportional to

X~1; in contrast, here, with a spatially extended coordinate q for a bistable potential, the scaling
becomes proportional to X~2 in the regime X<u

0
.
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In conclusion, the regime of adiabatic slow driving and very-high-frequency driving (away from
high-order resonances) can be modeled via a driving-induced enhancement of the tunnel splitting.

6.2. Driven tunneling near a resonance

Qualitative changes of the tunneling behavior are expected as soon as the driving frequency
becomes comparable to internal resonance frequencies of the unperturbed double well with energy
eigenstates E

1
, E

2
,2 with corresponding eigenfunctions u

1
(x),u

2
(x),2 Thus, such resonances

occur at X"E
3
!E

2
, E

4
!E

1
, E

5
!E

2
,2 etc. A spectral decomposition of the dynamics re-

solves the temporal complexity which is related to the landscape of quasienergies planes ea,k(S, X) in
parameter space. Most important are the features near close encounters among the quasienergies.
In particular, two quasienergies can cross one another if they belong to different parity classes, or
otherwise, they form an avoided crossing. The situation for a single-photon transition-induced
tunneling is depicted in Fig. 9 at the fundamental resonance X"E

3
!E

2
. For S'0, the corre-

sponding quasienergies e
2,k

and e
3,k~1

form avoided crossings, because they possess equal parity
quantum numbers. Starting from a state localized in the left well, we depict in Fig. 9a the
probability to return P

L
(t
n
)"DSW(0)DW(t

n
)TD2, t

n
"nT. Instead of a monochromatic oscillation,

which characterizes the unperturbed tunneling we observe in the driven case a complex beat
pattern. Its Fourier transform reveals that it is mainly composed of two groups of three frequencies
each (Fig. 9b). These beat frequencies can be associated with transitions among Floquet states at
the avoided crossing pertaining to the two lowest doublets. The lower triplet is made up of the
differences of the quasienergies e

3,~1
, e

2,0
, and e

1,0
; the higher triplet is composed of the differences

e
4,~1

!e
3,~1

, e
4,~1

!e
2,0

, e
4,~1

!e
1,0

[25]. An analytical, weak-field and weak-coupling
treatment of a resonantly driven two-doublet system has been presented with Refs. [146,147]. The
use of a nonlinear resonance for controlling tunneling has been studied for the case of a driven
double-square well system in [148].

Fig. 9. Tunneling in a double well driven at the fundamental resonance X"E
3
!E

2
. (a) Time evolution of the

return probability P
L
(t
n
), t

n
"nT for a state initially localized in the left well over the first 105 time steps;

(b) corresponding local spectral two-point correlations PI (u) [25]. The dimensionless parameter values are
D"2, S"2]10~3, and X"0.876.
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6.3. Coherent destruction of tunneling in bistable systems

A particularly interesting phenomenon occurs if we focus on nearly degenerate states that are
tunnel splitted. For example, let us consider in the deep quantum regime the two quasienergies
e
1,k

(S,X) and e
2,k

(S,X). The subsets Me
1
(S,X)N and Me

2
(S,X)N belong to different parity classes so that

they can form exact crossings on one-dimensional manifolds, see below Eq. (180); put differently, at
the crossing the corresponding two-photon transition that bridges the unperturbed tunnel splitting
D
0

is parity-forbidden. To give an impression of driven tunneling in the deep quantum regime, we
study how a state, prepared as a localized state centered in the left well, evolves in time under the
external force. Since this state is approximately given by a superposition of the two lowest unpertur-
bed eigenstates, DW(0)T+(DW

1
T#DW

2
T)/J2, its time evolution is dominated by the Floquet-state

doublet originating from DW
1
T and DW

2
T, and the splitting e

2
!e

1
of its quasienergies. Then

a vanishing of the difference e
2,~1

!e
1,1

might have an intriguing consequence: For an initial state
prepared exactly as a superposition of the corresponding two Floquet states W

1
(q, t) and W

2
(q, t), cf.

Eqs. (4) and (8), the probability to return P
L
(t
n
), probed at multiples of the fundamental driving period

T"2p/X, becomes time independent. This gives us the possibility that tunneling can be brought to
a complete standstill [24,25]. For this to happen, it is necessary that the particle neither spreads
and/nor tunnels back and forth during a full cycle of the external period T after which the two
Floquet modes assemble again [67]. Hence, this condition [24,67], together with the necessary
condition of exact crossing between the tunneling related quasienergies e

2n,k~1
"e

2n~1,k`1
(n is

number of tunnel-splitted doublet) guarantees that tunneling can be brought to a complete standstill
in a dynamically coherent manner. In Fig. 10a we depict the corresponding one-dimensional
manifold of the jth crossing between the quasienergies that relate to the lowest tunnel doublet, i.e.,
Mj/1

-0#
(S,X), which is a closed curve that is reflection symmetric with respect to the line S"0. There

a localization of the wave function W(q, t) can occur. A typical time evolution of P
L
(t
n
) for a point on

the linear part of that manifold is depicted in Fig. 10b.

Fig. 10. Suppression of tunneling in a driven double well at an exact quasienergy crossing, e
2,~1

"e
1,1

. (a) One of the
manifolds in the (S,X)-plane where this crossing occurs (data obtained by diagonalization of the full Floquet operator for
the driven double well are indicated by crosses, the full line has been derived from a two-state approximation, the arrow
indicates the parameter pair for which part (b) of this figure has been obtained); (b) time evolution of the return
probability P

L
(t
n
) over the first 1000 time steps starting from an initial state prepared as a coherent state in the left well.

Dimensionless parameters are D"2 (i.e., D
0
"1.895210~4), S"3.171, X"0.01.
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Moreover, a time-resolved study over a full cycle (not depicted) does indeed show that the
particle stays localized also at times tOt

n
. Almost complete destruction of tunneling is found to

occur on M1
-0#

for D
0
(X(E

3
!E

2
. For XPE

3
!E

2
, the strong participation of a third

quasienergy mixes nonzero frequencies into the time dependence so that coherent destruction of
tunneling at all times ceases to exist. For small frequencies, D

0
/24X4D

0
, and corresponding

small driving strengths S, as implied by M1
-0#

(S,X), the driven quantum mechanics approaches the
unperturbed quantum dynamics. In particular, it follows from (28) and (29) for XPD

0
/2 and SP0,

i.e., U
1,1

(q, t)"u
1
(q) exp (iXt),U

2,~1
(q, t)"u

2
(q) exp (!iXt), that

P
L
(t)"DSW(0)DW(t)TD2"cos2(D

0
t/2), X"D

0
/2 . (190)

For X+D
0
, e

1,1
and e

2,~1
exhibit an exact crossing. With corresponding Floquet modes deter-

mined from perturbation theory as

U
1,1

(q, t)+
1

J2
[u

1
(q) exp(iXt)#iu

2
(q)] ,

U
2,~1

(q, t)+
1

J2
[u

2
(q) exp(!iXt)#iu

1
(q)] ,

(191)

the result for P
L
(t), with W(q, 0)"[u

1
(q)#u

2
(q)]/J2, localized in the left well, becomes

P
L
(t)+1

4
[3# cos (2D

0
t)], X+D

0
. (192)

For larger frequencies obeying D
0
(X(E

3
!E

2
, the Floquet modes can be approximated by

[67]

U
1,1

(q, t)+u
2
(q)D sin(Xt)D!iu

1
(q) cos(Xt) ,

U
2,~1

(q, t)+u
1
(q)D sin(Xt)D!iu

2
(q) cos(Xt) .

(193)

This results in a complete localization, i.e.,

P
L
(t)"1, D

0
(X(E

3
!E

2
. (194)

Throughout Eqs. (190)—(194), we set the initial phase in Eq. (172) equal to zero.
Starting from a coherent state localized in the left well, taken as the ground state of the harmonic

approximation, we depict in Fig. 11 the spatially resolved tunneling dynamics for DW(q, t)D2 at time
t"0 and at time t"458T for X"0.01"52.77D

0
, and S"3.17]10~3, yielding an exact

crossing between e
1,1

and e
2,~1

. For this value of n"458, the deviation which originates from
small admixtures of higher-lying quasienergy states to the initial coherent state, is exceptionally
large. For other times the localization is even better. It is hence truly remarkable that the coherent
destruction of tunneling on M1

-0#
(S, X), with D

0
(X(E

3
!E

2
, is essentially not affected by the

intrinsic time dependence of the corresponding Floquet modes, nor by the presence of other
quasienergy states ea,k, a"3,4,2

Hence, as discussed in Section 3.2.2, additional insight into the mechanism of coherent destruc-
tion of tunneling can be obtained if one simplifies the situation by neglecting all of the spatial
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Fig. 11. Coherent destruction of tunneling in a double well. The probability DW(q, t)D2 at t"458T (full line) is compared
with the initial state (dashed line, the dotted line depicts the unperturbed symmetric bistable potential). The parameters
are D"2, S"3.171]10~3 and X"0.01, i.e., X equals 52.77 times the unperturbed tunneling splitting.

information contained in the Floquet modes Ua(q, t) and restricting the influence of all quasiener-
gies to the lowest doublet only [67—72]. Such a two-state approximation cannot reproduce those
sections of the localization manifolds that are affected by resonances, e.g. the part in Fig. 10a that
bends back to S"0 for X(E

3
!E

2
, nor can it reproduce the correct dynamics for X'E

3
!E

2
.

Nevertheless, it provides a simple explanation of the CDT phenomenon for frequencies
E
3
!E

2
'X'D

0
. Then, the average over a complete cycle of the external perturbation yields

a static approximation with a frequency-renormalized splitting D
0
PD

%&&
, where

D
%&&
"J

0
(eL /X)D

0
, (195)

with SSu
1
DqDu

2
T"eL /2, and J

0
the zeroth-order Bessel function of the first kind. This gives for the

return probability P
L
(t) the approximate result of Eq. (100), i.e., P

L
(t)"cos2(J

0
(eL /X)D

0
t/2). On the

localization manifold M1
-0#

(eL , X), we find localization at the first zero j
0,1

of J
0
(eL /X), i.e.,

eL /X"2.404822, in agreement with the result in Eq. (88). On this manifold, P
L
(t) precisely equals

unity, i.e., the effective tunnel splitting vanishes. Thus one finds a complete coherent destruction of
tunneling. This high-frequency TLS approximation, as determined by the first root of J

0
(eL /X), is

depicted in Fig. 10a by a solid line. Note that, within the TLS-approximation to driven tunneling,
tunneling is always suppressed when X'D

0
. With X'E

2
!E

1
, this two-level prediction thus

fails to describe the numerically established enhancement of tunneling in the full double well away
from resonant transitions [24,25].

7. Sundry topics

The physics of driven tunneling, as demonstrated with the foregoing sections, exhibits a rich
structure and carries a potential for various prominent applications. In the following, we shall
report on some special applications that provide the seed for interesting new physics. Our selection
is by no means complete but has been determined mainly by our knowledge and prejudices only.
For example, we do not discuss here in detail the role of nonadiabatic CDT that controls the
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experimentally observed anomalous enhancement of ionization rates of laser-driven diatomic
molecules [149], or the vibrational mode-specific CDT-induced quenching of proton tunneling in
jet-cooled tropolene molecules [150]. Yet another application of CDT in nuclear physics is the
tunneling control in the periodically driven Lipkin N-body fermion system with SU(2) symmetry:
At CDT conditions a coherent suppression of tunneling between Hartree—Fock minima in the
N-fermion quantum system occurs [151].

7.1. Pulse-shaped controlled tunneling

Some important aspects involve the shaping of the driving field that itself can influence the driven
tunneling dynamics. For example, Bavli and Metiu [152] have demonstrated that a semi-infinite
laser pulse of appropriate shape can be used to conveniently localize a particle in a double-well
potential, hence creating a localized initial state as a superposition of energy eigenstates. This very
initial condition plays a key role for most of our discussion on driven tunneling throughout this
report. Pulse-shaping can be used also to directly influence the dynamics of the tunneling process.

Following the reasoning of Holthaus [153] we show that an appropriate shaping of the laser
pulse opens a pathway of controlling in situ the tunneling process. As a result, one finds that
population transfer in a bistable potential can be achieved on time scales which can be orders of
magnitude shorter than the bare tunneling time scale of the undriven system. Hence, this process is
opposite to the localization that characterizes CDT; it rather describes an acceleration effect for the
tunneling process. Within a pragmatic approach we use the bistable model discussed in Section 6,
i.e., a driven tunneling dynamics expressed in the dimensionless units, see Eqs. (174) and (175) by
the Hamiltonian

H(q, p; t)"
p2

2
!

q2

4
#

q4

64D
#qj(t) sin(Xt#/) , (196)

where j(t) describes the pulse shape. If E
1

and E
2
'E

1
denote the lowest eigenenergies of the

unperturbed double well with corresponding wave function u
1
(q) and u

2
(q), the tunneling dynam-

ics of the undriven system evolves in time as

W(q, t)"2~1@2e~*E1t[u
1
(q)#u

2
(q)e~*(E2~E1)t] , (197)

for which, after the “tunneling time”

q
0
"p/(E

2
!E

1
)"p/D

0
, (198)

the relative phase of the two wave functions has acquired the value of p. This implies that an
initially localized particle in one of the wells has tunneled after a time q

0
into the neighboring well.

For a fixed strength j(t)"j, the Floquet modes Ua(q, t; j)"Ua(q, t#T; j), see Eq. (7), with
T"2p/X, are solutions of a generalized Schrödinger equation with the eigenvalues becoming the
quasienergies eja. Let us next invoke the adiabatic principle for Floquet states: If the system is
prepared in a Floquet state and if the parameter j(t) is varied sufficiently slowly, the system remains
in the Floquet state connected to the initial one. This adiabatic Floquet principle [44—48] is not
obvious: Note that the quasienergies are dense in the first Brillouin zone !X/24e(X/2, and
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that the usual gap condition of the standard adiabatic theorem must be replaced by a condition on
the ineffectiveness of resonances [47,48]. Let the pulse j(t) now be switched on slowly from zero,
i.e., the pulse duration T

1
is much longer than the driving period T. The Floquet state W(q, t),

starting from

W(q, t"0) :"u
L
, (199)

see Eq. (197), evolves then adiabatically into

W(q, t)"2~1@2GW1
(q, t; j(t)) expC!iP

t

0

ds ej(s)
1 D#W

2
(q, t; j(t)) expC!iP

t

0

ds ej(s)
2 DH , (200)

with the relative phase acquiring after a complete duration T
1

of a pulse the value

D
T
(T

1
)"P

T
1

0

ds(ej(s)
2

!ej(s)
1

) . (201)

If the conditions are such that

D
T
(T

1
)"(2n#1)p, n"0,$1,$2,2 (202)

the initial localized wave function has, up to an irrelevant overall phase factor, evolved into
a localized wave function in the neighboring well. Thus, the pulse has forced the particle to tunnel
in time T

1
through the barrier. The advantageous feature of strong laser-pulse driving is now that

the quasienergy difference ej
2
!ej

1
may become much larger than the original tunnel splitting

D
0
"E

2
!E

1
; thus, the actual tunneling time q

T
, which now is defined by p"D

T
(q

T
), can assume

values much shorter than the bare tunneling time q
0

in Eq. (198). The viability of this mechanism
has been demonstrated with Ref. [153], wherein the time-dependent Schrödinger equation corre-
sponding to Eq. (196) was solved numerically with j(t) conveniently chosen as

j(t)"j
.!9

sin2(pt/T
1
), 04t4T

1
. (203)

The results are depicted in Fig. 12. The manipulation of the relative phase between the two
adiabatically moving components of the wave function results in speeding up the tunneling time
q
T

by orders of magnitude, e.g. q
T
K10~2q

0
in the calculation in Fig. 12. Intuitively, this speed-up

effect is rooted in the large differences of quasienergies with the corresponding Floquet states
acquiring admixtures from excited states that are located closer to the barrier top and, therefore,
these tunnel faster. It surely would be of interest to measure this tunneling acceleration with
suitably engineered semiconductor double-quantum well structures, or in laser-assisted tunneling
of proton transfer in molecules.

7.2. Chaos-assisted driven tunneling

A periodically driven nonlinear classical dynamics generally exhibits chaos [154,155]. Clearly,
the archetype system of a periodically driven, symmetric double well in Eqs. (172)—(175) is an ideal
candidate to study the interplay between nonlinear tunneling quantum dynamics and classical
Hamiltonian chaos. The parameter that controls the semiclassical limit is the scaled barrier height
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Fig. 12. Pulse-shaped controlled tunneling in the symmetric double well, Eq. (196), with dimensionless parameters
D"2.5, q

0
"49766 T, T"2p/X, and X"1.5, and with q

0
"p/(E

2
!E

1
) the tunneling time. The pulse function

j(t)"j
.!9

sin2(pt/T
1
) with T

1
"500T is used. The upper-half depicts the tunneling phase functional D

T
(T

1
)/p vs. the

maximal amplitude j
.!9

. For the maximal amplitudes j
.!9

satisfying the condition in Eq. (202), note the vertical lines in
the upper panel, a complete transfer of localization from “left” to “right” occurs, i.e., W(q, t"0)"u

L
PW(q, t"T

1
)"

u
R
. The lower half depicts the tunneling probability, DSu

R
DW(T

1
)TD2, vs. j

.!9
, as calculated numerically from the

time-dependent Schrödinger equation for the Hamiltonian (196). The agreement with the prediction from the adiabatic
Floquet principle is remarkable.

D"E
B
/+u

0
. While the phenomenon of coherent destruction of tunneling in a double well is

controlled by the dynamics in the deep quantum regime with D small, the semiclassical limit
amounts to letting DPR. In the latter case the number of doublets below the barrier becomes
very large. The idea that chaotic layers separating symmetry-related regular regions can give rise to
quantal tunneling is known as dynamical tunneling [156]. The fingerprints of dynamical tunneling
in the spectrum has been discussed by Bohigas et al. [157—160]. These works on chaos-assisted
tunneling were based on time-independent two-dimensional nonlinear oscillator systems. More-
over, tunneling through dynamical barriers has been studied with forced nonlinear oscillator
systems [161—163].

The effect of a chaos-assisted increase of the tunneling rate in a driven double well was first
pointed out by Lin and Ballentine [164,165], and by Plata and Gomez-Llorente [166]. By
monitoring the Husimi distributions [167,168] of the wave functions, these authors showed that for
certain values of the driving parameters for the Hamiltonian in Eq. (172) the rate of tunneling can
be enhanced by orders of magnitudes. This enhancement phenomenon should not be confused with

                                                  277



Fig. 13. Chaos-assisted driven tunneling: (a) Tunneling splittings D
n
"De

n,%
!e

n,0
D of associated (even and odd) pairs of

quasienergies in a driven, symmetric double well, see Eqs. (172)—(174) vs. driving strength S of the periodic driving
!qS cos(Xt). (b) Corresponding overlaps C

n
"1T:T

0
dt:K dpdq h

n,%
(q, p, t) of the corresponding Husimi representation

h
n,%

for the Floquet state W
n,%

with the chaotic layer K around the separatrix vs. driving strength S. The dimensionless
parameter values are D"8 and X"0.95.

the pulse-shaped enhancement discussed in Section 7.1; the latter is controlled by the (adiabatic)
lowest two quasienergy states in the deep quantum regime, the former is related to the interplay
between different topologies of phase space in the strongly driven system near the classical limit
with D<1.

The interplay between regular and chaotic regions in driven tunneling has been investigated in
terms of the Floquet spectrum by Utermann et al. [169,170]. The underlying scenario for
chaos-assisted driven tunneling is as follows.

For not too strong driving, the classical phase space of this system is characterized by a pair
of symmetry-related regular regions near the minima of the unperturbed potential, embedded
in a chaotic layer along the unperturbed separatrix. Quantal quasienergy states localized in
the regular regions form tunnel doublets with exponentially small splittings. These doublets
do break up, and their splittings will reach values of the order of the mean level spacing, as soon
as the associated pair of quantizing tori dissolves in the chaotic layer. Therefore, the tunnel
splittings depend strongly on the nature of regular vs. chaotic phase space regions to which the
corresponding pair of Floquet states predominantly belongs. These ideas have been tested by
studying the break-up of tunnel splittings D

n
versus the driving amplitude S, and comparing the

behavior with the measure of overlap C
n,%

of the Husimi representation of associated (even) Floquet
state with the chaotic region in the vicinity of the separatrix; for further details we refer to
[169,170].

Fig. 13, which depicts these measures as a function of driving strength S, shows a striking
qualitative agreement between the functional dependences of the splittings D

n
and the correspond-

ing overlaps C
n
of its corresponding Husimi representation with the chaotic layer. Both quantities

exhibit a transition to steep exponential growth as the chaotic sea (not shown) along the separatrix
spreads at the expense of regular regions around the potential minima.
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7.3. Even harmonic generation in driven double wells

As Bavli et al. [27—29] have shown, the phenomenon of coherent destruction of tunneling for
electrons in a quantum double well implies striking new features when related spectroscopic
quantities are investigated. By studying the dipole moment k(t) that is dynamically induced by the
action of the laser driving field, one encounters new phenomena such as anomalous even-
harmonic-generation (EHG), and a novel low-frequency radiation generation (LFG). These phe-
nomena are a priori rather surprising: The double well of the type in Eq. (172) in which the electron
is moving is symmetric, i.e., the undriven Hamiltonian is invariant with respect to a parity
transformation of the electron position q. Perturbation theory to all orders consequently implies
that such a system cannot produce even harmonics. We note, however, that the violation of this
selection rule takes place precisely at the same points in the parameter space MS,XN where the
necessary (but not sufficient) condition for CDT occurs, i.e., exact crossings between associated
pairs of quasienergies of opposite generalized parity symmetry P, cf. Eq. (177).

The new phenomena can be best understood in terms of the spectral properties of quasienergies.
In terms of the time-dependent wave function W(q, t) of the time-dependent Schrödinger equation,
i.e.,2

W(q, t)"+
a

Aa exp(!ieat/+)Ua(q, t) , (204)

and expanding the periodic Floquet mode Ua(q, t)"Ua(q, t#T) into Fourier series, i.e.,

W(q, t)"+
a

Aa exp (!ieat/+)
=
+

n/~=

exp(!inXt)c
n
(q; a) , (205)

we find for the time-dependent dipole moment

k(t)"SW(t)DqDW(t)T (206)

the spectral Floquet representation

k(t)"+
a

+
b

A*
aAb exp [i(ea!eb)t/+]

=
+

n/~=

=
+

m/~=

exp[i(n!m)Xt]P
=

~=

dq c*
n
(q; a)qc

m
(q;b) .

(207)

The generalized parity P : qP!q; tPt#T/2, cf. Eq. (177), implies even or odd generalized
parity P(a)"$1 for the Floquet modes Ua(q,t#T/2)"$Ua(q, t). In particular, one finds that
the integral in Eq. (207) vanishes, i.e.,

P
=

~=

dq c*
n
(q; a)qc

m
(q;b)"0 , (208)

if P(a)"P(b) and n!m is even, or P(a)OP(b) and n!m is odd.

2 If the drive has a constant amplitude, i.e., a pure periodic driving field, the coefficients Aa are independent of time. If
the system is driven by a semi-infinite pulse, the coefficients Aa become dependent on time, i.e., AaPAa(t), but become
again independent of time when the transients excited by turning on the pulse quiet down.

                                                  279



These selection rules describe all of the novel spectroscopic features discussed in Ref. [27]. There,
Bavli and Metiu have shown that EHG appears and LFG disappears when two quasienergies
become degenerate. Moreover, the selection rules explain why one cannot detect pure even
harmonics when the quasienergies do not exhibit exact crossings, and that one observes for an
initially localized state with P(a)OP(b) no shifted odd harmonics regardless of angular driving
frequency X and driving strength S. In somewhat greater detail we observe that the frequencies
u(a,b; n!m) occurring in the spectrum of k(t) have the form

+u(a,b; n!m)"ea(X,S)!eb(X,S)#(n!m)+X . (209)

Therefore, we can characterize the spectrum according to four types:

1. The static dipole component corresponds to a"b and n"m, and is independent of time. For
a symmetric system this term is always zero, except when n"m and P(a)OP(b) with
ea(X, s)"eb(X,S), i.e., at the exact crossing points that rule CDT. The dynamic localization
yielding CDT thus generates also a nontrivial dynamically induced static dipole moment!

2. Purely harmonic terms correspond to a"b and nOm. For a symmetric double well no terms
with (n!m) even appear, hence — away from points of accidental degeneracy — no even
harmonics are present in the spectrum.

3. Shifted harmonic terms correspond to aOb and nOm, and a progression of doublets occur at
+u(a,b; n!m)"(n!m)+X$[ea(X,S)!eb(X,S)]. If P(a)"P(b), then no shifted even har-
monics occur; if P(a)OP(b), then no shifted odd harmonics occur.

4. Finally, the fourth type occurs for aOb and n"m. They oscillate with frequency
u(a,b; 0)"[ea(X,S)!eb(X, S)]/+ and are termed “bandhead” terms by Bavli and Metiu.

As already mentioned, the spectrum changes as two Floquet states a and b possessing a different
generalized parity P(a)OP(b) approach each other, and become degenerate. Then, the frequency of
a “bandhead” term is becoming smaller, and eventually approaches zero. This is the effect of LFG,
which in turn provides the generation of a nonzero static dipole. Moreover, the two shifted
harmonics having the frequencies u(a,b; 2n)"2nX$[ea(X, S)!eb(X,S)]/+ collapse at the point of
degeneracy ea"eb with P(a)OP(b). In this limit, one observes a progression of (doubly degenerate)
even harmonics of frequency 2nX; hence, EHG. The dependence of the spectral weights on the
choice of initial condition, i.e., optical k(t"0)"0, versus tunneling initial conditions, i.e.,
k(t"0)"1, have been investigated in Ref. [28]. As mentioned at the beginning of this section,
tunneling initial conditions can be realized with a semi-infinite laser pulse [27,152]. Compared to
optical initial conditions, i.e., preparation in the ground state, localized initial conditions are more
difficult to realize, but preparation of such coherent states has been recently achieved experi-
mentally [171,172]. As demonstrated by Dakhnovskii and Bavli [28], a considerable amount of
LFG, but only weak EHG, can be obtained for excitation from the ground state.

For a discussion of the possibility to observe these effects experimentally we refer to the literature
[27]. They are not easy to detect, due to various dephasing effects. Good candidates to observe
these phenomena of EHG and LFG are quantum double-well heterostructures and optical
systems. Alternatively, generation of strong higher-order harmonics has been predicted for short
laser pulse driven diatomic molecular ions [173,174].
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7.4. General spin systems driven by circularly polarized radiation fields

The fact that the time evolution of a TLS in a circularly polarized field can be factorized in terms
of a time-independent Hamiltonian in Eq. (111) is surprising. We note that this factorization
involves a rotation around the z-axis, i.e., Da(t)TPDb(t)T" exp(!iS

z
Xt/+)Da(t)T. This feature can be

generalized to any higher-dimensional system, such as a magnetic system or a general quantum
system that can be brought into the structure which, in a representation where J

z
is diagonal, is of

the form

H(t)"H
0
(J2)#H

1
(J

z
)!eL [J

x
cos (Xt)!J

y
sin (Xt)] . (210)

Here, H
0
(J2) contains all interactions that are rotationally invariant (Coulomb interactions,

spin—spin and spin—orbit interactions). If we now define R(t) :"exp(!iJ
z
Xt/+) and observe that

R(t)J
x
R(t)~1"J

x
cosXt#J

y
sinXt ,

R(t)J
y
R(t)~1"!J

x
sinXt#J

y
cosXt , (211)

R(t)J
z
R(t)~1"J

z
,

we find upon substituting Eq. (211) into Eq. (210)3

HI (t),R(t)H(t)R~1(t)"H
0
(J2)#H

1
(J

z
)!eL J

x
. (212)

Hence, the transformed Hamiltonian becomes independent of time. With the propagator obeying


t
º(t, t

0
)"!

i
+
H(t)º(t, t

0
)"!

i
+
R~1(t)HI R(t)º(t, t

0
) ,

we find from


t

[R(t)º(t, t
0
)R~1(t

0
)]"!

i
+
HK [R(t)º(t, t

0
)R~1(t

0
)] , (213)

where

HK "HI #XJ
z
"H

0
#H

1
(J

z
)!eL J

x
#XJ

z
, (214)

that the propagator factorizes into the form

º(t, t
0
)"expA

i
+
J
z
XtB expA!

i
+
HK (t!t

0
)B expA!

i
+
J
z
Xt

0B . (215)

3Such a factorization method equally well applies to rotationally invariant Hamiltonians H
0

which are subject to
externally applied, monochromatic, spatially homogeneous, circularly polarized electric fields E(t)"!(d/dt)A(t), with
A(t)"X~1(E

0
cos (Xt),E

0
sin (Xt),0). Then the interaction with the field transforms into R(t)[p!QA(t)]2R~1(t)"

[p!QAI ]2, with AI "X~1(E
0
,0,0), and Q being the charge.
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Because exp(iJ
z
Xt/+) at times t"2p/X equals 1 for integer values of the angular momentum and

!1, for half-integer values, respectively, the propagator in Eq. (215) can be recast into the Floquet
form in Eq. (36), i.e.,

º(t#nT, 0)"º(t, 0)[º(T, 0)]n . (216)

With J
z
"$1,$2,2 , the Floquet form, cf. Eq. (35), is achieved already with Eq. (215). For

half-integer spin the corresponding Floquet form is obtained by setting for the propagator

º(t, t
0
)"expA

i
+AJz

#

+
2BXtB expA!

i
+AHK #

+
2
XB(t!t

0
)B expA!

i
+AJz

#

+
2BXt

0B , (217)

since the first and third contribution are now periodic with period T. Given the eigenvalues MeL aN of
HK , the exact quasienergies are given by the relation

ea"(eL a#+X/2)mod +X . (218)

The general results derived here carry a great potential for applications involving time-depen-
dent tunneling of spin in magnetic systems with anisotropy, and strongly driven molecular and
quantum optical systems as well.

7.4.1. Tunneling of giant spins in ac-fields
In recent years, macroscopic tunneling of magnetization has been the subject of intense research

[175,176]. More recently, the problem of tunneling of a giant spin with spin quantum number
J<1 under periodic magnetic field perturbation has attracted interest in connection with the
behavior of macroscopic magnetic moments in an anisotropic field [177,178]. Introducing
a WKB-analysis for semiclassical-driven quantum systems, these authors assess that, as a rule,
tunneling of spin is generally hampered rather than accelerated. One particular driven anisotropic
spin system is given by the Hamiltonian

H"!cJ2
z
!eL [J

x
cos (Xt)#J

y
sin (Xt)] , (219)

which is of the circularly polarized type considered in Eq. (210). The anisotropy, which produces
the “energy barrier”, is given by the term !cJ2

z
. For X"0, the ground-state splitting results as

[179]

+D
0
"eL A

eL
+cJB

2J~1
, J<1 . (220)

Tunneling of giant spin is shown to occur at frequencies X"+c, 2+c,2,J+c, with blocking of
tunneling occurring in between. In particular, for X obeying [178]

(2eL /e+cJ)4J;2X/+c;1, J<1 , (221)

where e denotes the basis of the natural logarithm, coherent tunneling is hampered. We note that,
by expressing (221) in terms of the energy splitting (220), this condition implies high-frequency
driving X<D

0
, with no conclusions being made about the behavior in the adiabatic regime.

282                                                   



8. Driven dissipative tunneling

Up to this point in our review we have investigated the effects of driving on a quantum system with
few degrees of freedom, under the hypothesis that this system could be considered as isolated from its
surroundings. This idealization often fails to describe thermal and dynamical properties of real
physical or chemical systems when the quantum system is in mutual contact with a thermal reservoir.
In this case, the system has to be considered as an open system. The coupling with a heat bath causes
damping of the quantum system and no longer is the dynamics predicted by the Schrödinger
equation [30—35]. In the following, we shall be interested in the investigation of the dynamical
behavior of a “small” quantum system in contact with a heat bath, and that additionally is subject to
an external, generally time-dependent force. We start the discussion of dissipative-driven tunneling by
presenting first the basic methodology used to describe quantum dissipation. In the following section
we discuss a Floquet—Markov—Born approximation to the dynamics which can be applied to highly
nonlinear systems under the assumption of weak coupling between the system and the reservoir, and
whenever the external driving field is periodic. An application of this method is considered in
Section 14.2, where driven tunneling in a dissipative double-well potential is discussed. In Section 10,
we shall present the real-time path integral technique, which allows to treat the dissipative influence
systematically. In particular, for a harmonic thermal bath, the bath degrees of freedom can be
eliminated exactly. We shall apply this method to investigate driven tunneling in dissipative
tight-binding systems in Sections 11—13, and the extended double-well system in Section 14.3.
A comparison between the path integral results and those of other methods will also be discussed.

8.1. The harmonic thermal reservoir

A great number of methods and techniques have been developed to investigate the thermo-
dynamics and dynamics of open quantum systems in the absence of driving. A basic approach is to
regard the system and reservoir as constituting a conservative many-body system. In this picture,
dissipation comes into play because of energy transfer between the small system and the large
environment. Once the energy is deposited into the environment, it is not returning within any
finite time scale of physical relevance (infinite Poincaré recurrence time). If the equations of motion
for the closed system are linear in the bath coordinates, the latter can be eliminated exactly and one
obtains closed equations for the damped system alone. This restriction on linearity assumes that
any bath degree of freedom is sufficiently weakly perturbed by the coupling with the small system
[30—35]. This is a physically reasonable assumption when the reservoir is macroscopic. It is
important to notice that this does not necessarily imply that the dissipative influence of the
environment on the small system is weak, because the number of bath degrees of freedom which
couple to the small system is very large. For a more detailed and complete description we refer to
books, reviews and articles such as, for example, Refs. [32—35]. Here, we generalize these concepts
to include the effects of time-dependent driving.

A general form of the Hamiltonian of the driven system-plus-reservoir complex which satisfies
the requirement of a linear coupling of the bath degrees of freedom to the system degree of freedom
is given by

H(t)"H
0
#H

B
#H

SB
#H

%95
(t) , (222)
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where H
0

is the Hamiltonian of the isolated, generally nonlinear system,

H
0
"p2/2m#»

0
(q) . (223)

Here we restrict ourselves to a one-dimensional system coordinate q. A generalization of the
formalism to higher-dimensional cases is straightforward. The terms H

B
#H

SB
describe the

reservoir as a set of N harmonic oscillators linearly coupled in the bath coordinates x
i
to the system

via the interaction term H
SB

. That is,

H
B
#H

SB
"

1
2

N
+
i/1
C
p2
i

m
i

#m
i
u2

i Axi
!

c
i

m
i
u2

i

F(q)B
2

D . (224)

Here, the term F2(q)+
i
c2
i
/2m

i
u2

i
has been introduced to avoid renormalization effects of the

potential »
0
(q) induced by coupling to the reservoir. The generally nonlinear function F(q)

describes a nonlinear system-bath coupling. Finally,

H
%95

(t)"!S(q)E(t) (225)

describes the interaction of the quantum system with an external force. For the sake of simplicity,
we shall further restrict our discussion to the case that the dissipation mechanism is strictly linear
in q, that is, F(q)"q, which describes a bi-linear system-bath coupling. Defining next
»

1
(q, t)"»

0
(q)!S(q)E(t), we find

H(t)"
p2

2m
#»

1
(q, t)#

1
2

N
+
i/1
C
p2
i

m
i

#m
i
u2

i Axi
!

c
i

m
i
u2

i

qB
2

D . (226)

Without driving, this Hamiltonian has been used to investigate quantum dissipation since the late
1950s [30,33—35,180—184]. In particular, Magalinskij [180] pioneered (see also [182,184]), the
so-termed “quantum Langevin equation” for the coordinate operator q, by starting from the full
system-plus-bath Hamiltonian. Generalized to our time-dependent Hamiltonian this Heisenberg
operator equation for the coordinate operator q takes the form

m
d2q(t)
dt2

#mP
t

t0

dt@c(t!t@)
dq(t@)
dt@

#

»
1
(q, t)

q
"f(t)!mc(t!t

0
)q(t

0
) , (227)

where t
0

denotes the time of initial preparation. Note that in the literature (but not here) the initial
term mc(t!t

0
) is frequently dropped4 assuming that with time t

0
P!R, lim

t0?~=
c(t!t

0
)"0.

By doing so, however, one neglects transient effects. Here,

f(t)"+
i
Ccixi

(t
0
) cos [u

i
(t!t

0
)]#

c
i

m
i
u

i

p
i
(t
0
) sin [u

i
(t!t

0
)]D (228)

4For a detailed discussion of the use and abuse of (quantum) Langevin equations using the stochastic force
m(t)"f(t)!mc(t!t

0
)q(t

0
) we refer to [185].
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is a random force operator obeying Gaussian statistics, with zero mean Sf(t)Tb"0, and force—force
correlation

K(t)"Sf(t)f(0)Tb"
+m
p P

=

0

duucJ @(u)[coth(+bu/2) cos (ut)!i sin (ut)] . (229)

Here, b"1/k
B
¹ is the inverse temperature. The bracket S Tb indicates the statistical average with

respect to the bath Hamiltonian H
B
. Moreover, cJ @(u) is the real part of the Fourier transform cJ (u) of

the time-dependent damping coefficient c(t) given by

c(t!t@)"
1
m

N
+
i/1

c2
i

m
i
u2

i

cos[u
i
(t!t@)] . (230)

It is interesting to observe that the result (229) for the force—force correlation function derived for
the oscillator model is a general result of the fluctuation-dissipation theorem, and is therefore
independent of the microscopic details of the harmonic bath [180]. In the classical limit +P0 the
quantum Langevin equation reduces to the well-known phenomenological Langevin equation with
memory-dependent damping, and where the force—force correlator of the classical force f

#-
(t)

satisfies Sf
#-
(t)f

#-
(t@)Tb"2mk

B
¹c(Dt!t@D).

8.2. The reduced density matrix

Starting from the full system-plus-bath Hamiltonian (222), the aim of the following sections will
be to evaluate the reduced dynamics of the system described by the reduced density operator
o(t)"Tr

B
M¼(t)N, where Tr

B
denotes the trace over the bath degrees of freedom of the Hamiltonian

(226), and with ¼(t) being the density operator of the system-plus-reservoir complex. In terms of
the density operator at initial time ¼(t

0
) and of the time evolution operator º(t, t

0
)"

Á expM!i:t
t0
dt@H(t@)/+N, where Á denotes the time-ordering operator, it reads

¼(t)"ºs(t, t
0
)¼(t

0
)º(t, t

0
) . (231)

In the following it will be convenient to consider an intial condition on ¼(t) of the Feynman—
Vernon type [186], that is, to assume that at the initial time t"t

0
the bath is in thermal

equilibrium and uncorrelated to the system. Hence, ¼(t
0
) has the form

¼(t
0
)"o

S
(t
0
)¼

B
, (232)

where ¼
B
"exp(!bH

B
)/Tr

B
Mexp(!bH

B
)N is the canonical density operator of the heat bath, and

o
S

that of the system described by the Hamiltonian H
S
(t)"H

0
#H

%95
(t). The inclusion of more

realistic initial preparations goes beyond the scope of this review. We refer to Refs. [34,187] where
this generalization is implemented for open systems without driving. Nevertheless, we observe that
while the effects of the initial preparation are crucial in the investigation of the transient dynamics
of the system, if the total system is ergodic, initial preparation effects will have decayed when the
asymptotic dynamics is considered.
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8.3. The environmental spectral density

It is convenient at this point to introduce the spectral function J(u) [32] of the environmental
coupling, i.e.,

J(u)"
p
2

N
+
i/1

c2
i

m
i
u2

i

d(u!u
i
) . (233)

Because we aim at the environment to constitute a proper heat bath, we shall consider J(u) to be
continuous. Hence, the sum in Eqs. (230) and (233) may be replaced by an integral. In doing so one
obtains

J(u)"umcJ @(u) . (234)

The model described by the Hamiltonian (226) is thus completely fixed by the mass m, the
time-dependent potential »

1
(q, t) and by the spectral density J(u).5 Moreover, the latter is

completely determined by the frequency-dependent damping coefficient cJ @(u) which already ap-
pears in the classical equations of motion. Hence, whenever J(u) cannot be extracted from
microscopical considerations on the composite system, a conventional molecular dynamics simula-
tion may be used to compute cJ @(u), and in turn J(u). When the damping coefficient is frequency-
independent, i.e., cJ (u)"c, the dynamics is memoryless, and the spectral density assumes the Ohmic
form

J(u)"mcu . (235)

This corresponds in the classical case to a Langevin equation with delta-correlated Gaussian
random forces (white noise). In reality, any physical spectral density falls off in the limit uPR.
Hence, a cutoff frequency u

#
on the spectral density has to be introduced, which sets the time scale

q
#
"1/u

#
for inertia effects in the reservoir. For example, for the Drude-regularized kernel

c(t)"cu
#
exp(!u

#
t) the spectral density reads

J(u)"
mcu

1#u2/u2
#

. (236)

This is of the Ohmic form when u;u
#
. Very often in the literature the case of Ohmic friction with

an exponential cutoff is considered. In this case

J(u)"mcue~u@u# . (237)

This reasoning can be extended to consider the case of general frequency-dependent damping. That
is, it is assumed that the spectral density has a power-law dependence on the frequency for
frequencies less than a characteristic cutoff frequency u

#
. Introducing a cutoff function f (u,u

#
), the

spectral density then has the form

J(u)Jc
4
usf (u,u

#
), f (u,u

#
)P0 if u<u

#
, (238)

5This fact, for example, no longer holds true if one considers a different system-bath coupling, such as a coupling to
a bath composed of two-level systems.

286                                                   



where s'0. As already discussed, the case s"1 describes Ohmic damping. The cases 0(s(1,
and s'1, are known as sub-Ohmic and super-Ohmic, respectively. The case of Ohmic friction is
important, e.g., for charged interstitials in metals or in Josephson systems. On the other hand,
super-Ohmic dissipation with s"3 or s"5 (depending on the properties of the strain field)
describes the low-temperature dynamics of a phonon bath in the bulk [34].

It is clear that the assumption of Eq. (238) may oversimplify the problem for frequencies u of the
order of, or greater than u

#
. Nevertheless, whenever J(u) falls off at least as some negative power of

u when uPR, the effects of the environmental high-frequency modes can be absorbed into
a renormalization of the parameters appearing in the Hamiltonian H

S
of the system; see [188] for

the case of a double-well system.

9. Floquet—Markov approach for weak dissipation

In this section we shall describe the Floquet—Markov—Born approximation to the dynamics,
which can be applied to strongly nonlinear systems under the assumption of weak coupling between
the system and the reservoir, and whenever the external driving field E(t) is periodic, i.e., if

E(t#T)"E(t), T"2p/X . (239)

This method combines the Markov—Born approach to quantum dissipation (leading to a master
equation for the reduced density operator) with the Floquet formalism, cf. Section 2, that allows to
treat time-periodic forces of arbitrary frequency and strength. While the Floquet formalism
amounts to using an optimal representation and is exact, the simplification brought by the
Markov—Born approximation is achieved at the expense of the regime of validity of the method.
The Markov—Born approximation, in fact, restricts the application of the master equation for the
reduced density operator to weakly damped systems for which the dissipative relaxation times are
large compared to the relevant time scales of the isolated system, and also to the thermal time scale
+b. For example, for Ohmic damping, the Markov—Born approximation requires that the condi-
tions +c;k

B
¹, and c;Da,l are satisfied, where Da,l are the transition frequencies of the central

system, see Eq. (247) below. A subtle point is that the results so obtained depend on whether the
Markovian approximation is made with respect to the eigenenergy spectrum of the small quantum
system without driving, or with respect to the quasienergy Floquet spectrum of the small quantum
system in the presence of driving [189], that is, the two procedures do not commute. Here we shall
report on the results of a Markovian description of the dynamics based on a quasienergy spectrum.
This method has recently been applied to the parametrically driven harmonic oscillator [190], and
to the dissipative tunneling of a particle in a driven bistable potential [191,192]. The latter case is
discussed in Section 14.2.

9.1. Generalized master equation for the reduced density operator

The starting point of this method is the equation of motion for the reduced density operator
o(t)"Tr

B
M¼(t)N (where Tr

B
denotes the trace over the bath degrees of freedom of the Hamiltonian

(222)), as it can be derived from the Liouville—von Neumann equation

¼Q (t)"!(i/+)[H(t),¼(t)] (240)
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for the full density operator ¼(t) of system-plus-reservoir. For simplicity, we assume that at the
initial time t"t

0
the bath is in thermal equilibrium and is uncorrelated with the system, cf. (232).

Under the hypothesis of a weak coupling to the reservoir, a transformation into the interaction
picture allows a weak coupling expansion with respect to the interaction Hamiltonian H

SB
. Tracing

out the bath degrees of freedom, and by making a Markovian approximation by assuming that the
autocorrelations of the bath decay on a time scale +/k

B
¹ much shorter than the time scale 1/c of the

system correlations, one arrives at equations of motion for the reduced density matrix. They have
the form [193—195]

oR (t)"!

i
+
[H

S
(t),o(t)]!

1
+2P

=

0

dqMK@(q)[q, [qJ (t!q, t), o(t)]]!iKA(q)[q, [qJ (t!q, t),o(t)]
`

]N ,

(241)

where K@(q) and KA(q) are the real and imaginary parts, respectively, of the force—force correlation
function K(q) in Eq. (229). Here, [A, B]

`
"AB#BA is the anticommutator, while the tilde

denotes the interaction picture defined by

AI (t, t@)"ºs
0
(t, t@)Aº

0
(t, t@) , (242)

º
0
(t, t@)"Á expA!

i
+P

t

t{

dtA (H
S
(tA)#H

B
)B , (243)

with Á the time-ordering operator.

9.2. Floquet representation of the generalized master equation

In Section 2 we saw that for a time-periodic Hamiltonian H
S
(t), the Floquet theorem asserts that

there exists a complete set of solutions of the form

DWa(t)T"e~*eat@+DUa(t)T, DUa(t#T)T"DUa(t)T . (244)

The quasienergy ea plays the role of a phase and therefore is only defined mod +X. We shall apply
the Floquet theorem to the Hamiltonian H

S
(t)"H

0
#H

%95
(t), cf. Eq. (222), and use the basis

MDWa(t)TN of the undamped system as an optimal representation to decompose states and operators.
In particular, the matrix elements Xab(t) of the position operator q with the representation of states
DWa(t)T read

Xab(t)"e*(ea~eb)t@+SUa(t)DqDUb(t)T"+
k

e*DabktXabk , (245)

where

Xabk"
1
TP

T

0

dt e~*kXtSUa(t)DqDUb(t)T , (246)
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and where the transition energies are given by

+Dabk"ea!eb#k+X . (247)

The fact that the Floquet states DWa(t)T solve the Schrödinger equation allows for a formal
simplification of the master equation (241). Representing the density operator in this basis, i.e.,

oab(t)"SWa(t)Do(t)DWb(t)T , (248)

the master equation takes the form

oR ab(t)"
1
p+P

=

0

duJ(u)n
5)
(u)P

=

0

dq e*uqRab(t!q, t)

#

1
p+P

=

0

duJ(u)[1#n
5)
(u)]P

=

0

dq e~*uqRab(t!q, t)#h.c. , (249)

where n
5)
(u)"1/[exp(+u/k

B
¹)!1] gives the thermal occupation of the bath oscillator with

frequency u, and

Rab(t!q, t)"+
a{b{

(Xaa{(t!q)oa{b{(t)X
*
bb{(t)!X*

a{a(t)Xa{b{(t!q)ob{b(t)) . (250)

Inserting next the identity :=
0

dq e*uq"pd(u)#P(i/u), withP denoting the principal value, and the
Fourier expansion (246) of the matrix elements Xab(t), the equation of motion (249) for oR ab can be
expressed in terms of the time-independent matrix elements XabkX

*
a{b{k{, multiplied by phase factors

exp[i(Dabk!Da{b{k{)t].

9.3. Rotating-wave approximation

The resulting equation is still rather complicated so that, frequently, the rotating-wave approxi-
mation (RWA) is introduced [189]; cf. also Section 3.2.1. In the RWA it is usually assumed that
phase factors exp[i(Dabk!Da{b{k{)t] oscillate faster than all other time dependences, and hence can
be neglected. This argument applies, however, only to quasienergy spectra that do not possess
systematic degeneracies or quasidegeneracies. For the case of the parametric harmonic oscillator,
for example, which has the peculiarity of equidistant quasienergy levels the condition
(a!b, k)"(a@!b@, k@) is sufficient to ensure Dabk"Da{b{k{; thus, these terms have to be kept in the
RWA [190]. For the driven double well, in the vicinity of the manifold where relevant quasienergy
crossings occur, cf. Section 6, the conservative time evolution contains very small energy scales,
and correspondingly large time scales. In order to obtain an adequate description for the reduced
dynamics one can only drop terms with kOk@ [191,192]. Within the simplest RWA one finds [189]

oR aa(t)"+
l

[Aaloll(t)!Alaoaa(t)] ,

oR ab(t)"!

1
2

+
l

(Ala#Alb)oab(t), aOb ,
(251)
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where

Aab"
=
+

k/~=

[cabk#n
5)
(DDabkD)(cabk#cba~k

)] ,

cabk"2ph(Dabk)J(Dabk)DXabkD2 .
(252)

Hence, within the simplest RWA two decoupled subsets of equations are obtained. One subset
describes the approach of the diagonal elements towards a steady state (dissipation), while the
other is concerned with the decay of the off-diagonal elements (effect of decoherence). The
time-independent coefficients Aab contain the specifics of the potential and driving through the
quasienergy differences Dabk, and Floquet modes via Xabk. The equation for the nondiagonal
elements is easily integrated, and predicts exponentially vanishing off-diagonal elements at long
times. Hence, the reduced density matrix becomes diagonal in the Floquet basis at long times.
These features are a consequence of the RWA, they do not hold true if such an approximation is not
performed.

We shall discuss the predictions of Eq. (241) for the case of a particle in a driven double-well
potential in greater detail in Section 14.2 below.

10. Real-time path integral approach to driven tunneling

10.1. The influence-functional method

A very useful tool to describe non-equilibrium time-dependent dissipative phenomena is the
real-time path integral approach. Within the simple phenomenological model described by the
Hamiltonian in Eqs. (224) and (226), it enables to evaluate the trace operation involved in
the definition of the reduced density matrix o(t)"Tr

B
M¼(t)N of the relevant system exactly. Here,

we shall assume the factorized intial condition (232) for the total density matrix ¼(t), and refer to
[34,187] for the case of more general initial conditions.

As proposed by Feynman and Vernon [186], to carry out the reduction it is convenient to
express the reduced density matrix (RDM) in the coordinate representation of the full time
evolution operator º(t, t

0
). Introducing the N-component vector x(t

k
) :"x

k
"(x

k,1
,2,x

k,N
) for the

bath coordinates at time t
k
, and setting x(t)"x

&
, the matrix elements of the RDM at time t read

o(q
&
, q@

&
; t) :"Pdx

&
Sq

&
x
&
D¼(t)Dq@

&
x
&
T . (253)

Using next the path-integral representation of the time evolution operator in the coordinate
representation, o(q

&
, q@

&
; t) may be expressed in terms of the initial density matrix o(q

*
, q@

*
; t

0
) at the

time t
0

as [34,187]

o(q
&
, q@

&
; t)"P dq

*Pdq@
*
J(q

&
, q@

&
, tDq

*
, q@

*
, t

0
)o(q

*
, q@

*
; t

0
) . (254)
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Here J is the propagating function of the reduced density which can be expressed as the double
path-integral

J(q
&
, q@

&
, tDq

*
, q@

*
, t

0
)"PDqPDq@A[q]B[q]A*[q@]B*[q@]F[q,q@] , (255)

where the sum is over all real-time paths q(t@), q@(t@) obeying the constraints q(t
0
)"q

*
, q@(t

0
)"q@

*
,

and q(t)"q
&
, q@(t)"q@

&
. The quantity

A[q]"expG
i
+P

t

t0

dt@C
1
2
mqR 2!»

0
(q)DH (256)

is the probability amplitude of the quantum system to follow the path q(t@) in the absence of
external driving and fluctuating forces f(t). The factor

B[q]"expG
i
+P

t

t0

dt@E(t@)S(q(t@))H (257)

incorporates the effect of the external driving force, cf. (225), and F[q, q@] is the Feynman—Vernon
influence functional which describes the influences of the fluctuating force. For a harmonic bath
(Gaussian statistics), it takes the form F[q, q@]"expM!U[q, q@]/+N, with

U[q, q@]"i(mc(t
0
)/2)P

t

t0

dt@ (q2(t@)!q@2(t@))

#

1
+P

t

t0

dt@P
t{

t0

dtA(q(t@)!q@(t@))(K(t@!tA)q(tA)!K*(t@!tA)q@(tA)) , (258)

where K(t) is the force autocorrelation function given in Eq. (229). Finally, :Dq symbolically means
summation in function space over all paths with the end-points (q

&
, q@

&
) held fixed. Hence, the price

to be paid for the exact evaluation of the trace over the bath degrees of freedom is the appearance of
a term that is nonlocal in time in the influence functionalF[q, q@]. The latter couples the same path
q or q@, as well as the two different paths q, q@, at different times. To better illustrate the effect of the
influence functional F[q, q@], it is useful to introduce center of mass and relative coordinates, i.e.,

g(t)"q(t)#q@(t), m(t)"q(t)!q@(t) . (259)

Here g(t) describes propagation along the diagonal of the density matrix, while the path m(t) is
a measure of how far the system gets off-diagonal while propagating. In terms of these new paths
one obtains for UI [g, m]"U[q, q@] [34,187],

UI [g, m]"
1
+P

t

t0

dt@P
t{

t0

dtAm(t@)K@(t@!tA)m(tA)

# i(m/2)P
t

t0

dt@P
t{

t0

dtAm(t@)c(t@!tA)gR (tA)# i(m/2)g
0P

t

t0

dt@ c(t@)m(t@) , (260)
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with g
0
"g(t

0
), and where K@(t) is the real part of the kernel K(t), cf. (229). Equivalently, by

performing two partial integrations, the influence functional can be recast in the form

UI [g, m]"!

1
+P

t

t0

dt@P
t{

t0

dtA[mQ (t@)¸@(t@!tA)mQ (tA)#imQ (t@)¸A(t@!tA)gR (tA)]

# m(t)P
t

t0

dtA[¸@(t!tA)mQ (tA)#i¸A(t!tA)gR (tA)]# ig
0Cm(t)¸A(t)!P

t

t0

dt@m(t@)¸A(t@)D ,

(261)

with ¸@(t) and ¸A(t) being the real and imaginary parts of

¸(t)"
1
+pP

=

0

du
J(u)
u2

cosh(+ub/2)!cosh[u(+b/2!it)]
sinh(+ub/2)

, (262)

respectively.
Using this method an exact analytical solution has been discussed for the driven, dissipative

parametric harmonic oscillator [63]. In Sections 11—13 we shall describe an application to the
study of tunneling in driven tight-binding systems. In the remainder of this section, instead, we shall
briefly discuss a numerical methodology to discretize the full Feynman propagator. Using this
method some results on the driven two-level-system and on the driven double-well system are
discussed below in Sections 12 and 14.3, respectively.

10.2. Numerical techniques: ¹he quasiadiabatic propagator method

The quasiadiabatic propagator path-integral method (QUAPI) [196—198] allows efficient real-
time path-integral calculations that may even span long time intervals. In the QUAPI, an
appropriate partitioning of the propagator leads to a modified path-integral expression which
contains the one-dimensional propagator describing the evolution of the uncoupled system along
bare paths, and a nonlocal influence functional that includes multidimensional corrections to the
bare paths. To achieve this, one divides the total time into M small time intervals Dt"(t!t

0
)/M.

Denoting now H
0
#H

%95
(t)"H

S
(t), and the bath contribution H

B
#H

SB
of the N harmonic

oscillators in Eq. (226) as

H
B
#H

SB
"H

R
:"

N
+
j/1

H(j)
R

(q) , (263)

the propagator between time t
k
"kDt and t

k`1
"t

k
#Dt is split symmetrically as

º(t
k`1

, t
k
)"Áe!i/+: tk`1

tk
dt@H(t@)

"Áe!i/+[H
R
Dt#: tk`1

tk
dt@H

S
(t@)]

+e~*HR
Dt@(2+)º

S
(t
k`1

,t
k
)e~*HR

Dt@(2+) , (264)

where

º
S
(t
k`1

, t
k
)"Áe!i/+: tk`1

tk
dt@H

S
(t@) . (265)
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Because the operators H
S
and H

R
do not commute, the splitting is not exact, and the error is of the

order of [H
R
, [H

S
,H

R
]]Dt3. The short-time propagator in the position representation between the

time t
k

and the time t
k`1

is then given by

Sq
k`1

x
k`1

Dº(t
k`1

,t
k
)Dq

k
x
k
T+Sq

k`1
Dº

S
(t
k`1

,t
k
)Dq

k
T

]
N
<
j/1

Sx
k`1,j

De~*H(j)
R (qk`1)Dt@2+e~*H(j)

R (qk)Dt@2+Dx
k,j

T ,

and is usually termed the quasiadiabatic propagator. It describes the exact dynamics of the relevant
system in the limit of vanishing coupling to the bath. Introducing next the discretized (with respect
to time) paths q(t) and q@(t), i.e., the evolution of the paths q, q@ from the time t

0
to the time t"MDt

is described by the finite sequences Mq
0
, q

1
,2, q

M
N, Mq@

0
,2, q@

M
N, and performing the trace over the

bath degrees of freedom, the time evolution of the RDM is described by the multidimensional path
integral

o(q
&
, q@

&
, t)"P dq

02Pdq
M~1P dq@

02P dq@
M~1

]Sq
&
Dº

S
(t, t

M~1
)Dq

M~1
T2Sq

1
Dº

S
(t
1
, t

0
)Dq

0
T

]Sq
0
Do(t

0
)Dq@

0
TSq@

0
Dºs

S
(t
1
, t

0
)Dq@

1
T2Sq@

M~1
Dºs

S
(t, t

M~1
)Dq@

&
T

]F[Mq
0
, q

1
,2, q

&
N,Mq@

0
, q@

1
,2, q@

&
N] . (266)

Here, F[Mq
0
, q

1
,2, q

&
N,Mq@

0
, q@

1
,2, q@

&
N] is the Feynman—Vernon influence functional evaluated on

the discretized paths q, q@ where we have set q
&
"q

M
, q@

&
"q@

M
. In the limit MPR the expression

(258) for the influence functional is recovered. To calculate the multidimensional path-integral
numerically, one needs to discretize the paths also in space. A conventional trapezoidal calculation
would require a fine grid which would lead to very high-dimensional sums. A more convenient
method is to use the minimal number of basis functions for which evaluating the matrix elements in
Eq. (266) is sufficient to describe the system dynamics. A useful observation is that, in the absence of
driving and of coupling to the bath, the propagator for the uncoupled system is diagonal in the
basis MDu

*
TN of the energy eigenstates of the time-independent Hamiltonian H

0
. On the other hand,

the influence functional is conveniently expressed in the basis MDu
*
TN in which the operator q is

diagonal. Hence, in the absence of driving, a useful choice for the basis functions is the discrete
variable representation (DVR) [199]. This amounts to choose the first n energy eigenstates Du

j
T of

the system Hamiltonian H
0
, and to perform the unitary transformation

Du
*
T"

n
+
j/i

¸
i,j

Du
j
T , (267)

that selects n position eigenstates Du
*
T by means of the orthogonal transformation matrix ¸

i,j
. This

diagonalizes the coupling and gives an appropriate approximation for the requirement of com-
pleteness of the discrete basis. The number n of energy eigenstates chosen depends on the problem,
and it is usually between 2 and 20. The path integral is then decomposed into sums over matrix
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elements in the DVR basis multiplied with the influence functional evaluated at the eigenvalues of
the position operator. In the presence of driving, the time-dependent Hamiltonian H

S
(t) is not

anymore diagonal in the basis of H
0
, though the choice of the discrete set MDu

*
TN continues to be

convenient for the numerical calculations. Recently, a novel basis set constructed in terms of
appropriate moving basis sets has also been proposed [196]. The practical applicability of the
QUAPI method depends critically on the dimension of the multidimensional path-integral. The
numerical effort for global evaluation of the path integral grows exponentially with the number of
time slices. If one is interested in the long-time dynamics, iterative schemes are therefore necessary.
For this to work, the fact that the range of nonlocal interactions in the influence functional
described by the correlation function K(t) in Eq. (229) is finite in time, with a maximum at t"0, is
crucial. Then, the path integration can be truncated, and the time evolution equation leads to an
iterative tensor multiplication scheme [197,198]. The number of time steps after which the path
integration is truncated determines the rank of the tensor in the multiplication scheme. Despite the
fact that the range of nonlocal interactions is finite in time, it decays only algebraically for Ohmic
damping at temperature ¹"0, and exponentially for ¹'0 [34]. This has to be taken into
account at very low temperatures, when the length of the convergence factor, as given by the bath
correlations, diverges. Finally, it is worth remarking that the discrete variable representation of the
QUAPI offers a direct way of reducing an extended double-well dynamics to a reduced, finite-
level-system dynamics continuously, by decreasing the number of DVR states. More generally, the
DVR method should provide an unified approach to investigate the dynamics of continuous or
tight-binding models. The QUAPI method has been sucessfully applied to investigate the driven
spin—boson system [200—202], and part of the results found will be discussed in Section 12. In
Section 14.3 we discuss the results of the QUAPI on dynamical hysteresis in the driven and
dissipative double-well potential [203,204].

11. The driven dissipative two-state system (general theory)

11.1. The driven spin-boson model

In this section we shall investigate the driven dynamics of a dissipative two-level system (TLS).
As discussed in Section 3, the driven TLS can model the physics of intrinsic two-level systems, such
as spin 1

2
particles in external magnetic fields or, more generally, the motion of a quantum particle

at low temperatures in an effective double-well potential in the case that only the lowest energy
doublet is occupied. In this latter case, the dissipative TLS can describe, for example, hydrogen
tunneling in condensed media [205], tunneling of atoms between an atomic-force microscope tip
and a surface [206],6 or of the magnetic flux in a superconducting quantum interference device
(SQUID) [208]. Recent experiments on submicrometer Bi wires have measured transition rates of
two-level systems coupled to conduction electrons [209,210]. Moreover, since the seminal works

6Here, the quantum dissipation for Xe-atoms tunneling between an atomic-force-microscope tip and a Ni(100) surface
is Ohmic-like [207].
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by Marcus [211] and Levich [212] this same model has been applied to describe nonadiabatic
chemical reactions in the condensed phase, such as electron transfer (ET) [35,213—217] or proton
transfer reactions [218,219].

As illustrated in Section 3, to investigate tunneling problems, the two-level system is conve-
niently described by the pseudospin Hamiltonian (65)

H
0
:"H

TLS
"!

+
2

(D
0
p
x
#e

0
p
z
) . (268)

The basis is chosen such that the states DRT (right) and D¸T (left) are eigenstates of p
z

with
eigenvalues #1 and !1, respectively. The interaction energy +D

0
is the energy splitting of

a symmetric TLS due to tunneling. Because of its fundamental role in the understanding of the
interplay among quantum coherence, dissipation and driving in nonlinear quantum systems, we
shall dedicate all of this section to the driven and dissipative two-level system. Moreover, this
problem can — to a large extent — be treated in analytical terms.

Quite generally, the stochastic influence of the bath results in a reduction of the coherent
tunneling motion by incoherent processes [32—35], and may even lead to a transition to local-
ization at zero temperature [220]. An important question is to which degree the dissipative
TLS dynamics is influenced by externally applied time-dependent fields [67,68,191,192,
200—202,221—250]. In particular, as discussed in Section 3.2.2, in the absence of interaction with
a bath, a complete destruction of tunneling can be induced by a coherent driving field of
appropriate frequency and strength [24,67,68]. This effect persists in the presence of dissipation
[191,192,225,226,229,238]. The transition temperature above which quantum coherence is de-
stroyed by a stochastic environment is modified by a driving field [225,226,238]. The possibility to
control a priori the proton transfer by an electric field has been first addressed in [223] in the
classical limit. This same issue applied to the case of electron transfer rate in a polar solvent was
subsequently discussed in [227,228]. Long-time coherent oscillations may arise due to driving
induced correlations between tunneling transitions [191,192,200—222,229,246]. Other interesting
examples of control of the TLS dynamics are the enhancement of the TLS response to a weak
coherent signal [232,233] for optimal values of the temperature, i.e., quantum stochastic resonance
(QSR), see Section 12.1.4, or of the periodic asymptotic tunneling amplitude vs. friction strength
[200]. The possibility of inversion of the population between the donor and the acceptor in an ET
process has been recently investigated in [225,228,236], while a stabilization of the transfer rate by
a periodic field has been discussed in [201,202]. Novel effects, such as an exponential enhancement
of the transfer rate by an electric field modulating the coupling between the localized states has
been addressed recently in [238]. Finally, interesting phenomena arise when a stochastic (e.g. of the
dichotomous type) modulation of the intersite coupling [239,240] or of the asymmetry energy
between the two-state-system [241] is applied.

We shall apply here the path-integral formalism described in the previous section to investigate
the reduced dynamics of the driven and dissipative TLS. As a first step to characterize the
driven dissipative TLS, we have to specifiy the Hamiltonian term H

%95
(t) introduced in Eq. (222)

describing the interaction with external time-dependent fields. Usually, only the effects of a
driving field modulating the asymmetry energy between the two wells are considered
[200—202,221—236,244,246—250]. Here, following [238,243], we generalize the model to include the
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possibility of external (multiplicative or additive) modulation of the coupling energy between the
localized states. This time dependence of the coupling parameter could arise, for example, from an
ac-modulation of the barrier height or width of the underlying double-well potential, and could be
realized in a superconducting loop with two Josephson junctions [208]. We observe that (see the
detailed discussion in Section 12 below), while the effect of asymmetry modulation is additive,
a barrier modulation results in a multiplicative (exponential) modification of the coupling para-
meter. Another example of time-dependent tunneling-coupling may arise in long-range bridge-
assisted electron-transfer (ET) [239,240]. In this case, the direct coupling between donor and
acceptor is negligibly small to cause ET. However, the intervening medium can provide states
which serve as a “bridge” in the long-range ET, and hence induce a stochastically fluctuating
effective electronic coupling between donor and acceptor states. A general Hamiltonian for the
driven TLS reads

H
TLS

#H
%95

(t)"!1
2
+[D(t)p

x
#e(t)p

z
] . (269)

Here, D(t) and e(t) are explicitly time-dependent, but generally are not periodic. The specific form of
this time dependence depends on the characteristics of the driving fields.

Finally, like in Eq. (224), we characterize the thermal bath as an ensemble of harmonic
oscillators described by the Hamiltonian H

B
, and we consider bi-linear couplings to the heat bath

that are sensitive to the value of the position operator p
z
. For example, a dipole-local-field coupling

provides a simple physical model for this type of coupling. In this discretized representation the
interaction Hamiltonian H

SB
assumes the form H

SB
"!(p

z
d/2)+

i
c
i
x
i
:"!p

z
X/2, where x

i
is

a bath coordinate and d is the tunneling distance. We end up with the time-dependent spin—boson
Hamiltonian7

H(t)"!1
2
+[D(t)p

x
#e(t)p

z
]!1

2
p
z
X#H

B
, (270)

with

H
B
"

1
2

+
i
A
p2
i

m
i

#m
i
u2

i
x2
i B . (271)

In the following we derive formally exact solutions for the reduced density matrix and discuss
analytical and numerical approximations. Moreover, we illustrate some important examples of
control of tunneling by external monochromatic or polychromatic fields and discuss the phenom-
enon of quantum stochastic resonance.

11.2. The reduced density matrix (RDM) of the driven spin—boson system

We wish to compute the reduced density matrix (RDM) o(t)"Tr
B
M¼(t)N of the driven

spin—boson system. We consider a factorized initial state ¼(t
0
)"o

S
(t
0
)¼

B
for the density matrix

¼(t) of system-plus-reservoir.

7Note that throughout this and the next section the “bare” tunneling splitting D
0

in Eq. (268) denotes the tunneling
splitting that is already renormalized by high-frequency mode contributions of the bath with frequency u'u

#
, with

u
#
appearing in the spectral density J(u) in Eq. (238) [188].
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In particular, we suppose that at times t(t
0

the particle is held at the site p
z
"1 with the bath

being in thermal equilibrium. For this problem the RDM is a 2]2 matrix with matrix elements
op,p{ :"o(p,p@; t), where p,p@"$1, whose knowledge enables the evaluation of the expectation
value of any observable related to the TLS. In particular, as discussed in Section 3, the knowledge
of the RDM is equivalent to knowing the expectation values Sp

i
T
t
:"TrMo(t)p

i
N, cf. Eq. (69). In the

localized representation we prefer to use, Sp
z
T
t
describes the population difference of the two

localized states. It provides therefore direct information on the dynamics of the TLS. In order to
evaluate other observables related to the TLS, such as e.g. the coherences, one must evaluate the
expectations values Sp

x
T
t
and Sp

y
T
t
.

In the presence of driving and dissipation the quantum coherent motion described earlier by
Eqs. (72)—(74) will be modified. Let us next investigate these modifications.

11.2.1. Exact path-integral solution for the RDM
For a harmonic bath, the trace over the bath degrees of freedom prescribed in the definition of

o(t) can be performed exactly by using the Feynman—Vernon path-integral method [186] discussed
in Section 10. In particular, the matrix elements op,p{ of the reduced density matrix are expressed in
terms of the double path integral in Eq. (255) as

op,p{(t)"PDqPDq@A[q]B[q]A*[q@]B*[q@]F[q, q@] , (272)

in which the sum is over all real-time paths q(t@), q@(t@) with the imposed constraints
q(0)"q@(0)"d/2, q(t)"pd/2 and q@(t)"p@d/2 (p"$1,p@"$1).8 The quantity A[q] is the
probability amplitude of the TLS to follow the path q(t@) in the absence of driving and fluctuating
forces. The factor B[q] incorporates the effect of the driving force, and F[q, q@] is the Feynman—
Vernon influence functional, cf. Eq. (258). For the driven TLS it is convenient to slightly modify the
definition of the center of mass and relative coordinates in Eq. (259) in order to obtain dimension-
less coordinates. We introduce

m
TLS

(t)"[q(t@)!q@(t@)]/d, g
TLS

(t@ )"[q(t@)#q@(t@)]/d . (273)

Now, a two-state system starting out from a diagonal state of the density matrix is again in
a diagonal state after any even number of transitions, and in an off-diagonal state after any odd
number of transitions. Hence, m

TLS
(t)"0 and g

TLS
(t)"1 or !1 depending on whether one is in the

state o
1,1

:"RR or o
~1,~1

:"LL of the RDM, respectively. On the other hand, g
TLS

(t)"0 and
m
TLS

(t)"1, or !1, if one is in the state o
1,~1

:"RL, or o
~1,1

:"LR. Suppose that we want to
evaluate Sp

z
T
t
. A general path will have 2n transitions at flip times t

j
, j"1, 2,2, 2n, within the

8Note that this implicitly means that we express the double path integral in the discrete variable representation (DVR),
see Section 10.2 and Eq. (267), in which the operator q is diagonal. For the case of a TLS the DVR basis and the localized
basis formed by the vectors D¸T, DRT coincide. This does not hold anymore true if, for example, the reduction of the
double-well potential to the first two doublets is considered, see Section 14.1.
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Fig. 14. Generic path with 2n transitions at flip times t
1
, t

2
,2,t

2n
contributing to the population difference Sp

z
T
t

between the localized states of a driven and dissipative two-level-system. The time intervals spent in a diagonal state RR
or LL of the reduced density matrix are called sojourns, and the time intervals spent in an off-diagonal state RL or LR are
termed blips. The initial and final sojourns are fixed by the condition op,p{(t0)"op,p{(t),RR on the reduced density
matrix.

interval t
0
(t@(t. Such a path can be parametrized by

m(2n)(t@)"
n
+
j/1

m
j
[h(t@!t

2j~1
)!h(t@!t

2j
)] ,

g(2n)(t@)"
n
+
j/0

g
j
[h(t@!t

2j
)!h(t@!t

2j`1
)] ,

(274)

where t
2n`1

,t, h(t) is the unit step function, and where the labels m
j
"$1 and g

j
"$1 mark

the two off-diagonal LR or RL, and diagonal states RR or LL of the RDM, respectively, cf. Fig. 14.
On the other hand, if we want to evaluate Sp

x
T
t
or Sp

y
T
t
a general path will have 2n#1 transitions

at corresponding flip times t
j
, j"1, 2,2, 2n#1 within the interval t

0
(t@(t. The periods

t
2j
(t@(t

2j`1
in which the system is in a diagonal state RR or LL are usually referred to as

sojourns. Likewise, the periods t
2j~1

(t@(t
2j

in which the system stays in off-diagonal states RL
or LR are termed blips [32,34], see Fig. 14. To evaluate now the dissipative influence, it is
convenient to consider the influence functional in the form given by Eq. (261), where the time
derivatives gR

TLS
(t) and mQ

TLS
(t) of the sequences of sojourns, and of blips, respectively, occur. This

yields

mQ (2n)(t@)"
n
+
j/1

m
j
[d(t@!t

2j~1
)!d(t@!t

2j
)] ,

gR (2n)(t@)"
n
+
j/1

[g
j
d(t@!t

2j
)!g

j~1
d(t@!t

2j~1
)] .

(275)

For later convenience we note that a blip transition acts as an effective neutral dipole, where to the
jth blip with spin flips at times t

2j~1
and t

2j
are associated the charges /

2j~1
:"m

j
and /

2j
:"!m

j
,

respectively. This does not hold true for the sojourn transitions.
Let us next introduce the functions Q

j,k
:"Q(t

j
!t

k
), and

K
j,k
"Q@

2j,2k~1
#Q@

2j~1,2k
!Q@

2j,2k
!Q@

2j~1,2k~1
,

X
j,k
"Q@@

2j,2k`1
#Q@@

2j~1,2k
!Q@@

2j,2k
!Q@@

2j~1,2k`1
,

(276)
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with Q@(t) and QA(t) being the real and imaginary parts of the bath correlation function
Q(t) :"d2¸(t), respectively, with ¸(t) defined in Eq. (262), i.e.,

Q(t)"
d2

+pP
=

0

du
J(u)
u2

cosh (+ub/2)!cosh [u(+b/2!it)]
sinh(+ub/2)

. (277)

The function K
j,k

describes the interblip correlations of the dipole pair Mj, kN, while the function
X

j,k
describes the correlations of the blip j with a preceding sojourn k. The influence function UI (n),

cf. Eq. (261), for a path with n transitions in the off-diagonal states of the RDM then becomes

UI (n)"
n
+
j/1

Q@
2j,2j~1

#

n
+
j/2

j~1
+
k/1

m
j
m
k
K

jk
!i

n
+
j/1

j~1
+
k/0

m
j
g
k
X

jk
. (278)

Finally, we point out that within this parametrization the sum over histories of paths is represented
(i) by the sum over any number of flip times, (ii) by the time-ordered integrations over the flip times
Mt

j
N, and (iii) by the sum over all possible arrangements Mm

j
"$1N and Mg

j
$1N of the blip and

sojourn intervals. Introducing for the time integrals the compact notation

P
t

t0

D
n
Mt

j
N2 :"P

t

t0

dt
nP

tn

t0

dt
n~12P

t2

t0

dt
1
2 , (279)

the path summation takes the form

PDqPDq@2 N

=
+
n/0

P
t

t0

D
n
Mt

j
N +

Mmj
N

+
MgjN

2 . (280)

The double path-integral can now be performed, and the formal solution for Sp
x
T
t
and Sp

y
T
t
reads

[243]

Sp
x
T
t
"

1
2

=
+
n/0

A!
1
2B

n

P
t

t0

D
2n`1

Mt
j
Nd

2n`1
Mt

j
N +

Mmj/B1N
m
n`1

(F(`)
n`1

C~
n`1

#F(~)
n`1

C`
n`1

) , (281)

Sp
y
T
t
"

1
2

=
+
n/0

A!
1
2B

n

P
t

t0

D
2n`1

Mt
j
Nd

2n`1
Mt

j
N +

Mmj/B1N
(F(`)

n`1
C`

n`1
!F(~)

n`1
C~

n`1
) , (282)

where t
2n`2

"t. For Sp
z
T
t
one obtains

Sp
z
T
t
"1#

=
+
n/1

A!
1
2B

n

P
t

t0

D
2n

Mt
j
Nd

2n
Mt

j
N +

Mmj/B1N
(F(`)

n
C`

n
!F(~)

n
C~

n
) . (283)

Here, the set Mm
j
N labels the two off-diagonal states of the reduced density matrix, while the sum

over the diagonal states visited at intermediate times has already been performed. The influence of
the driving is contained in the factors

d
n
Mt

j
N"

n
<
j/1

D(t
j
) , (284)
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and

C`
n
"cos/

n
, C~

n
"sin/

n
, (285)

where

/
n
"

n
+
j/1

m
j
f(t

2j
, t

2j~1
), f(t, t@)"P

t

t{

dt@@e(t@@) . (286)

All the dissipative influences are in the functions F(B)
n

. Combining all intrablip and interblip
correlations in the expression

G
n
"expA!

n
+
j/1

Q@
2j,2j~1

!

n
+
j/2

j~1
+
k/1

m
j
m
k
K

j,kB , (287)

and introducing the phases s
n,k

"+n
j/k`1

m
j
X

j,k
which describe the correlations between the kth

sojourn and the n!k succeeding blips, the functions F(B)
n

take the form

F(`)
n

"G
n

n~1
<
k/0

cos s
n,k

, F(~)
n

"F(`)
n

tan s
n,0

. (288)

Up to here the results are exact, though they are far too complex to be handled analytically. Hence,
one has to resort to suitable approximation schemes and subsequent numerical computations.
Before proceeding along these lines, it is advantageous to cast the expression for Sp

z
T
t
into the form

of a master equation [222], and the expression for Sp
x
T
t

into an integral expression [243].
Interestingly, this can be performed exactly.

11.2.2. Exact master equations and integral expressions for the RDM
To obtain the above-mentioned relations for the expectations Sp

i
T
t
, we define modified influence

functions FI (B)
n

involving suitable subtractions of products of lower-order influence functions, i.e.,

FI (B)
n

"F(B)
n

!

n
+
j/2

(!1)j +
m1,2,mj

F(`)
m1

F(`)
m2

2F(B)
mj

d
m1`2`mj,n

,

where the inner sum is over positive integers m
j
. By definition, each subtraction involves again time

ordering for the flip times. In the subtracted terms, the bath correlations are only inside of each of
the individual factors F(B)

mj
, i.e., there are no correlations between these factors. We next introduce

the kernels ½(B)(t, t@) defined by the series expression

½(B)(t, t@)"
=
+
n/0

(!1)nP
t

t{

dt
2n`1

2P
t3

t{

dt
2

d
2n`1

Mt
j
N2~(n`1) +

Mmj/B1N
m
n`1

FI (Y)
n`1

C(B)
n`1

. (289)

In the same way the kernels K(B)(t, t@) are defined by the series

K(B)(t, t@)"D(t)
=
+
n/0

(!1)nP
t

t{

dt
2n`1

2P
t3

t{

dt
2
d
2n`1

Mt
j
N2~(n`1) +

Mmj/B1N
FI (B)
n`1

C(B)
n`1

, (290)
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where the label # (or !) indicates that the respective kernel is an even (or odd) function of the
bias energy e(t). The product functions FI (Y)

n
C(B)

n
, FI (B)

n
C(B)

n
depend on flip times, where the first and

the last one are identified with t@ and t, respectively. All intermediate flip times are integrated over
as prescribed by Eqs. (289) and (290). Taking the time derivative of Eqs. (281)—(283), it is found that
the formal solution for Sp

z
T
t
can be recast in the form of an exact generalized master equation

(GME) [222]

d
dt

Sp
z
T
t
"P

t

t0

dt@[K(~)(t, t@)!K(`)(t, t@)Sp
z
T
t{
] , (291)

as follows from an iterative solution of Eq. (291) with (290). In contrast, there is no closed master
equation for Sp

x
T
t
or Sp

y
T
t
. Instead, the following exact integral relations hold [243]:

Sp
x
T
t
"P

t

t0

dt@[½(`)(t, t@)#½(~)(t, t@)Sp
z
T
t{
] (292)

Sp
y
T
t
"!

1
D(t)

d
dt

Sp
z
T
t
. (293)

Here, the initial condition Sp
z
T
t0
"1 is assumed. These exact results show that, for a localized

initial condition, no integro-differential equation exists for the expectation values of Sp
x
T and Sp

y
T.

This is indeed remarkable.

11.3. The case a"1/2 of Ohmic dissipation

Let us consider the case in which the bath has an Ohmic spectrum with an exponential cutoff as
in Eq. (237), i.e.,

J(u)"(2p+/d2)aue~u@u# , (294)

where the dimensionless coupling constant a"mcd2/2p+ has been introduced. For this particular
form, the bath correlation functions Q@(q) and Q@@(q), see Eq. (277), can be evaluated exactly
[251,252], yielding

Q@(q)"a ln(1#u2
#
q2)#4a lnK

C(1#1/+bu
#
)

C(1#1/+bu
#
#iq/+b)K ,

Q@@(q)"2a atan(u
#
q) ,

(295)

where C(z) denotes the gamma function.
In the following we shall discuss a closed-form solution for the special value a"1

2
of the Ohmic

strength in the limit of a large cutoff u
#
. In fact, in this limit, the case a"1

2
represents a sort of

“critical point” (in the absence of driving) in the investigation of the destruction of quantum
coherence by bath-induced incoherent tunneling transitions. For the case of a symmetric system,
a"1

2
represents the “critical” dissipative value for which coherent tunneling is destroyed by the
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Fig. 15. Fundamental spectral amplitude g
1

vs. driving frequency X for different temperatures for the case a"1
2

of
Ohmic dissipation. At high temperatures only incoherent relaxation occurs (dashed lines). As the temperature is
decreased, resonances appear at submultiples X"e

0
/n (n"1, 2,2) of the static bias e

0
(dot-dashed and full lines). These

denote the occurrence of driving-induced coherence. Frequencies are in units of C
0
"pD2

0
/u

#
, temperatures in units of

+C
0
/k

B
.

dissipative environment for any temperature [32,34]. Hence, for a51
2
, the tunneling dynamics is

always incoherent down to ¹"0. Note also that the critical value of a for the destruction of
quantum coherence depends on the specific transport quantity which is investigated [253,254]. In
the presence of driving this situation is modified due to driving-induced coherent processes that
render the low-temperature dynamics non-Markovian, see Fig. 15.

To be definite, we shall term the “scaling limit” the limit u
#
q<1 and +u

#
<k

B
¹, where q is the

argument of the Ohmic functions Q@(q) and QA(q) in Eq. (295). In this limit, the functions Q@(q) and
QA(q) appearing implicitly in Eqs. (291) and (292) assume the form

Q@(q)"2a ln[+bu
#
/p sinh(pq/+b)], QA(q)"pa sgn(q) . (296)

In this limit, the series expression (283) seems ill defined, due to the multiple occurrence of
cos (pa)-factors which become zero at a"1

2
. It is though well defined for a-values arbitrarily close

to 1
2
. Taking then the limit aP1

2
the calculation can be carried out if one observes that the zeros of

cos (pa) are indeed compensated by a corresponding number of divergences in the integrals over the
blip and sojourn lengths. If the integration is handled with care in this way, using the technique
developed first in [255] for the case of a static bias, and generalized in [221,238] to the driven case,
the power series (283) in the tunneling transitions can be summed up exactly in closed form. One
then finds for P(t) :"Sp

z
T
t
the result

P(t)"P(!)(t)#P(4)(t) , (297)

where

P(!)(t)"P
t

0

dt
2
e!: t

t0
dsC(s)P

t2

0

dt
1
D(t

2
)D(t

1
)e~Q{(t2~t1)e!: t2

t1
dsC(s)/2 sin[f(t

2
, t

1
)] ,

P(4)(t)"e!: t
0
dsC(s) .

(298)
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The function f(t, t@) is defined in Eq. (286), and additionally we have introduced the relaxation rate
C(t)"pD2(t)/2u

#
. Here, P(!)(t) represents the contribution to P(t) that is antisymmetric with respect

to an inversion of the bias eP!e. It determines the long-time dynamics. The investigation of the
symmetric contribution P(4)(t) is, on the other hand, of interest to obtain information on the
transient dynamics. It decays to zero as tPR. As expected, Eq. (298) predicts that in the absence
of driving a symmetric TLS undergoes, for any temperature, incoherent relaxation with rate
C
0
:"pD2

0
/2u

#
. Note that for this special case a"1

2
the relaxation rate coincides with the tunneling

splitting D
%
, see Eq. (310) below, renormalized by bath modes with u(u

#
. Further, P(4)(t) is not

sensitive to asymmetry modulation. Along the same line is Sp
x
T
t
,0. To conclude, we observe that,

as argued in Ref. [32], the error introduced in P(t) by approximating the bath correlation functions
Q@(q) and Q@@(q) as in Eq. (296) can in the worst case become comparable to the value assumed by
P(t) itself only at long times when the condition t'ln(u

#
/D

0
)/C

0
is satisfied.

For general forms of dissipation, the exact master equation (291) and the related equations for
Sp

x
T
t
, Sp

y
T
t
cannot be solved exactly. In the following, we shall discuss approximations that render

the analytical analysis more tractable.

11.4. Approximate treatments

11.4.1. The noninteracting-blip approximation (NIBA)
The noninteracting-blip approximation (NIBA) has been reviewed in [32], and since, success-

fully applied to investigate the tunneling dynamics in different parameter regimes. An extension of
the NIBA to the driven case has been discussed in [221,225,226,229,236,243]. The NIBA is a rather
good approximation for sufficiently large temperatures and/or dissipative strength, and/or for
strong bias. Moreover, in the absence of driving, it provides a systematic weak damping approxi-
mation down to the lowest temperatures for the case of a symmetric system, i.e., e

0
"0. This has

been confirmed via a direct comparison between the NIBA prediction and its next order correction
given by the interacting-blip-chain-approximation (IBCA), cf. Section 11.4.3, real-time Monte-
Carlo calculations [252,256], and by calculations via the numerical QUAPI method discussed in
Section 10.2 [201].

In the NIBA one formally neglects the blip—blip interactions K
j,k

. Furthermore, the sojourn—blip
interactions X

j,k
are disregarded except neighboring ones with k"j!1, and they are approxi-

mated by X
j,j~1

"QA(q
j
). Hence, in the NIBA, the influence functions UI (n) in Eq. (278) depend on

the blip length alone, i.e.,

UI (n)
NIBA

"

n
+
j/1

[Q@(q
j
)!im

j
g
j~1

QA(q
j
)] , (299)

with q
j
"t

2j
!t

2j~1
the length of the jth blip interval. Because interblip correlations are dis-

regarded in the NIBA, the modified influence functions FI (B)
n

are zero for all nO1, and therefore the
series expansions (289) and (290) reduce to the terms of lowest order in D(t). Under these
approximations, defining P(t) :"Sp

z
T
t
, we obtain from Eqs. (291)—(293) the explicit form

d
dt

P(t)"P
t

t0

dt@[K(~)(t, t@)!K(`)(t, t@)P(t@)] (300)
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and

Sp
x
T
t
"P

t

t0

dt@[½(`)(t, t@)#½(~)(t, t@)P(t@)] (301)

Sp
y
T
t
"!

1
D(t)

d
dt

P(t) , (302)

with the NIBA kernels

K(`)(t, t@)"D(t)D(t@)e~Q{(t~t{)cos [Q@@(t!t@)]cos [f(t, t@)] ,

K(~)(t, t@)"D(t)D(t@)e~Q{(t~t{)sin[Q@@(t!t@)]sin[f(t, t@)]
(303)

and

½(`)(t, t@)"D(t@)e~Q{(t~t{)sin[Q@@(t!t@)]cos [f(t, t@)] ,

½(~)(t, t@)"D(t@)e~Q{(t~t{)cos [Q@@(t!t@)]sin[f(t, t@)] .
(304)

Evaluation of the GME (300) and of Eqs. (301) and (302) gives the dynamics of the spin—boson
model within the NIBA. We observe that, as shown in [257,258] for the undriven case, and
generalized to the driven case in [225,226,236], the polaron transformation approach used in the
small polaron model [259] leads, to lowest-order perturbation theory in the bath renormalized
tunneling splitting, to a master equation analogous to Eq. (300), and possessing identical kernels
(303).

Thus far, the NIBA has been discussed on a purely formal level only. The key idea that underpins
the NIBA is that a blip transition acts like an effective dipole, cf. Eq. (275), which interacts only
weakly with a neighboring dipole. Let us consider a spectral density of the form, cf. Eq. (238),

J(u)"(2p+/d2)a
s
uJ 1~sus exp(!u/u

#
) , (305)

where a
s
is the dimensionless coupling constant, and where a

1
:"a is the Ohmic coupling constant

already introduced in Section 11.3; cf. Eq. (294). Let us first consider the undriven case. Then, we
can distinguish between three different regimes in which the NIBA is justified:

(i) The first regime is encountered when the average blip length is so small compared to the
average sojourn length, that the blip—blip interactions K

j,k
and the sojourn—blip interactions may

be neglected. The suppression of the blip length against the sojourn length is favoured by the
particular form Jexp(!Q@(t)) of the intrablip interactions appearing in the interaction function
G

n
in Eq. (287), which tend to suppress the blip length. On the contrary, the average blip-plus-

sojourn length is constant and of the order of t/n for a path with 2n transitions up to time t. We
observe then that the function Q@(t) behaves at long times as t1~s at zero temperature, and as t2~s at
finite temperatures. Hence, long blips q are exponentially suppressed by the intrablip interactions
Jexp(!Q@(q)) for any temperature in the sub-Ohmic case 0(s(1, and in the case 14s(2 at
finite temperatures. In turn, because it is the difference of the Q@ that enters the interblip correlation
factor Jexp(!K

j,k
), cf. Eq. (276), this factor can be set equal to unity with negligible error. In

particular, if the function Q@ increases linearly with t, then the interblip interactions K
j,k

cancel out
exactly.
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It then turns out that the NIBA is justified always in the sub-Ohmic case s(1, in the Ohmic case
s"1 for high enough temperatures and/or dissipative strength, and in the case 1(s(2 for high
enough temperatures. To be precise, for Ohmic dissipation it is always justified when a'1, or
when k

B
¹5+D

0
, with a arbitrary.

(ii) For super-Ohmic dissipation with s'2 the intrablip interactions are not effective in
suppressing the blip lengths. Though, the NIBA can be justified for arbitrary dissipation as long as
the system exhibits overdamped dynamics, as it is, for example, for a strong static bias e

0
'D

0
.

(iii) In addition, the NIBA is a systematic weak damping approximation down to zero temper-
ature for the case of a symmetric system (e

0
"0). In fact, the effect of the interblip correlations K

j,k
is

of the order of the square of the coupling constant a
s
, whereas that of the intrablip correlations

considered in the NIBA is of linear order.
In the presence of driving, the parameter regime in which conditions (i)—(iii) are valid become

modified.
Let us, for example, consider the case of a driving field which modulates the asymmetry energy of

the TLS (i.e., D(t)"D
0

in Eq. (269)). For a very slow driving field the overall effect is an adiabatic
modulation of the asymmetry energy of the TLS [221]. In general, condition (i) still holds true.
Condition (ii) gets modified because the system will show an overdamped dynamics when
De(t)D'D

0
. On the contrary, a fast oscillating driving field tends to suppress long blips [229]. Hence,

NIBA should be justified even better in the presence of a fast oscillating field, if it is already justified
in the undriven case. For example, denoting by D

%&&
4D

0
the tunneling splitting renormalized by

a fast ac-field, cf. Eq. (359) below, the NIBA condition in (i) for the case of an Ohmic bath becomes
a'1 or k

B
¹'+D

%&&
.

We observe, on the contrary, that a fast ac-field which is modulating the coupling energy of the
TLS, cf. Eq. (383) below, tends to enhance quantum coherence. In this case the validity range of
NIBA is diminished. For example, denoting by D

%&&,d5D
0

the field renormalized tunneling
splitting, cf. Eq. (386) below, the NIBA condition in (i) for the case of an Ohmic bath becomes
a'1, or k

B
¹'+D

%&&,d.
In the absence of driving, Eq. (326) below is conveniently solved by Laplace transformation

[32,34]. The study of the resulting pole equation for the Laplace transform of P(t) :"Sp
z
T
t
gives

information on the transient dynamics. In particular, for Ohmic dissipation and weak Ohmic
coupling a;1, cf. Eqs. (238) and (294), the NIBA predicts a destruction of the damped coherent
motion described by Eq. (72) above a crossover temperature ¹*(a)K+D

0
/k

B
a [32,34]. For a51

2
the dynamics is incoherent down to ¹"0, cf. also [254]. For super-Ohmic dissipation with s'2,
the NIBA predicts underdamped motion up to high temperatures ¹

*
s
. For the case s"3 we have

¹*
3
K(+uJ /k

B
Ja

3
) [260]. These predictions have been confirmed by Monte-Carlo calculations

[252,256]. Finally, the NIBA predicts that the TLS dynamics approaches incoherently a stationary
equilibrium value P

45
"Sp

z
T
=
"tanh(+e

0
/2k

B
¹) with relaxation rate C

0
given by

C
0
"D2

0P
=

0

dq h(`)(q) cos(e
0
q) , (306)

and with P
45
"o

0
/C

0
, where

o
0
"D2

0P
=

0

dq h(~)(q) sin(e
0
q) . (307)
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For later convenience we have introduced here the kernels

h(`)(q)"e~Q{(q) cos[QA(q)] ,

h(~)(q)"e~Q{(q) sin[QA(q)] .
(308)

Inserting the expressions (296) for the Ohmic kernels Q@(q) and QA(q) valid in the scaling approxima-
tion u

#
q<1, +u

#
<k

B
¹, one finds for the undriven, Ohmic NIBA rate [34,32]

C
0
"

D2
0

2u
#
A
+bu

#
2p B

1~2aDC(a#i+be
0
/2p)D2

C(2a)
cosh(+be

0
/2) , (309)

where C(z) denotes the Gamma function. The above expression (309) is defined for any value of the
coupling constant a. To investigate the tunneling dynamics for weak coupling a;1 it is convenient
to introduce

D
%
"D

0
(D

0
/u

#
)a@(1~a)[cos(pa)C(1!2a)]1@(2~2a) , (310)

which is the bath-renormalized tunneling splitting when a(1. In terms of D
%
the static rate, when

a(1, has then the form

C
0
"sin(pa)

D
%

2pA
+bD

%
2p B

1~2a
DC(a#i+be

0
/2p)D2 cosh(+be

0
/2) . (311)

On the contrary, for nonzero bias e
0
O0, NIBA breaks down for weak damping and low

temperatures. In fact, because DP
45
DP1 when ¹P0, the NIBA predicts an incorrect symmetry

breaking at low temperatures, weak coupling and arbitrary small bias energies e
0
. In the same way,

the NIBA predicts for Sp
x
T
t
a stationary equilibrium value Sp

x
T
=
"(D

0
/e

0
) tanh(+e

0
/2k

B
¹). That

is, it occurs an unphysical divergence Sp
x
T
=
PR when ¹P0 and for arbitrary small bias.

For a discussion of the predictions of the NIBA resulting from the above equations in the
presence of driving we refer the reader to the next section. In the following subsections, by taking
into account subsequent terms of the series expansions (289) and (290), which thereby account for
interblip correlations, we calculate corrections to the NIBA systematically.

11.4.2. Systematic weak damping approximation
For weak damping, nonzero bias and low temperatures the NIBA breaks down because the bath

correlations K
j,k

and X
j,k

contribute to effects which depend linearly on J(u). The kernels K(B)(t, t@)
in Eq. (290) have been discussed for weak-damping in Ref. [222]. They have the form

K(`)(t, t@)"D(t)D(t@) cos[f(t, t@)][1!Q@(t!t@)]

#P
t

t{

dt
2P

t2

t{

dt
1
d
4
Mt

j
N sin[f(t, t

2
)]P

0
(t
2
, t

1
) sin[f(t

1
, t@)]

][Q@(t!t@)#Q@(t
2
!t

1
)!Q@(t

2
!t@)!Q@(t!t

1
)]
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and

K(~)(t, t@)"D(t)D(t@) sin[f(t, t@)]QA(t!t@)

!P
t

t{

dt
2P

t2

t{

dt
1
d
4
Mt

j
N sin[f(t, t

2
)]P

0
(t
2
, t

1
) cos[f(t

1
, t@)][QA(t!t@)!QA(t

2
!t@)] .

(312)

In these weak-coupling expressions, the first part represents the NIBA. The residual contributions
have been written in such a way that the term P

0
(t
2
, t

1
) is sandwiched between two blip-like

contributions occurring in the time intervals t
1
!t@ and t!t

2
. The term P

0
(t
2
, t

1
) takes into

account all the tunneling transitions of the undamped system during the interblip interval t
2
!t

1
. It

reads

P
0
(t, t

0
)"1#

=
+
n/1

(!1)nP
t

t0

D
2n

Mt
j
Nd

2n
Mt

j
N

n
<
j/1

cos[f(t
2j

, t
2j~1

)] , (313)

and it reduces to Eq. (72) in the absence of driving. Note that, accordingly, P
0
(t, t

0
) satisfies

a master equation as in Eq. (291) with kernels K(`)(t, t@)"D(t)D(t@) cos[f(t, t@)] and
K(~)(t, t@)"D(t)D(t@) sin[f(t, t@)].

The weak-damping form of Sp
z
T
t
is obtained from the solution of the GME (291) with the

kernels (312) substituted. Again, Sp
y
T
t
results by differentiation according to Eq. (293). On the

other hand, the weak-damping form of Sp
x
T
t
results from the integral relation

Sp
x
T
t
"P

t

t0

dt@D(t@ ) sin [f(t, t@)]Sp
z
T
t{

. (314)

The coupled set of Eq. (291) can be investigated by Laplace transformation methodology
thereby generalizing the method developed in Refs. [34,32,261] for the static case, and in [222,229]
for the driven case.

The case of ac-monochromatic driving modulating the asymmetry energy will be discussed in
Section 12.

11.4.3. The interacting-blip chain approximation
In this subsection we briefly describe an approximation beyond the NIBA, which has been

introduced only recently [244]. We set t
0
"0. In addition to the NIBA-interactions in Eq. (299),

this improved approximation accounts also for the interactions of all nearest-neighbor blip pairs
K

j,j~1
and the full interactions of the nearest-neighbor sojourn—blip pairs X

j,j~1
as well. Dia-

gramatically, we then have a chain of blips with nearest-neighbor interactions. Therefore, this
approximation has been called the interacting-blip chain approximation (IBCA) [244]. A pictorial
description illustrating the chain of interacting blips as considered in the IBCA is sketched in
Fig. 16 for the three-blip contribution to Sp

z
T
t
. In the IBCA, the influence function UI (n), cf.

Eq. (278), is given by,

UI (n)
IBCA

"

n
+
j/1

Q@
2j,2j~1

#

n
+
j/2

m
j
m
j~1

K
j,j~1

!i
n
+
j/1

m
j
g
j~1

X
j,j~1

(315)
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Fig. 16. Three-blip contribution in the IBCA. The solid line represents a sojourn, and the curly line a blip interval. The
blip—blip correlations K

j,j~1
are sketched by a dashed curve, and the sojourn—blip correlations X

j,j~1
by a dotted curve.

The intrablip interactions as well as the individual contributions in K
j,j~1

are not depicted.

with the full nearest-neighbor sojourn—blip interaction reading

X
j,j~1

"QA
2j,2j~1

#QA
2j~1,2j~2

!QA
2j,2j~2

. (316)

To investigate the dynamics of Sp
i
T
t
in the IBCA, one introduces the conditional probabilities

R
`
(t; q) and R

~
(t; q) for the particle with initial diagonal state g

0
"#1 to hop at time t!q into

the final off-diagonal state m
&
"#1 and m

&
"!1, respectively, and afterwards staying there until

time t. After that, the period q left until time t is spent in this off-diagonal state. Upon integrating
the conditional probabilities R

B
(t; q) over the period q, one obtains the off-diagonal elements of the

reduced density matrix at time t as

Sp
x
T
t
"P

t

0

dq[R
`

(t; q)#R
~
(t; q)] , (317)

Sp
y
T
t
"iP

t

0

dq[R
`

(t; q)!R
~

(t; q)] . (318)

The quantity Sp
z
T
t
is obtained by integrating Sp

y
T
t
, i.e., from Eq. (293)

Sp
z
T
t
"1!P

t

0

dt@D(t@)Sp
y
T
t{

. (319)

According to Eqs. (317)—(319), the dynamical problem is solved up to quadratures once the
quantities R

B
(t@; q) are known in the interval 04t@4t. As discussed in [244], the quantities

R
B
(t@; q) obey inhomogenous coupled integral equations which can be solved numerically by an

iteration scheme.
The predictions of the IBCA for both Sp

z
T
t
and Sp

x
T
t
are compared with those of the NIBA in

Fig. 17. Note that, even though low temperatures and moderate damping are assumed, the NIBA
provides a fairly good approximation for Sp

z
T
t
. This holds no longer necessarily true for Sp

x
T
t
.

11.5. Adiabatic perturbations and weak dissipation

In this section we discuss how to tackle the time-dependent problem for the case of a perturba-
tion which is varying slowly as compared to the time scales of the unperturbed system. Let us
consider the Hamiltonian (269) of the form

H
TLS

(t)"!1
2
+[D

0
p
x
#e(t)p

z
] , (320)
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Fig. 17. The population difference Sp
z
T
t
between the localized states of a two-level-system and the coherence Sp

x
T
t
are

depicted for the case of a symmetric TLS (e
0
"0) driven by an ac-field eL cos(Xt) and Ohmic dissipation. The field

parameters are eL"2.5D
0
, X"5D

0
, and the dissipation parameters are a"0.25, k

B
¹"0.05+D

0
, i.e., moderate damping

and low temperatures. The full-line curve depicts the IBCA prediction and the dash—dotted the NIBA. Minor deviations
of the IBCA from the NIBA curve occur for Sp

z
T
t
while the differences are drastic for Sp

x
T
t
. At long times only odd

harmonics contribute to Sp
z
T
t
, and only even ones to Sp

x
T
t
.

where

Dde(t)/dtD;D2
0

. (321)

In this case it is convenient to perform a time-dependent unitary transformation

R(t)"expM!ih(t)p
y
/2N, h(t)"!arccot[e(t)/D

0
] , (322)
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which, at any instant, diagonalizes the time-dependent TLS Hamiltonian in Eq. (320). Taking also
into account the TLS interaction term with the bath, the Hamiltonian H(t) in Eq. (270) is
transformed into

H
!$

(t)"R(t)H(t)R~1(t)"!

1
2
E(t)p

z
#

+D
0

E(t)
Xp

z
#

+e(t)
E(t)

Xp
x
#H

B
, (323)

where E(t)"+(D2
0
#e2(t))1@2 is the adiabatic energy splitting. Due to the explicit time dependence

of the transformation (322), however, the transformed Hamiltonian H
!$

(t) does not commute with
the transformed time-evolution operator º

!$
(t
2
,t
1
)"Á expM!i/+:t2

t1
dtH

%&&
(t)N. Here,

H
%&&

(t)"H
!$

(t)!i+R(t) (dR~1/dt) . (324)

By evaluating !i+R(t)(dR~1/dt)"(+3D
0
/E3)(de(t)/dt), one readily observes that the second term

on the r.h.s. of Eq. (324) can be treated as a perturbation only when inequality (321) holds, i.e., for
adiabatic driving. Moreover, because of the rotation (322), the bath couples both to p

z
and to p

x
.

Thus, the transformation turns out to be useful only if, in addition to adiabaticity, the bath is
weakly coupled to the TLS, hence allowing a perturbative expansion in the bath—TLS interaction.

This method will be applied in Section 12.1.2 to evaluate the TLS dynamics for weak dissipation
and in the presence of a slow monochromatic field, and in Section 12.5 in the context of the
dissipative Landau—Zener—Stückelberg problem.

12. The driven dissipative two-state system (applications)

12.1. Tunneling under ac-modulation of the bias energy

To make quantitative predictions the detailed form of the driving field has to be specified. In this
section we shall study the effects of a driving field which periodically modulates the bias energy of
the undriven TLS. To be definite, we consider a time-dependent TLS of the form

H
TLS

(t)"!1
2
+MD

0
p
x
#[e

0
#eL cos(Xt)]p

z
N . (325)

In the following, we shall focus our attention to the investigation of the position expectation
value P(t) :"Sp

z
T
t
which is the relevant quantity in the context of control of tunneling. The same

line of reasoning applies to the quantities Sp
x
T
t
and Sp

y
T
t
.

Before we restrict ourselves to parameter regimes for which the approximations on the bath
correlation functions discussed in the previous section apply, we outline some general character-
istics of the driven dynamics. We observe that the generalized master equation (291) is conveniently
solved by Laplace transformation techniques. Introducing the Laplace transform PK (j)"
:=
0

dt e~jtP(t) of P(t), one obtains

jPK (j)"1#P
=

0

dt e~jt[KK (~)j (t)!KK (`)j (t)P(t)] , (326)

where KK (B)j (t)":=
0

dt@ e~jt{K(B)(t#t@, t). In the absence of driving, the kernels KK (B)j do not depend
on time, and Eq. (326) reproduces all the known results in the literature [32,34].
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For periodic driving the kernels KK (B)j (t) have the periodicity of the external field, and thus can be
expanded in a Fourier series, i.e.,

KK (B)j (t)"
=
+

m/~=

kB
m
(j)e~*mXt . (327)

This allows for a recursive solution of Eq. (326) [229]. In particular, the asymptotic dynamics is
determined by the poles of the recursive solution at j"$imX, where m is an integer number.
Thus, the asymptotic dynamics is periodic in time with the periodicity T"2p/X of the driving
force, i.e.,

lim
t?=

P(t)"P(!4)(t)"P(!4)(t#T)"
=
+

m/~=

p
m
e~*mXt , (328)

with [229]

p
0
"

k~
0

(0)
k`
0

(0)
! +

mE0

k`
m

(0)
k`
0

(0)
p
m

, (329)

and for mO0

p
m
"

i
mXAk~

m
(!imX)!+

n

k`
m~n

(!imX)p
nB . (330)

From Eqs. (329) and (330) it is found that the asymptotic expectation obeys the integro-
differential equation

PQ (!4)(t)"F(t)!
X
2pP

2p@X

0

dt@P(!4)(t@)L(t@, t!t@) , (331)

which describes the time evolution within a period T. Here,

F(t)"+
n

e~*nXtk~
n

(!inX) ,

L(t, t@)"+
m,n

e~*mXte~*nXt{k`
m

(!inX) .
(332)

This result is still exact. It explicitly shows that also the asymptotic-driven dynamics is intrinsically
non-Markovian, and is not invariant under continuous-time translations.

An analysis of the symmetry properties of the kernels KK (B)j upon inverting the bias eP!e,
depicts selection rules for the harmonics p

m
. From Eq. (330) it follows that for a symmetric TLS, i.e.,

if e
0
"0, in the presence of monochromatic driving only the odd harmonics of Sp

z
T
t
are different

from zero [229]. This is known to hold true also in classical systems [262]. In the same way, Sp
x
T
t

and Sp
y
T
t
obey selection rules. Namely, only the even harmonics of Sp

x
T
t
and the odd harmonics of

Sp
y
T
t
are different from zero if e

0
"0.
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12.1.1. Control of tunneling within the NIBA
Let us next consider the dynamics of P(t) within the NIBA. For the case of monochromatic

driving the functions kB
m

can be explicitly evaluated to yield [229]

kB
m
(j)"D2

0P
=

0

dq e~jqh(B)(q)AB
m
(q) , (333)

where the functions h(B)(t) have been introduced earlier in Eq. (308), and where

A~
2m

(q)"(!1)me~*mXq sin(e
0
q)J

2mA
eL
X

sin
Xq
2 B ,

A~
2m`1

(q)"(!1)me~*(m`1@2)Xq cos(e
0
q)J

2m`1A
2eL
X

sin
Xq
2 B .

(334)

Here J
m
(z) denotes the ordinary Bessel function of order m, and

A`
2m

(q)"(!1)me~*mXq cos(e
0
q)J

2mA
2eL
X

sin
Xq
2 B ,

A`
2m`1

(q)"(!1)m`1e~*(m`1@2)Xq sin(e
0
q)J

2m`1A
2eL
X

sin
Xq
2 B .

(335)

Hence, knowledge of the functions kB
m

allows a spectral investigation of the asymptotic dynamics;
cf. the study of nonlinear Quantum Stochastic Resonance as in Section 12.1.4, or the phenomenon
of dynamical hysteresis as in Section 14.3.

Some characteristics of the driven dynamics obtained by a numerical integration of the NIBA
master equation are shown in Figs. 18 and 19. The bath is assumed to have an Ohmic spectrum
with an exponential cutoff as in Eq. (294), i.e.,

J(u)"(2p+/d2)aue~u@u# . (336)

In Fig. 18, some general effects of dissipation (dashed curve), and of dissipation-plus-driving
(dot-dashed curve) on the undriven and undamped coherent tunneling dynamics (full-line curve)
are shown. Dissipation tends to destroy quantum coherence and, at long times, in the absence of
driving, the stationary equilibrium value P

45
is reached. When an additional driving field is acting,

the driven and dissipative motion becomes periodic at long time, the resulting dynamics being
governed by Eq. (331). In Fig. 19 is depicted that driving-induced correlations may lead, for
example, to large amplitude oscillations in the asymptotic dynamics of a strongly biased, e

0
<D

0
,

TLS: The long-time dynamics being almost localized in the absence of driving becomes strongly
delocalized in the presence of driving, i.e., in general is P

45
OSP(!4)(t)TT"p

0
. Moreover, a fine

resonance structure may be superimposed onto the oscillatory behavior. For large asymmetries
e
0

the number n of resonances is given by the ratio n"e
0
/X. This phenomenon may be interpreted

as a multiphoton absorption or emission process at the proper frequencies of the TLS. As the
temperature, or the coupling strength, are increased, this coherent oscillatory behavior is smoothed
out by bath-induced incoherent transitions (not shown).
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Fig. 18. Influence of dissipation and driving on the tunneling dynamics of a symmetric, e
0
"0, two-level-system.

Depicted is the population difference P(t) :"Sp
z
T
t
between the localized states. For comparison, are depicted also the

nondissipative, undriven coherent tunneling case (solide line), and the Ohmic damped, undriven case (dashed curve). The
influence of dissipation results in a decay of quantum coherence towards equal populations of the localized states. The
effect of an additional ac-field eL cos(Xt) results in an oscillatory relaxation towards an asymptotic, periodic long-time
dynamics (dot-dashed curve). The chosen driving parameters are X"2 and eL"6. Frequencies are given in units of D

0
,

temperatures in units of +D
0
/k

B
.

As shown by Eq. (300) or Eqs. (326) and (331) the transient dynamics, as well as the long-time
dynamics, depend on an intriguing interplay between the stochastic and the external driving forces.
In the following we shall first briefly discuss the linear response limit of Eqs. (329) and (330), being
valid for any angular driving frequency X. Subsequently, we release the assumption of weak
external fields and we study the nonlinear dynamics in different parameter regimes.

12.1.1.1. Linear response approximation. On the assumption that the driving force is weak,
Eqs. (329) and (330) can be evaluated by linearizing them in the amplitude eL of the time-dependent
force. To linear order in eL , only the coefficients kB

m
with m"0,$1 contribute. Further, the

linearized coefficients kB(0)
0

are of order zero in eL , while the coefficients kB(1)
1

are of order eL . In terms
of these linearized coefficients, and of the zeroth-order function

v(X, e
0
)"D2

0P
=

0

dq e*Xqh(`)(q) cos(e
0
q) , (337)

one finds for the linear susceptibility sJ (X) to Sp
z
T
t
, i.e., for

sJ (X)"
i

4+P
=

~=

dq h(q)S[p
z
(q),p

z
(0)]Tb , (338)
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Fig. 19. Driven and damped dynamics of a biased, e
0
O0, two-level-system. Large amplitude oscillations in the

long-time dynamics of the population difference P(t) :"Sp
z
T
t
are induced by a monochromatic field of intensity eL and

intermediate frequency X. Ohmic dissipation is considered. For comparison, the dissipative behavior in the absence of
driving (static case) is also shown. The fine resonance structure can be interpreted as the result of multiphoton absorption
or emission at the proper frequency of the TLS: the number n of resonances observed satisfies the relation n"e

0
/X, where

+e
0

is the static asymmetry energy of the TLS. Frequencies are in units of d"D
0
/2, temperatures in units of +d/k

B
.

the result [229]

sJ (X)"
1

+eL [!iX#v(X, e
0
)]Ak~(1)

1
(!iX)!k`(1)

1
(!iX)

k~(0)
0

(0)
k`(0)
0

(0)B . (339)

In Eq. (338), h(q) is the Heaviside function, [ , ] denotes the commutator and STb the thermal
average of the full system in the absence of the external periodic force (eL"0). This susceptibility
leads for the asymptotic expectation to the linear response result

P(!4)(t)"P
45
#+eL [sJ (X)e~*Xt#sJ (!X)e*Xt] , (340)

where P
45
" tanh(+e

0
/2k

B
¹)"k~(0)

0
(0)/k`(0)

0
(0), with k`(0)

0
(0)"C

0
, cf. Eq. (306). This result, within

NIBA, holds for any driving frequency X.
It is now interesting to observe that for low enough frequencies XP0, one can linearize (in X) the

integrals defining v(X, e
0
) and the linearized coefficients kB(1)

1
(!iX). We obtain

v(X, e
0
)Kv(0, e

0
)"k`(0)

0
(0) together with

k~(1)
1

(!iX)Kk~(1)
1

(0)"
eL
2

d
de

0

k~(0)
0

(0) ,

k`(1)
1

(!iX)Kk`(1)
1

(0)"
eL
2

d
de

0

k`(0)
0

(0) .
(341)
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Hence, within this adiabatic limit the linear susceptibility is readily found to assume a ¸orentzian
form, i.e.,

sJ (X)KsJ
!$

(X)"
1

4k
B
¹

1
cosh2(+e

0
/2k

B
¹)

1
1!iXC~1

0

. (342)

If the specific form, Eq. (336), of the Ohmic interaction is assumed, in the temperature regime
+u

#
<k

B
¹, the adiabatic condition reads +X;2pak

B
¹.

12.1.1.2. Markovian regime. In the following we discuss the Markovian limit q
K
(X, eL );

MT,C~1
H

,2N. Here q
K

is the characteristic memory time of the kernels of Eq. (290) which describe
the influence of the environment and of the driving. That is, we assume that q

K
is the smallest time

scale of the problem. It should be e.g. smaller than the driving period T, or of the average decay
time C~1

H
. We denoted by C

H
:"k`

0
(j"0), cf. Eq. (333), the average of the time-dependent

relaxation rate C
M
(t) governing the transient long-time dynamics, cf. Eqs. (344) and (351) below. The

restriction on the frequency arises from an analysis of the poles of the exact NIBA equation (326).
As discussed above, the long-time dynamics is dominated by the poles of PK (j) at j"$imX (with
m an integer number), leading to the integro-differential equation (331) for the asymptotic periodic
dynamics. In the regime X;q~1

K
the driving field is sufficiently slow that, to leading order,

driving-induced non-Markovian correlations do not contribute to the long-time dynamics
[221,229].

In the Markovian limit, the long-time behavior, within the NIBA, is intrinsically incoherent and
the Markovian approximation P

M
(t) to P(t) obeys the rate equation

PQ
M
(t)"!C

M
(t)[P

M
(t)!P

M,/4
(t)] , (343)

with the time-dependent rate given by

C
M
(t)"D2

0P
=

0

dq h(`)(q) cos[f(t, t!q)] , (344)

with f(t, t@)":t
t{
dtA e(tA). The time-dependent, nonstationary quantity P

M,/4
(t) is given by

P
M,/4

(t)"o
M
(t)/C

M
(t) , (345)

where o
M
(t) reads

o
M
(t)"D2

0P
=

0

dq h(~)(q) sin[f(t, t!q)] . (346)

In the limit eLP0 the rate C
M
(t) reduces to the static rate C

0
in Eq. (306). Eq. (343) is readily solved

in terms of quadratures [221,229]. Note that, in general, C
M
(t)Olimj?0

KK (`)j (t), and
o
M
(t)Olimj?0

KK (~)j (t). This holds true only in the adiabatic limit (Xq
K
)P0, for which

f(t, t!q)Pqe(t), P
M,/4

(t)Ptanh[+be(t)/2] :"P
!$,/4

. (347)
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Hence, in this adiabatic limit e(t) behaves like a time-dependent asymmetry, and an adiabatic
detailed balance condition is fulfilled in analogy with the static case. In general, however, the
detailed balance condition does not hold in the presence of driving; see also point (v) in the next
section for the case of a high-frequency field.

In Fig. 20 the predictions of the Markovian approximation given by Eq. (343) are compared
with those of the exact NIBA equation (300) for the case of moderately small Ohmic friction, see
Eq. (294). The predictions of the high-frequency non-Markovian approximation (348) discussed in
the next subsection are also depicted. In Fig. 20a, a moderate driving frequency X"D

0
"e

0
/4 is

considered. For these parameters the Markovian approximation (343) is very good. The frequency
is increased to X"15D

0
in Fig. 20b. In this latter parameter regime the Markovian approximation

breaks down but the high-frequency approximation (350) discussed in the next section describes
well the non-Markovian dynamics.

12.1.1.3. High-frequency regime. In the high-frequency regime X<MC
H
, e

0
,D

0
N, the driving field

oscillates too fast to account for the details of the dynamics within one period. Hence, a first
approximation to the true dynamics described by Eq. (300) amounts to approximate the kernels
KB(t, t@) in Eq. (300) with their average SK(B)(t, t@)TT :"K(B)

0
(t!t@) over a period [or KK (B)j (t) in

Eq. (326) with their corresponding averages kB
0

(j) given by the term with m"0 in Eq. (333)].
Hence, the essential dynamics of P(t) is described by SP(t)TT :"P

H
(t) [222,227—229,236]. Time

translation invariance is recovered by such an averaging procedure, and the resulting equation for
P
H
(t) obtained from Eq. (291) is of convolutive form. It reads

PQ
H
(t)"!P

t

0

dt@K(`)
0

(t!t@)P
H
(t@)#P

t

0

dt@K(~)
0

(t!t@) . (348)

From Eq. (326) one obtains (for convenience we explicitly indicate the field dependence of the
kernels kB

0
(j)),

PK
H
(j)"

1#k~
0
(j, eL )/j

j#k`
0

(j, eL )
. (349)

From Eqs. (348) and (349) some useful and insightful features of the high-frequency driving
dynamics can be discussed.

(i) A high-frequency field suppresses the periodic long-time oscillations, and [as seen by
approximating kB

0
(j)KkB

0
(0)] the driven TLS satisfies at long times the rate equation

PQ
H
(t)"!C

H
[P

H
(t)!P

H,/4
] , (350)

where P
H,/4

"k~
0
(0)/k`

0
(0) is the averaged nonstationary equilibrium value at high frequencies. The

high-frequency relaxation rate k`
0

(0) :"C
H

is given by

C
H
"D2

0P
=

0

dq h(`)(q) cos (e
0
q)J

0A
2eL
X

sin
Xq
2 B . (351)

Note that C
H
"SC

M
(t)TT, with C

M
(t) the Markovian rate of Eq. (343). From Eq. (350) we may

conclude that for high-frequency monochromatic driving the long-time behavior is governed
within a good approximation by a Markovian dynamics.
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Fig. 20. Comparison between the predictions of the NIBA equations (291) and (303) for the population difference
P(t) :"Sp

z
T
t

and those of the Markovian and high-frequency approximations (343) and (350), respectively. Ohmic
dissipation is considered. Frequencies are in units of d"D

0
/2, temperatures in units of +d/k

B
. Panel (a) A monochromatic

field of intermediate frequency X"D
0
"e

0
/4 is used. Panel (b) The frequency is increased to be X"15D

0
. In this latter

case the Markovian approximation breaks down, but the non-Markovian high-frequency approximation (350) describes
the dynamics well.
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(ii) Note, however, that while Eq. (348) constitutes a valid approximation to investigate the
high-frequency, transient dynamics, it misses the periodic oscillations around the asymptotic mean
value P

H,/4
. Going beyond the simple approximation (348), one obtains to leading order in

Dk`
m
(inX)D/X;1 the result [229]

P(!4)(t)"P
H,/4

# +
mE0

p
m
(X) e~*mXt ,

p
m
(X)"

i
mX

[k~
m

(!imX)!k`
m

(!imX)P
H,/4

] .
(352)

(iii) Eq. (350) may be used to investigate the modification of the transfer rate C
H

as compared to
the static one C

0
. This issue is prominent in the context of control of chemical reaction. In the case

of long-range electron transfer (ET) reactions [227,228,236], for example, C
H

determines the
transfer rate between the donor and acceptor states.

Let us consider the case of Ohmic dissipation in Eq. (294). As a first feature, because DJ
0
(z)D41, it

is apparent that for a symmetric TLS the effect of a fast asymmetry modulation results in an overall
reduction of the incoherent tunneling rate C

H
as compared to the Ohmic static one C

0
, cf. Eq. (309),

whenever a(1
2
.

Secondly, the relaxation rate can be controlled by appropriately choosing the external field
parameters. To see this, it is convenient to expand the high-frequency rate into Fourier series as

C
H
"

=
+

n/~=

J2
n
(eL /X)C

0
(e
0
#nX) , (353)

where C
0

is the static rate (306). Hence, via photon absorption or emission the ac-field opens new
tunneling channels, each weighted by the Bessel function J2

n
(eL /X). As shown in Fig. 21, the rate

might be enhanced as compared to the static case when the resonance condition e
0
"nX is fulfilled,

and when the corresponding channel has a nonzero weight J2
n
(eL /X). Vice versa, as shown in the inset

of Fig. 21, C
H

can become strongly suppressed.
(iv) As first discovered in [201,202], a fast monochromatic field can stabilize localized states

without much fine-tuning of external conditions. Some numerical results obtained in [201,202] by
using the tensor propagator method discussed in Section 10.2 are shown in Fig. 22, where the
decay rate C is depicted as a function of the Ohmic coupling parameter a. In contrast to the
undriven case (dashed curve), it is shown that the decay rate C is largely independent on the
dimensionless Ohmic coupling parameter a and on the driving frequency X, depending mainly on
the driving strength eL . A similar behavior is also demonstrated in [201] for the case of a super-
Ohmic bath. Finally note that, as confirmed in [201,202], the high-frequency NIBA rate C

H
repres-

ents an extremely good approximation to the exact numerical rate C in the parameter regime
considered for the numerical calculations.

(v) Eq. (350) also leads to the possibility of inversion of asymptotic populations of the localized
states of the TLS by a fast ac-field. This feature again entails important applications as, for
example, the possible inversion of the direction of long-range electron-transfer chemical reactions
[228,236]. This fact relies on the observation that, in the presence of a fast ac-field, the detailed-
balance condition between the forward C

&
"(k`

0
(0)#k~

0
(0))/2, and backward C

"
"
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Fig. 21. Dependence of the high-frequency rate C
H

of a driven and Ohmically damped TLS vs. the static asymmetry e
0
.

The peaks at e
0
"nX describe photon absorption or emission processes. In the inset the amplitude eL of the ac-field is

chosen such that the Bessel function J
1
(eL /X) vanishes; hence, the first resonance peak disappears. Frequencies are in units

of d"D
0
/2, temperatures in units of +d/k

B
.

Fig. 22. Numerical results obtained by using the QUAPI method for the decay rate C of a dissipative TLS driven by
a high frequency ac-field vs. the Ohmic coupling parameter a. In contrast to the undriven case (dotted line), the high
frequency rate is largely independent of the parameters of the environment and of the driving frequency, depending only
on the driving strength. The dissipative parameters are k

B
¹"5+D

0
, and u

#
"10D

0
. Moreover, the solid squares indicate

results for a generic ac-field with eL"30D
0
, X"7.5D

0
while the hollow circles refer to parameters such that CDT occurs

in the absence of dissipation, i.e., eL"30D
0
, X"5.44D

0
. In this parameter regime the decay rate C is analytically well

approximated by the high-frequency NIBA rate C
H

(not shown).

(k`
0

(0)!k~
0

(0))/2 rates does not hold anymore true. The destruction of detailed balance by a strong
periodic field may be characterized by an effective energy bias, i.e.,

+e
%&&
"k

B
¹ ln(C

&
/C

"
) . (354)

In the limit of vanishing field eLP0, this apparent bias e
%&&

coincides with the static bias e
0
.

(vi) Eq. (349) yields information on both the transient and the long-time dynamics of the TLS.
Hence, it can be used to investigate the modification of the quantum coherent motion of the
isolated TLS by thermal and external driving forces [225,226,238]. Here we restrict ourselves to the
case of a symmetric TLS, i.e., e

0
"0, and of Ohmic dissipation (294), and study the poles of (349)

resulting from the equation j#k`
0

(j; eL )"0 in the high-frequency regime X<2pak
B
¹/+, D

0
. We

refer to [226] for a discussion of the influence of a phononic bath where J(u)Ju3. For our
purposes it is convenient to express the kernels k`

0
(j; eL ) in terms of the static one
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K(j) :"limeL?0
k`
0
(j; eL ) as

k`
0
(j; eL )"

=
+

n/~=

J2
n
(eL /X)K(j#inX) , (355)

where, when a(1 [34,32],

K(j)"
D
%

p A
+bD

%
2p B

1~2a R(j)
a#+bj/2p

, (356)

R(j)"C(1#a#+bj/2p)/C(1!a#+bj/2p) . (357)

In Eq. (356) above, C(z) denotes the Gamma function, and D
%
is the bath-renormalized tunneling

splitting when a(1, cf. Eq. (310). Here we made the high cutoff approximation
u

#
q<1, +u

#
<k

B
¹ in the correlation functions Q@(q) and QA(q) given in Eq. (295). The above

expression (356) is valid for any value a(1 of the coupling constant a. Using Eq. (356), the pole
equation predicts for the static case with a41

2
a destruction of quantum coherence by bath-

induced incoherent transitions above a transition temperature ¹*(a) [32,34]. For a51
2
the dynam-

ics is incoherent down to ¹"0. For weak Ohmic damping a;1 one obtains from Eq. (357) that
R(j)K1. Hence, the pole equation becomes just a quadratic equation in j and the transition
temperature is determined by the condition of the solutions being real and degenerate [32,34].
Such a situation is strongly modified if the additional influence of an ac-field is considered.
Taking into account the high-frequency condition X<2pak

B
¹/+, D

0
, up to the order

O((2pak
B
¹/+X)4), O((D

0
/X)4), and for a;1, one finds [238]

k`
0
(j; eL )"K(j)CJ2

0
(eL /X)#A

a#+bj/2p
+bX/2p B

2
+
nE0

J2
n
(eL /X)
n2 D . (358)

This equation is very useful to understand the role of driving fields on the tunneling dynamics. Its
two parts act in fact in preserving or suppressing quantum coherence, respectively. When the first
contribution dominates, the effect of a fast field essentially results in renormalizing D

0
as

D
0
PD

%&&
"D

0
J
0
(eL /X) , (359)

in accordance with the results for the undamped TLS, cf. Eq. (99). In turn, the effective tunneling
matrix element D

%
in Eq. (310) is renormalized as D

%
PD

%&&,%
"D

%
DJ

0
(eL /X)D1@1~a, a(1. Hence, from

static considerations, one finds the transition temperature ¹*
%&&

(a)K+D
%&&,%

/pak
B

when a;1.
Because ¹*

%&&
(a)4¹*(a), the effect of asymmetry driving results in an overall reduction of quantum

coherence [225,238]. Near the zeros of J
0
(eL /X) quantum coherence is strongly suppressed and the

particle tunnels incoherently with the rate C
H
"C

0
(2pa/+bX)2+

nE0
J2
n
(eL /X)/n2 down to ¹"0.

We finally remark that, in contrast to the Ohmic case, for a phononic bath with J(u)Ju3, the
decay rate decreases proportional to J2

0
when J

0
(eL /X)K0; at the same time the driving-renor-

malized tunneling frequency decreases still linearly with J
0

[226]. Hence, only (damped) quantum
coherence survives near the zeroes of J

0
.

(vii) Eq. (349) gives also information on the effects of dissipation on the coherent destruction of
tunneling (CDT) in a symmetric TLS induced by a fast ac-field, cf. Section 3.2.2
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[24,67—72,191,192]. The condition J
0
(eL /X)"0 was found to be the necessary, but not sufficient

[67], criterion for CDT in the case of a driven TLS in the absence of dissipation [24,67—72]. In the
presence of (weak) Ohmic dissipation, it can be deduced from the discussion in (iv) that, because
C
H
(C

0
;X, suppression of tunneling may be stabilized over several periods of the driving force

in accordance with previous findings [191,192]. The same phenomenon is found to happen for
a super-Ohmic phonon bath [226].

12.1.2. Quantum coherence for weak dissipation and low temperatures
At low temperatures, weak dissipation and nonzero static bias, the NIBA breaks down because

inter-blip correlations contribute to linear order in the spectral density J(u). Hence, in this regime
the tunneling dynamics needs to be investigated using approximation schemes different from the
NIBA.

12.1.2.1. High-frequency regime. Using the weak coupling expressions (312), the transient driven
dynamics in the high-frequency regime X<C

H
, D, e

0
described by P

H
(t) has been investigated in

Refs. [222,245]. Here, as in Eq. (349) above, P
H
(t) denotes the quantum expectation value of

p
z

averaged over the fast driving field, and C
H

is the high frequency relaxation rate, cf. Eq. (364)
below. In this high-frequency regime the Laplace transform of P

H
(t) formally obeys the same

equation as Eq. (349), so that again the resulting dynamics is conveniently solved by Laplace
transformation. We can identify two different parameter regimes.

(i) Within the regime X<eL , the undamped driven system is characterized by three bias frequen-
cies, e

1
"e

0
; e

2
"e

0
#X; e

3
"e

0
!X, and by three tunneling frequencies l

1
, l

2
, and l

3
. The square

of these frequencies are the solutions of a cubic equation in l2, namely, l6!a
4
l4#a

2
l2!a

0
"0.

The coefficients are

a
0
"e2

1
e2
2
e2
3
#[D2

1
e2
2
e2
3
#D2

2
e2
1
e2
3
#D2

3
e2
1
e2
2
] ,

a
2
"[D2

1
(e2
2
#e2

3
)#e2

2
e2
3
]#[D2

2
(e2
1
#e2

3
)#e2

1
e2
3
]#[D2

3
(e2
1
#e2

2
)#e2

1
e2
2
] , (360)

a
4
"[e2

1
#D2

1
]#[e2

2
#D2

2
]#[e2

3
#D2

3
] ,

with the modified tunneling matrix elements reading

D2
1
"(1!eL 2/2X2)D2

0
, D2

2
"D2

3
"(eL 2/2X2)D2

0
. (361)

The undamped and driven system thus exhibits coherent oscillations,

P(0)
H

(t)"p
0
#+

j
p
j
cos(l

j
t) (362)

with the amplitudes p
1
, p

2
, p

3
defined in a cyclic way. One obtains,

p
1
"

(l2
1
!e2

1
)(l2

1
!e2

2
)(l2

1
!e2

3
)

l2
1
(l2

1
!l2

2
)(l2

1
!l2

3
)

, p
0
"

3
<
j/1

e2
j

l2
j

, (363)

with the sum rule +3
j/0

p
j
"1 being obeyed.

On the other hand, as a result of the bath influence, the poles of the Laplace transform of P(0)
H

(t)
are shifted from the imaginary axis into the negative-real halfplane, and there appears an additional
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pole at the origin. The residuum of this pole (denoted by P
H,/4

) represents the equilibrium
population reached at long times. The dynamics is described by the expression9 [222]

P
H
(t)"

3
+
j/1

p
j
cos (l

j
t) e~C

jt#(p
0
!P

H,/4
) e~C

Ht#P
H,/4

, (364)

where the four damping rates C
j
, j"1, 2, 3, and C

H
depend explicitly on the characteristics of the

bath, and on the driving parameters X and eL [222]. Hence, in this parameter regime, P
H
(t) still

displays damped coherent oscillations as in the undriven case. Though, due to the driving, three
main oscillation frequencies l

j
as well as corresponding damping rates C

j
come into play.

(ii) When eL5X the parameter regime is met where CDT may occur. This effect has been
investigated in Ref. [245] using a generalized Bloch equation formalism applied to a super-Ohmic
bath where J(u)Ju3, cf. Eq. (238). There, it is argued that, at high temperatures, the effect of the
driving field is simply to renormalize the bare tunneling frequency D

0
as D

0
PD

0
J
0
(eL /X). Hence, the

localization transition occurs again near the zeros of the zeroth-order Bessel function J
0
(eL /X). As in

the NIBA case, because the transition rate vanishes faster than the tunneling frequency, this implies
that in the symmetric case, e

0
"0, there will be a slow coherent oscillation near the localization

transition, in agreement with [226]. On the other hand, for the biased case one expects pure
exponential decay in the vicinity of the transition.

12.1.2.2. Adiabatic frequency regime. For weak dissipation, low temperatures and in the adiabatic
regime +X;E(t), D+hQ (t)D;E(t), where h(t)"!arccot(e(t)/D

0
), the tunneling dynamics can be

investigated with the help of the adiabatic approach discussed in Section 11.5 [263,264]. Here,
E(t)"+(D2

0
#e2(t))1@2 is the adiabatic level splitting of the TLS Hamiltonian H

TLS
(t) in Eq. (320). In

this case, in contrast to the adiabatic regime discussed within the NIBA, cf. Eq. (347), the relevant
dynamical variable is the difference N(t) between occupation numbers in the lower and upper
adiabatic states of H

TLS
(t), cf. Eq. (71) for the zero driving case, and not the tunneling quantity P(t).

Neglecting the adiabatic term !i+R(t)(dR~1/dt) in Eq. (324), one then finds that, at long times, the
dynamics of N(t) is governed by a rate equation which is formally similar to Eq. (343) with
Eq. (347), i.e.,

NQ (t)"!C(t)[N(t)!N
!$,/4

(t)] , (365)

where the adiabatic equilibrium distribution of the TLS is given by N
!$,/4

(t)"tanh(E(t)/2k
B
¹), and

where second-order perturbation theory in the bath-TLS coupling leads to the rate expression

C(t)"(+D
0
/E(t))J(E(t)/+) coth (E(t)/2k

B
¹) , (366)

with J(u) being the environmental spectral density, cf. Eq. (238). A formal solution for N(t) is
obtained in terms of quadratures as

N(t)"P
t

~=

dt@ expA!P
t

t{

dtAC(tA)BC(t@)N
!$,/4

(t@) . (367)

9We disregard real-valued shifts of the oscillation frequencies l
j
, as well as shifts of the amplitudes p

j
caused by

coupling to the environment, as they are of secondary interest here.
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The position expectation value P(t) can now be evaluated from the relation, cf. Eq. (70) for the
static case,

P(t)" cos[h(t)]N(t)# sin[h(t)]M(t) , (368)

with M(t) :"TrMo
E
(t)p

x
N, N(t) :"TrMo

E
(t)p

x
N, and o

E
(t) being the reduced density matrix evolving in

the adiabatic basis. Observing that asymptotically M(tPR)+0, the asymptotic behaviour of P(t)
may be evaluated from Eq. (367) together with the relation P(t)"(+e(t)/E(t))N(t).

We refer to [263,264] for an application of these results to the investigation of the nonlinear
acoustic response in vibrating-reed experiments on dielectric glasses at low temperatures [265]. In
this case, in fact, the dissipative mechanism mainly originates from the interaction between thermal
phonons and TLS-like low-energy excitations arising from the disordered glassy structure
[266,267]. A weak coupling approach in the TLS—phonon interaction is generally correct to treat
the low-temperature dynamics. Thus, Eq. (367) with Eq. (366) given in terms of the phononic
spectral density J(u)Ju3 yields the formal solution of the dynamics for insulating glasses driven
by low-frequency strain fields, being the case for the vibrating-reed experiments [265]. In contrast,
when vibrating-reed experiments in metallic glasses are considered [265], the interaction of the
TLS with electrons cannot be described within a perturbative treatment. In this case the NIBA
equation (343) within the adiabatic limit (347) properly describes the dynamics [268].

12.1.3. Driving-induced coherence: ¹he case a"1/2
In the limit of a large cutoff u

#
, where the approximation (296) for the Ohmic kernels holds, the

equation for P(t) for a"1
2

is given by Eq. (298). Let us consider only asymmetry driving as in the
Hamiltonian of Eq. (325). From Eq. (298), the harmonics p

m
(X, eL ) of P(t) are given by the expression

[221]

p
m
(X, eL )"

C
0

C
0
!imX

2u
#

p
h
m
(!imX,C

0
) (369)

with

h
2k

(j, C
0
)"P

=

0

dq e~jq~C
0q@2~Q{(q)A~

2k
(q) ,

h
2k`1

(j,C
0
)"P

=

0

dq e~jq~C
0q@2~Q{(q)A~

2k`1
(q) ,

(370)

where the coefficients A~
k
(q) have been defined in Eq. (334). Here, C

0
"pD2

0
/2u

#
. In Fig. 15 the

fundamental spectral amplitude g
1
(X, eL )"4pDp

1
(X, eL )/eL D2 is plotted vs. frequency for different

temperatures. As the temperature is decreased, resonances are found at submultiples
X"e

0
/n (n"1, 2,2) of the static bias. Correspondingly, the dynamics is intrinsically non-

Markovian. As the temperature is increased, the coherence is increasingly lost, note the behavior of
the dot-dashed and dashed lines in Fig. 15.

12.1.4. Quantum stochastic resonance
The phenomenon of stochastic resonance constitutes a cooperative effect of noise and periodic

driving in bistable systems, resulting in an increase of the response to the applied periodic signal for
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some optimal value of the noise strength. Since its discovery in 1981 [269], this intriguing
phenomenon has been the object of many investigations in classical contexts [270—272]. Classical-
ly, the maximal enhancement in the output signal is assumed when the thermal hopping frequency
is near the frequency of the modulation. Hence, the term resonance. Here, we shall focus on the deep
quantum regime, where tunneling is the only channel for barrier crossing and one can treat the
bistable system within the two-level system approximation discussed in this section. As we shall see,
qualitative new features occur as compared to the classical case [232—234]. As the temperature is
increased, the investigation of quantum stochastic resonance (QSR) requires to go beyond the
two-level system approximation discussed in this section. QSR in the regime where both quantum
tunneling and thermal hopping over the barrier contribute to the escape mechanism has been
investigated in [235] by use of a semiclassical analysis. Recently, this regime has been investigated
numerically in [203] via the QUAPI method discussed in Section 10.2.

The relevant theoretical quantity describing the dissipative dynamics under the external per-
turbation is the expectation value P(t)"Sp

z
T
t
. On the other hand, the quantity of experimental

interest for Quantum Stochastic Resonance (QSR) is the time-averaged power spectrum

SM (u)"P
`=

~=

dqe*uqCM (q) , (371)

defined as the Fourier transform of the time-averaged, asymptotic (i.e., t
0
P!R) symmetrized

correlation function CM (q) where

CM (q)"
X
2pP

2p@X

0

dt
1
2
Sp

z
(t#q)p

z
(t)#p

z
(t)p

z
(t#q)T. (372)

The combined influence of dissipative and driving forces render extremely difficult an evaluation of
the correlation function CM (q) (and hence of the power spectrum) at short times. Matters simplify for
times t, q large compared to the time scale of the transient dynamics, when P(t) acquires the
periodicity of the external perturbation, cf. Eq. (328). Correspondingly, CM (q) and its related power
spectrum in the asymptotic regime read

lim
q?=

CM (q)"C(!4)(q)"
=
+

m/~=

Dp
m
(X, eL )D2e~*mXq (373)

and

S(!4)(u)"2p
=
+

m/~=

Dp
m
(X, eL )D2d(u!mX) . (374)

Hence, the amplitudes Dp
m
D, as given in Eq. (330), of the super-harmonics of P(!4)(t) determine the

weights of the d-spikes of the power spectrum in the asymptotic state. In order to investigate QSR
[232—234] we shall examine the scaled power amplitude g

m
in the mth frequency component of

S
!4
(u) [273]

g
m
(X, eL )"4pDp

m
(X, eL )/+eL D2 . (375)

324                                                   



The quantitative study of QSR requires thus to solve the asymptotic dynamics of the nonlinearly
driven dissipative bistable system. Here, we shall discuss some characteristics of QSR as they
emerge from the study of the dynamics of a TLS in an Ohmic bath, cf. Eq. (294), and under
ac-modulation of the bias energy as in Eq. (325). We shall focus on the low temperature regime and
high cutoff limit +u

#
<k

B
¹, D

0
, where the approximation (296) for the Ohmic bath correlation

function holds. The main features of QSR for Ohmic friction can be summarized as follows:
(i) In contrast to classical [270—272] and semiclassical [235] studies of stochastic resonance,

where the spectral amplification g
1

is maximal for a symmetric system, QSR in the deep quantum
regime and high cutoff limit can arise only in the presence of a static asymmetry when the Ohmic
strength a is less than one [232]. In particular, the static asymmetry should always be larger than
the applied driving strength, cf. Fig. 23 [233,234]. Qualitatively, one needs some incoherence for
QSR to occur.

As the friction strength a is increased above one, and/or for sufficiently large temperatures such
that either the TLS approximation and/or the low-temperature approximation (296) for the Ohmic
kernels breaks down QSR can occur also in the absence of a static asymmetry [235,203], cf. also
Fig. 34 below.

(ii) In the investigation of QSR, the interplay between an incoherent dynamics induced by the
environmental stochastic forces and a coherent dynamics induced either by quantum interference
effects, or because of driving, is crucial. In particular, QSR arises only when incoherent processes
dominate over coherent ones [233,234]. For example, QSR cannot be observed for moderate-to-
high driving fields in the temperature regime dominated by driving-induced coherence, see Figs. 15
and 23. In Fig. 23 the power amplitude g

1
(X, eL ) is plotted as a function of the temperature

for different driving strengths eL for the case a"1
2

(frequencies are in units of C
0
"pD2

0
/2u

#
,

Fig. 23. Quantum stochastic resonance (QSR) in the deep quantum regime. The power amplitude g
1
(X, eL ) is plotted as

a function of the temperature for different driving strengths eL for the case a"1
2

of Ohmic dissipation. Frequencies are in
units of C

0
"pD2

0
/u

#
, temperatures in units of +C

0
/k

B
. For highly nonlinear driving fields eL'e

0
, the power amplitude

decreases monotonically as the temperature increases (uppermost curve). As the driving strength eL is decreased, a shallow
minimum followed by a maximum appears when the static asymmetry e

0
equals, or slightly overcomes, both the external

frequency X and strength eL (intermediate curves). For even smaller external amplitudes, the nonlinear QSR can be studied
within the linear response theory (dashed curve).
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temperatures in units of +C
0
/k

B
). For highly nonlinear driving fields eL'e

0
the power amplitude

decreases monotonically as the temperature increases (uppermost curve). As the driving strength
eL is decreased, a shallow minimum followed by a maximum appears when the static asymmetry
e
0

equals or slightly overcomes both the external frequency X and strength eL (intermediate curves).
For even smaller external amplitudes, the nonlinear QSR can be studied within the linear response
theory (dashed curve). In the linear region the shallow minimum is washed out, and only the
principal maximum survives. It is now interesting to observe that, because for the undriven case the
TLS dynamics for a"1

2
is always incoherent down to ¹"0, the principal maximum arises at

the temperature ¹ at which the relaxation process towards thermal equilibrium is maximal. On the
other hand, the minimum in g

1
appears in the temperature region where driving-induced coherent

processes are of importance, cf. Fig. 15. This means that the power amplitude g
1

plotted versus
frequency shows resonances when X+e

0
/n (n"1, 2,2). As the temperature is increased, this

coherence is increasingly lost.
(iii) QSR can be well understood within a linear response analysis in an intermediate-to-low-

frequency regime.
Within linear response, only the harmonics 0,$1 of P(!4)(t) in Eq. (373) are different from zero,

p
0
"P

45
being just the thermal equilibrium value in the absence of driving, and p

B1
"eL sJ ($X)

being related to the linear susceptibility sJ (X) by Kubo’s formula. With increasing strength eL linear
response theory fails, and higher harmonics become important.

Let us consider the regime +X;2pak
B
¹ and k

B
¹'+D

0
, and/or a'1, and/or e

0
<D

0
, where

incoherent transitions dominate the dynamics and NIBA applies. The susceptibility is then
explicitly obtained in the form, cf. Eq. (342),

sJ (X)"
1

4k
B
¹

1
cosh2(+e

0
/2k

B
¹)

1
1!iXC~1

0

. (376)

Here, the Ohmic static rate C
0
, cf. Eq. (309),

C
0
"

D2
0

2u
#
A
+bu

#
2p B

1~2aDC(a#i+be
0
/2p)D2

C(2a)
cosh(+be

0
/2) , (377)

can be regarded as the sum of the (static) backward C
"
and forward C

&
rates out of the metastable

states. The factor 1/cosh2(+e
0
/2k

B
¹) expresses that the two rates are related by the detailed balance

condition C
&
"e+be0C

"
. It is now interesting to note that the same formal expression for the

incoherent susceptibility (and hence for g
1
) holds true — in leading order — for the classical case, with

C
0

being the sum of the forward and backward Arrhenius rates in the asymmetric bistable system
[272]. Hence, in classical SR the maximum arises due to a competition between the thermal
Arrhenius dependence of the rates and the algebraic factor (k

B
¹)~1 that enters the linear suscepti-

bility. For low driving frequencies the maximum amplification is then obtained at the temperature
¹ such that the thermal hopping time scale approximately equals the driving period T"2p/X
[272]. On the other hand, quantum rates possess a rather weak temperature dependence as
compared to the Arrhenius rate. The crucial role is now taken over by the Arrhenius-like
exponential factor 1/cosh2(+e

0
/2k

B
¹), where in the two-state picture +e

0
is of the order of the bias

between the well minima. Hence, whenever +e
0
;k

B
¹ the energy levels are essentially equally

occupied and no response to the external signal occurs. The maximum arises near the temperature
obeying k

B
¹K+e

0
over a wide frequency range.
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Fig. 24. Noise-induced suppression (NIS) of higher harmonics. The third power amplitude g
3

when plotted versus
temperature reveals a striking characteristic: As the driving frequency is decreased, a noise-induced suppression (NIS)
occurs in correspondence of the QSR maximum in the fundamental harmonic. Frequencies are in units of the
bath-renormalized tunneling splitting D

%
, cf. Eq. (310), temperatures in units of +D

%
/k

B
.

Similar qualitative results are obtained also in the parameter region of low temperatures
k
B
¹4+D

0
and weak coupling a;1 where underdamped quantum coherence occurs and NIBA

breaks down [233,234].
(iv) Even if QSR can be well understood within a linear response theory, novel interesting effects

arise in the regime of nonlinear QSR, when higher order harmonics become resolvable. In
particular, quantum noise can substantially enhance, but also suppress, the nonlinear response.
Fig. 24 depicts the behavior of the third power amplitude g

3
versus temperature. It reveals

a striking effect: As the driving frequency is decreased, a noise-induced suppression (NIS) of higher
harmonics occurs in correspondence of the stochastic maximum in the fundamental harmonic g

1
.

To understand the results shown in Fig. 24 it is convenient to rewrite p
m
(X) as the sum of

a quasistatic (frequency-independent) contribution

p(24)
m

"

1
2pP

2p

0

dx tanh [+b(e
0
#eL cosx)/2]cos(mx) , (378)

and a retarded one p(3%5)
m

(X). The latter becomes negligible when XP0. For the parameters in
Fig. 24 this amounts to X410~4D

0
. A numerical evaluation shows that the NIS is most

pronounced when the retarded contribution becomes negligible, so that p
m
(X)Kp(24)

m
.

The same reasoning holds true in the parameter regime of low-driving frequencies, low temper-
atures and weak coupling to the bath where adiabatic quantum coherence occurs [233,234].

Hence, the discussion of this subsection makes clear that quantum noise does not necessarily
represent a nuisance but rather can be a useful tool when used within the interplay of nonlinearity,
driving and (quantum) noise.

12.2. Pulse-shaped periodic driving

Given the results of the previous subsections, we have all the necessary tools to discuss the case of
pulse-shaped periodic driving of the form

e(t)"e
0
#eL g(t) cos(Xt), g(t#T

1
)"g(t) , (379)
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Fig. 25. Different periodic driving signals can be used to control tunneling: (a) monochromatic driving; (b) and (c)
pulse-shaped polychromatic driving of period T

1
. The latter are obtained by modulating a monochromatic signal by

a pulse function of pulse duration T
0
.

and D(t)"D
0
. The quantity g(t) is a “pulse” function of period T

1
"2p/X

1
5T"2p/X

that modulates the monochromatic part, cos(Xt), of the signal. Depending on the particular shape
of the ‘pulse’ function g(t), different experimental realizations may be mimicked, as shown in
Fig. 25.

Because Eqs. (343) and (350) are restricted only by the assumption of a separation of time scales,
in the parameter regime q~1

K
<X, X

1
, C

H,g, with C
H,g the appropriate time-averaged relaxation rate,

the resulting dynamics is Markovian. The dynamics can then be approximated by Eq. (343). An
additional approximation to Eq. (343) can be discussed in the parameter regime X< C

H,g<X
1
.

That is, we assume that the pulse-shape function g(t) is a slowly varying function on the time scale
set by the transient dynamics, while, on the contrary, the monochromatic part cos(Xt) is fastly
changing. Although the oscillatory long-time dynamics will assume the periodicity of the slow
pulse shape function g(t), see Eq. (328), the dynamics within a pulse periodT

1
is also determined by

the fast monochromatic signal. Hence, due to the assumption X<C
H,g, a good approximation

to Eq. (343) can be obtained by performing the average SP
M
(t)TT of P

M
(t) over the fast oscillating

field.
The evaluation of the time-averaged kernels in turn is readily accomplished by noting that this

average has only to be carried out on the field dependent contributions cos[f(t, t@)] and sin [f(t, t@)].
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The average over the period T"2p/X yields [231,246]

Scos [f(t, t@)]TT"J
0A

2eL g(t)
X

sinA
X(t!t@)

2 BB cos[e
0
(t!t@)] ,

Ssin [f(t, t@)]TT"J
0A

2eL g(t)
X

sinA
X(t!t@)

2 BBsin [e
0
(t!t@)] .

(380)

The smooth, slowly oscillating function SP
M
(t)TT therefore satisfies the rate equation (343) with

relaxation rate given by

C
M,g(t)"P

=

0

dq h(`)(q)J
0A

2eL g(t)
X

sinA
Xq
2 BBcos(e

0
q) . (381)

The nonstationary asymptotic quantity is P
/4,g(t)"o

M,g(t)/CM,g(t), where

o
M,g(t)"P

=

0

dqh(~)(q)J
0A

2eL g(t)
X

sinA
Xq
2 BBsin (e

0
q) , (382)

with h(B) defined in Eq. (308). Note that when g(t)"1 the high-frequency approximation (350) is
recovered. This is in agreement with the physical intuition saying that a monochromatic signal can
be thought to be a pulse-shaped signal with an infinite pulse period T

1
. The asymptotic oscillatory

dynamics for the case of Ohmic friction and pulse-shaped driving of the type (b) in Fig. 25 is shown
in Fig. 26. For comparison, the prediction of the rate equation (343) with Eqs. (344) and (346) is
also depicted. In addition, we show the prediction of Eq. (343) where the approximated equations
(381) and (382), obtained in the Markovian limit of low X

1
and high X, are used. This latter Markov

—#— high X approximation describes the TLS oscillations between the two bounding values
P
45
:"P

/4,g/0
and P

H,/4
:"P

/4,g/1
. These bounds are indicated by the arrows in Fig. 26. The low

X
1
-high X approximation scheme clearly misses the fine structure due to the monochromatic

driving. The possibility to use this effect to control long-range electron-transfer reactions have been
proposed in [230].

12.3. Dynamics under ac-modulation of the coupling energy

In this section our focus is on the effect of ac-modulation of the coupling energy of the TLS. We
shall assume for the driven TLS the form

H
TLS

(t)"!1
2
+[D

0
exp(d cosXdt)px

#e
0
p
z
] . (383)

This time dependence of the coupling parameter could arise for example from an ac-modulation of
the barrier height or width of the underlying double-well potential. For example, for a particle of
mass m moving in a double-well potential with barrier height E

B
, vibrational frequency u

0
at the

bottom of each well, and tunneling distance d, the bare tunneling splitting D
0

in WKB approxima-
tion is given by D

0
"u

0
exp[!d(2mE

B
/+)1@2]. This kind of driving could be realized in a supercon-

ducting loop with two Josephson junctions [208]. It is important to observe that, while the effect of

                                                  329



Fig. 26. Dynamics of the population difference P(t) induced by a periodic pulse of the form in Fig. 25b. A low-frequency
periodic square pulse of period T

1
"2p/X

1
and pulse duration T

0
"T

1
/2 is multiplied by a monochromatic signal of

intermediate frequency X. The oscillatory dynamics within the exact NIBA (solide line) is depicted in the inset where P(t)
is plotted for longer times. The predictions of the exact NIBA are compared with two Markovian approximations,
namely the Markovian approximation in Eq. (343) with Eqs. (344) and (346) (dashed curve), or with Eqs. (381) and (382)
(dot—dashed curve) being valid for slow pulses with internal high-frequency oscillations. The latter Markov —#— high
X approximation describes the population oscillations between the two bounds P

45
and P

H,/4
, as indicated by the arrows.

Frequencies are in units of d"D
0
/2, temperatures in units of +d/k

B
.

asymmetry modulation is additive, a barrier modulation results in a multiplicative (exponential)
modification of the coupling parameter. In the following, we shall refer to the situation of pure
asymmetry modulation as “case I”, to that of pure barrier modulation as “case II”, respectively.

Due to the generality of the master equation within the NIBA (300), and following the lines of the
analysis of the previous sections, it is straightforward to investigate the dynamics under the driving
in Eq. (383). The obtained results are as follows [238]:

(i) As for the case I of bias modulation, the asymptotic dynamics is periodic and an equation for
the harmonics of P(!4)(t) is given by Eq. (330), where for the driving of Eq. (383) the functions kB

m
are

explicitly given by

k~
m
(j, d)"(!1)mD2

0P
=

0

dq e~jq~Q{(q)e~*mXd q@2sin [QA(q)]sin(e
0
q)I

mA2d cos
Xdq
2 B ,

k`
m
(j, d)"(!1)mD2

0P
=

0

dq e~jq~Q{(q)e~*mXd q@2cos [QA(q)]cos (e
0
q)I

mA2d cos
Xdq
2 B , (384)

where I
m
(z) denotes the modified Bessel function of order m.
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(ii) As shown in Section 12.1 above, for a symmetric TLS, spatial symmetry properties of the
kernels kB

m
(j) imply that all the Fourier components of P(!4)(t) with even index vanish for case I,

cf. Eq. (333) and the discussion below. In contrast, here we find that all super-harmonics vanish
identically for ac-modulation of the coupling energy.

(iii) Some interesting new features of case II driving can be found in the high frequency regime
Xd<Cd :"k`

0
(0, d), where the high-frequency approximation (349) holds. As shown for case I, a fast

field suppresses the periodic long times oscillations, and the TLS approaches incoherently the
steady value p

0
"k~

0
(0, d)/k`

0
(0, d) with relaxation rate k`

0
(0, d) :"Cd.

Let us consider the case of Ohmic dissipation (294). In contrast to case I, where the effect of a fast
asymmetry modulation is an overall reduction of the incoherent tunneling rate (whenever a(1

2
),

the tunneling rate Cd is now always increased (due to I
0
(z)51).

Furthermore, the modification of the quantum coherent motion by thermal and driving forces
results from an investigation of the zeros of j#k`

0
(j;d)"0. In the high-frequency regime

Xd<2pak
B
¹/+, D

0
, and for a;1, one obtains

k`
0
(j; d)"K(j)CI20(d)#A

a#+bj/2p
+bXd/2p B

2
+
nE0

I2
n
(d)

n2 D , (385)

where the static kernel K(j) is defined in Eq. (356), and where the high cutoff limit is considered.
Because I

0
(d)51, the first contribution in the r.h.s. of Eq. (385) always dominates over the second

one. Therefore, CDT never occurs for case II. In other words, the driving field modulation of the
coupling energy essentially results in a renormalization of the bare tunneling splitting D

0
as

D
0
PD

%&&,d"D
0
I
0
(d)5D

0
. (386)

Equivalently, Dd"D
%
I
0
(d)1@1~a, and D

%
is the bath-renormalized tunneling splitting for a(1, cf.

Eq. (310). Hence, when a;1, the transition temperature from coherent to incoherent tunneling is
given by ¹*

d(a)K+Dd/pak
B
. With ¹*

d(a)5¹
0
(a), quantum coherence is thus always enhanced in

case II.

12.4. Dichotomous driving

Up to now we considered the effects of a deterministic external driving on the TLS dynamics.
Here, we shall consider the case where the driving constitutes an external discrete two-state
stochastic process (dichotomous process). In contrast to equilibrium noise produced by the
harmonic (Gaussian) bath in the spin—boson model, such a noise must be considered as a source of
nonequilibrium noise. This situation arises, for example, in proteins, where the transfer of electrons
between different sites may be influenced not only by thermal phonons, but also by large-amplitude
local excitations [239—241]. If one considers the simplest case of a dichotomous Markovian process
(DMP), this can simulate, for example, the hopping of a relevant molecular group or ion between
two equivalent positions. Let us thus consider the noisy TLS

H
TLS

(t)"!1
2
+[D

0
p
x
#(e

0
#eL g(t))p

z
] , (387)

where g(t)"$1 is a stationary DMP with zero mean Sg(t)Tg"0 and exponentially decaying
autocorrelation function

Sg(t)g(t@)Tg"exp[!lDt!t@D] . (388)

                                                  331



Here, S Tg denotes the average over the stochastic process. It should be distinguished from the
thermal statistical average denoted by S T in the previous sections. We shall derive the NIBA
equations for the TLS dynamics averaged over the discrete two-state stochastic process. Generally,
this is a nontrivial problem. It can be done exactly, however, for the case of a DMP. For a more
detailed discussion we refer to Refs. [239,240]. The case of a dichotomously fluctuating tunneling
matrix element has instead been treated in Refs. [241,242].

Within the NIBA, the dynamics of the driven and dissipative TLS is described by the equations
of motion (300) for the quantum expectation value P(t)"Sp

z
T
t

of the position. To average
Eq. (300) one has to evaluate the correlator SS(t, t@)P(t@)Tg, where S(t, t@)"exp[!ieL :t

t{
dtAg(tA)]. As

follows from a theorem due to Bourret et al. [274] one finds that

SS(t, t@)P(t@)Tg"S
0
(t!t@)SP(t@)Tg#S

1
(t!t@)Sg(t@)P(t@)Tg , (389)

where S
0
(t!t@)"SS(t, t@)Tg, and S

1
(t!t@)"Sg(t@)S(t, t@)Tg. In the same way one has

Sg(t)S(t, t@)P(t@)Tg"S
1
(t!t@)SP(t@)Tg#S

2
(t!t@)Sg(t@)P(t@)Tg , (390)

where S
2
(t!t@)"Sg(t)g(t@)S(t, t@)Tg. The next step consists in the evaluation of the averaged

functions S
0
, S

1
, S

2
. This can be done with the help of a theorem due to Shapiro and Loginov

[275], namely,

d
dt

Sg(t)R(t)Tg"!lSg(t)R(t)Tg#Tg(t)
dR(t)
dt Ug

(391)

holds for any retarded functional R(t). Applying this theorem to the correlator Sg(t)S(t, t@)Tg, one
obtains a closed set of differential equations for S

0
(t!t@) and S

1
(t!t@). The solution of these

equations yields

S
0
(q)"expA!

lq
2 BCcoshA

l6 q
2 B#

l
l6
sinhA

l6 q
2 BD , (392)

where l6 "Jl2!4eL 2. In the same way one obtains

S
1
(q)"!

i2eL
l6

expA!
lq
2 B sinhA

lN q
2 B ,

S
2
(q)"expA!

lq
2 BCcoshA

l6 q
2 B!

l
l6
sinhA

lN q
2 BD .

(393)

Finally, by applying again the theorem (391) to the correlator Sg(t)P(t)Tg one obtains an exact set of
coupled equations for SP(t)Tg and Sg(t)P(t)Tg, i.e.,

d
dt

SP(t)Tg"!P
t

0

dq[S
0
(q)h(`)(q) cos(e

0
q)SP(t!q)Tg

!iS
1
(q)h(`)(q) sin(e

0
q)Sg(t!q)P(t!q)Tg#S

0
(q)h(~)(q) sin(e

0
q)] (394)
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and

d
dt

Sg(t)P(t)Tg"!lSg(t)P(t)Tg!P
t

0

dq[S
2
(q)h(`)(q) cos (e

0
q)Sg(t!q)P(t!q)Tg

!iS
1
(q)h(`)(q) sin(e

0
q)SP(t!q)Tg#iS

1
(q)h(~)(q)cos (e

0
q)] . (395)

The initial conditions are SP(0)Tg"1, and Sg(0)P(0)Tg"0. These equations should be considered
as the generalization of the NIBA to the case of dichotomous driving. They account for the effects
of the discrete two-state stochastic process exactly. The above equations are still rather complic-
ated. In the case of a TLS with zero bias, e

0
"0, they simplify because the two coupled equations

separate into two independent equations. In particular, the one for the expectation value SP(t)Tg
reads

d
dt

SP(t)Tg"!P
t

0

dqS
0
(q)h(`)(q)SP(t!q)Tg . (396)

Eq. (396) can be solved by Laplace transformation. The resulting dynamics can be coherent or
incoherent, depending on the interplay between quantum interference effects, dissipation and
driving. In particular, in the incoherent regime the resulting decaying rate C

DMP
has the form

C
DMP

"

1
2CA1!

l
lN BhK (`)A

l#lN
2 B#A1#

l
lN BhK (`)A

l!lN
2 BD , (397)

where hK (`)(j) is the Laplace transform of the function h(`)(t). The predictions of Eq. (396) with
Eq. (397) for the case of long-range electron transfer reactions have been worked out in Ref. [241].
Finally, the combined effects of a symmetric DMP and of an additional, externally applied dc—ac
field have been investigated recently in [276].

12.5. The dissipative Landau—Zener—Stückelberg problem

In this section we investigate the influence of dissipation on the Landau—Zener—Stückelberg
problem discussed in Section 3.5 [247—250,277]. In this context, one considers the time-dependent
variation of the energy levels of a dissipative quantum system. This situation is encountered
frequently ranging from the case of the solar neutrino puzzle [278], to the physics of nuclear
magnetic resonance [279]. It turns out to be of relevance also in the context of macroscopic
quantum tunneling in a rf SQUID [248], when the external flux is changed at a constant rate.

Quantitatively, the problem is described by the time-dependent spin—boson Hamiltonian (270),
with TLS Hamiltonian

H
LZS

(t)"!1
2
+(D

0
p
x
#vtp

z
) , (398)

where +D
0

is the energy gap between the two levels, cf. Eq. (114). We then ask for the probability
P
LZS

:"(1!Sp
z
T
t?=

)/2 of finding the system in the excited state in the far future, cf. Fig. 3.
In the absence of dissipation the exact result P

LZS
"e~2pc in (123) holds, where c is the

dimensionless parameter c"D2
0
/(2DvD) and, as shown in Fig. 3, q

LZS
"D

0
/DvD is interpreted as the

                                                  333



time spent in the crossover region. With coupling to the environment, two other time scales
q
#
"1/u

#
and q

v
"u

#
/DvD come into play. Because u

#
is the highest frequency of the environment,

cf. Eq. (238), q
#

defines the reaction-time of the bath to an external perturbation.
In the fast-passage limit c;1, and with u

#
;JDvD, the system remains only a small time in the

cross-over region as compared to both the tunneling period and the bath reaction time. That is, the
undamped result is not modified by dissipation [248,249]. One obtains to first order in c the result

P
LZS

"1!2pc . (399)

In the slow passage limit c<1 the situation becomes more complex. Here, we consider the case
of very weak dissipation. To tackle the problem, it is convenient to perform the adiabatic
transformation (322) which leads to the effective Hamiltonian appearing in the time-evolution
operator, cf. Eq. (324),

H
%&&
"!1

2
E(t)p

z
#H

B
!(+vt/E(t))Xp

z
#(+D

0
/E(t))Xp

x
#(+3vD

0
/E2(t))p

y
, (400)

where $E(t)"$+Jv2t2#D2
0
define the corresponding adiabatic energies, cf. Fig. 3. In the limit

cPR, i.e., DvDP0, the adiabatic term (+3vD
0
/E2(t))p

y
vanishes. Note that, of course, the bath

contribution Jp
x
remains finite. In fact, the problem becomes time-independent and the rotation

(322) simply transforms the original Hamiltonian as p
x
Pp

z
and p

z
P!p

x
. This transformation

has been first applied to the Landau—Zener—Stückelberg problem in Refs. [248,249]. Though, the
authors there identify both of the off-diagonal terms in the Hamiltonian (400) as adiabatic
contributions, and in turn make a first-order expansion in both the true adiabatic contribution
Jp

y
, and the bath-induced contribution Jp

x
. The bath-induced contributionJp

z
, however, has

been considered to all orders. This neither constitutes an adiabatic approximation nor a weak
coupling expansion in the interaction with the bath. Thus, this procedure seems awkward to us; see
also in [277], where in the adiabatic passage limit c<1 and in the limit of weak coupling with
the bath, a first-order expansion both in the adiabatic term and in the bath interaction is done. One
then obtains P

LZS
"P

0
#DP, where P

0
is the Landau—Zener—Stückelberg probability in the

absence of dissipation, while DP gives the first-order correction due to the environment. It reads
[277]

DP"

1
+2P

`=

~=

dt
1P

`=

~=

dt
2
e*g(t2,t1)@+K(t

2
!t

1
)

+2D2
0

E(t
2
)E(t

1
)
, (401)

where K(t) is the force—force correlation of the bath in Eq. (229), and g(t
2
, t

1
)":t2

t1
dt E(t). This

equation, though, is still too complicated to be handled without approximations. In the low-
temperature regime +bD

0
<1 one obtains

DP+2aApe~4pc#c
e~+bD

0@2

+bD
0
/2B , (402)

while in the high-temperature regime +bD
0
;1, but still +bu

#
<1, one finds

DP+2aApe~4pc#c
1

+bD
0
/2B . (403)
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Though approximate, the results (402) and (403) show that the interaction with the bath modifies
the non-dissipative result even at ¹"0. Moreover, the transition probability increases monotoni-
cally as the temperature grows. This is in contrast with the results in [248,249] where no influence
of the bath was found at ¹"0, and with those in [250] where even a reduction of the transition
probability was predicted.

13. The driven dissipative periodic tight-binding system

In this section we consider the effect of dissipation on the driven infinite tight-binding (TB) model
introduced in Section 4. The dissipative TB system can serve as an idealized model for the diffusion
of a quantum particle on a surface of a single-crystal, or among interstitials inside a crystal [280]. It
can also be invoked to investigate quantum effects in the current—voltage characteristic of a small
Josephson junction [281] or of superlattices driven by strong dc- and ac-fields [18—22,92]. Finally,
this multistate system can be related to the Luttinger liquid model [282,283] for the conductance
between two one-dimensional quantum wires connected by a weak link via a formally exact
mapping [284].

The dissipative multistate system in the absence of time-dependent driving has been the object of
intense research in the past years [285—290]. In contrast, in Section 4 we investigated localization
effects in dc—ac-driven TB lattices in the absence of thermal noise. Here, we extend the analysis by
investigating the combined effects of dissipation and driving on the tunneling dynamics. As
a starting model we consider the one-dimensional infinite tight-binding lattice described by the
Hamiltonian H(t)"H

TB
#H

%95
(t)#H

SB
#H

B
, cf. Eq. (222). The first term H

TB
is the Hamiltonian

of the bare multistate system, cf. Eq. (130), i.e.,

H
TB
"!

+D
0

2
+
n

(DnTSn#1D#Dn#1TSnD) , (404)

where DnT denotes a (Wannier) state localized at the nth site, while 2+D
0

is the width of the single
energy band. The influence of the driving force is described by Eq. (131), i.e.,

H
%95

(t)"!q+[e
0
#eL cos(Xt)]/d, q"d+

n

nDnTSnD , (405)

where the operator q measures the position of the particle on the lattice. Finally, the Hamiltonian
term H

SB
#H

B
describes the influence of an environmental bath of harmonic oscillators as given by

Eq. (224).
Suppose that the particle has been prepared at time t

0
"0 at the origin, with the bath having

a thermal distribution at temperature ¹. Then, the dynamical quantity of interest is the probability
P
n
(t) for finding the particle at site n at time t'0. In turn, the knowledge of P

n
(t) enables the

evaluation of all the transport quantities of interest in the problem. For example, the nonlinear
mobility k(e

0
, eL ) reads

k(e
0
, eL )" lim

t?=

d
+e

0

X
2pP

t`2p@X

t

dt@PQ (t@) , (406)
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and the nonlinear diffusion coefficient D(e
0
, eL ) is given by

D(e
0
,eL )"lim

t?=

X
4pP

t`2p@X

t

dt@SQ (t@) , (407)

where the position’s expectation value P(t) :"SqT
t
, as well as the variance S(t) :"Sq2T

t
!SqT2

t
, are

defined in Eq. (132).
The path-integral evaluation of the velocity v(t)"PQ (t) in the presence of ac—dc fields has been

addressed in Ref. [291], to the lowest perturbative order D2
0

in the tunneling matrix element, under
the assumption that the particle tunnels incoherently from site to site. As demonstrated in Ref.
[292] for the case of a dc-field, and in [293] in the presence of a time-dependent field, in this case
the resulting dynamics is identical to that of a nearest-neighbor hopping model in which the
occupation probabilities obey rate equations. These equations can be thought as the generalization
of the NIBA Markovian equation (343) to the case of a tight-binding lattice. More generally, by
abandoning the Markovian assumption, the NIBA set of coupled equations for a driven tight-
binding lattice reads [294]

PQ
n
(t)"P

t

0

dt@[¼
&
(t, t@)P

n~1
(t@)#¼

"
(t, t@)P

n`1
(t@)]

!P
t

0

dt@(¼
&
(t, t@)#¼

"
(t, t@))P

n
(t@) , (408)

where the backward ¼
"
(t, t@) and forward ¼

&
(t, t@) kernels can be expressed in terms of the NIBA

kernels K(B)(t, t@) in Eq. (303) by using the relations K(`)(t, t@)"¼
&
(t, t@)#¼

"
(t, t@) and

K(~)(t, t@)"¼
&
(t, t@)!¼

"
(t, t@). In the Markovian limit, one obtains from Eq. (408) the coupled set

of equations [293]

PQ
n
(t)"C

&
(t)P

n~1
(t)#C

"
(t)P

n`1
(t)!(C

&
(t)#C

"
(t))P

n
(t) , (409)

where the backward C
"

and forward C
&
tunneling rates can be expressed in terms of the NIBA

Markovian kernels C
M
(t) and o

M
(t) in Eqs. (344) and (346) using the relations C

M
(t)"C

&
(t)#C

"
(t)

and o
M
(t)"C

&
(t)!C

"
(t).

The general solution of Eq. (409) can be obtained in the form

P
n
(t)"exp[!(F(t)#B(t))](F(t)/B(t))~n@2I

n
(2JF(t)B(t)) , (410)

with

B(t)"P
t

0

dt@C
"
(t@), F(t)"P

t

0

dt@C
&
(t@) , (411)

and I
n
(z) is the modified Bessel function of order n. This in turn leads to the result

P(t)"d[F(t)!B(t)] , S(t)"d2[F(t)#B(t)] . (412)
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In the dc-limit eL,0 one recovers the known relations P(t)"do
0
t and S(t)"d2c

0
t, where

C
0
"C

M
DeL/0

and o
0
"o

M
DeL/0

, cf. Eqs. (306) and (307). Hence, the particle diffuses linearly in time
with nonlinear dc-mobility k

0
(e
0
)"d2o

0
(e
0
)/+e

0
and dc-diffusion coefficient D

0
(e
0
)"d2C

0
(e
0
)/2.

Turning next to the explicit expression for the nonlinear mobility k(e
0
, eL ) and the nonlinear

diffusion coefficient D(e
0
, eL ), one finds [293]

k(e
0
, eL )"

d2D2
0

+e
0
P

=

0

dq J
0A

eL
X

sinA
Xq
2 BBh(~)(q)sin(e

0
q) , (413)

D(e
0
, eL )"

d2

2
D2
0P

=

0

dq J
0A

eL
X

sinA
Xq
2 BBh(`)(q)cos(e

0
q) , (414)

with h(B)(q) defined in Eq. (308). Hence, the nonlinear diffusion has the same form as the incoherent
tunneling rate of a two-state system driven by a fast ac-field, cf. Eq. (351).

Thus far, our NIBA results have been general. For quantitative calculations we restrict ourselves
to the important case of Ohmic dissipation (294). In our reported calculations we have used
a high-frequency cutoff u

#
"20D

0
.

The mean square deviation S(t) vs. time is depicted by the curves in Fig. 27. The average slope of
the curves in Fig. 27 is well approximated by twice the diffusion coefficient D(e

0
, eL ) in Eq. (414). For

generic values of e
0
, eL and X, the ac-controlled diffusion is reduced as compared to the undriven

case (e
0
"eL"0). Though, near resonances e

0
"nX, the diffusion can be enhanced. For values of

eL and X such that J
0
(eL /X)K0, i.e., eL /XK2.4, see the dot—dashed curves in Fig. 27, the diffusion

becomes very slow, especially for zero dc-bias e
0
and high driving frequencies X. This choice for eL /X

corresponds to the condition for dynamic localization (DL) found for nondissipative TB systems,
cf. Section 4. This behavior can also be inferred by inspecting Fig. 21 where the high-frequency rate
C
H
"2D(e

0
, eL )/d2 is plotted versus the dc-bias e

0
.

In Fig. 28a the dimensionless current I(e
0
, eL ; a)/edD

0
, where I"e(+e

0
/d)k, with e denoting the

elementary electron charge, is plotted vs. the dissipative strength a for different driving frequencies
X. Two striking effects occur for weak damping and strong damping, respectively: (i) A negative
current at weak dissipation is observed. Moreover, for fixed eL and X the amplitude of the negative
current is maximal for a characteristic value a"a* of the Ohmic strength. (ii) For stronger
dissipation the current becomes independent of the ac-frequency and of dissipation on a wide
range. As the frequency is increased further, the linear response regime eL /X;1 is approached and
the current moves towards its dc-limit, full-line in Fig. 28a. In Fig. 28b, I(e

0
, eL ; a)/edD

0
is plotted vs.

the applied dc-voltage e
0
for different values of the applied ac-voltage eL . A negative current vs. static

bias e
0
, i.e., a “negative conductance” is observed for small dc-bias.

To explain the results of Figs. 27 and 28 it is convenient to expand J
0
((eL /X)sin(Xq/2)) in Fourier

series, yielding

R(e
0
, eL ; a)"J2

0A
eL
XBR0

(e
0
; a)#

=
+

n/~=,nE0

J2
nA

eL
XBR0

(e
0
#nX; a) , (415)

where R
0
(e
0
; a) :"R(e

0
, eL"0; a), and R"I or D. Thus, the ac-voltage produces new channels for

dc-current flow or dc-diffusion due to photon emission (n(0) and absorption (n'0), each
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Fig. 27. Diffusion in the driven and dissipative tight-binding system. The dimensionless variance
S(t)/d2"(Sq2T

t
!SqT2

t
)/d2 vs. time (full straight line and dot—dashed curves) can be reduced or enhanced as compared to

the force-free case. It assumes its minimal values for zero dc-bias, high ac-frequencies X and when eLK2.4X. The dashed
straight lines depict the curve 2D(e

0
,eL )t, where D is the diffusion constant in Eq. (414). Ohmic dissipation is considered.

Fig. 28. Dimensionless average current I/edD
0
in the driven and dissipative tight-binding system. I/edD

0
is plotted vs. the

dissipative Ohmic coupling strength a (panel (a)) and vs. the dc-bias e
0
(panel (b)). For weak dissipation a negative current

occurs which is maximal for a nonzero value of a. For stronger dissipation the current becomes independent of both the
ac-frequency X and of the dissipative strength a on a wide range.

weighted by the factor J2
n
(eL /X). With R being the current I, we note that Eq. (415) formally

coincides with the driven tunneling current of Tien—Gordon theory [15] in Eq. (155): The result for
the corresponding dc-tunneling current is here substituted by the dissipation renormalized static
current, resulting from Eq. (413) with eL"0.
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Let us discuss the time-averaged current further. The current inversion in Fig. 28 is due to the
competition between the channels with n50, each of which always gives a positive contribution to
the total current, and higher-order channels with n(0 which may give a negative contribution. In
fact, with the help of the blocking effect, i.e., J

0
(eL /X)K0 of the n"0 channel, it can be more

favorable in current gain (in absolute value) to emit n photons than to absorb n of them, even if the
weight J2

n
(eL /X) of the sidebands is the same. For example, for the dot—dashed curve in Fig. 28a the

main contribution to the current is found to come from the first negative channel (n"!1) (not
shown). Correspondingly, the maximal negative inversion occurs for a"a*O0 such that
DI
0
(e
0
!X; a)D is maximal as a function of a, cf. Fig. 28a. For fixed eL , I(e

0
, eL ; a) vs. e

0
may have several

minima e(n)
.*/

determined by the condition

e(n)
.*/

#e*"nX , (416)

where e* is the maximum of the dc-current I
0

vs. the dc-bias, see Fig. 28b. Note that the positions
of these minima do not depend on the strength eL of the ac-field. The ac-field strength deter-
mines instead the weight of the different channels. For the parameters chosen in Fig. 28b,
the maximal negative current occurs when eL is chosen such that the first channel dominates,
i.e., J2

n
(eL /X)K0, nO1. A similar reasoning applies to explain the behaviour of the variance in

Fig. 27.
Finally, we observe that the structure in Eq. (415) is universal, i.e., it does not depend on the

specifics of the thermal bath. Dissipation determines instead the shape of the dc-current I
0
, and of

the dc-diffusion D
0
. Hence, as long as the dc-current vs. the dc-bias presents the physical

characteristics of being antisymmetric, i.e., positive (negative) for e
0
'0 (e

0
(0) with a maximum

at e
0
"e*, a current reversal is possible even for a dissipative mechanism which is different from the

Ohmic one. In the same spirit, in the investigated temperature regime k
B
¹;+u

#
, the nonlinear

diffusion will be strongly reduced in the parameter regime of dynamic localization.
Indeed, a similar behavior for the current vs. the dc-bias in semiconductor superlattices at room

temperature has been theoretically described in [16—18,92] within a phenomenological approach
based on a classical Boltzman equation with a single collision time ansatz; and in [98] within the
framework of a bias modulated Bardeen Hamiltonian for N quantum wells. Recently, such
time-averaged negative currents vs. the dc-bias have been experimentally observed in semiconduc-
tor superlattices [20,21].

Note, however, the fact that the dc-current I
0
P0 as the dc-strength e

0
PR is solely a peculiar-

ity of the single band approximation used for the Hamiltonian H
TB

in Eq. (404). Such an
approximation in fact breaks down whenever the externally applied dc- and ac-field strength e

0
and

eL , as well as the driving frequency X, become comparable with the interband level spacing. The
effect of higher bands on the dc-voltage characteristics in dc-ac driven superlattices has recently
been discussed in [295] within the framework of the Bardeen Hamiltonian. There, the character-
istic saw-tooth profile of the average current vs. dc-bias due to the formation of high-field domains
is also discussed.

Finally, we observe that an absolute negative conductance has recently been predicted also for
a dissipative TB particle under the combined effect of a dc- and of a dichotomous field [294].
Again, this effect is found to be largely independent of the specifics of the shape of the dc-current
I
0

vs. dc-bias.
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14. Dissipative tunneling in a driven double-well potential

In Section 6 the nondissipative tunneling motion of a particle moving in a driven double well,
cf. Eqs. (172) and (173), has been discussed, while in Sections 11 and 12 we investigated the driven
and dissipative dynamics restricting our attention only to the lowest doublet of the potential, i.e., in
the two-level-system (TLS) approximation. Here we shall investigate the dissipative motion within
the full double-well dynamics.

14.1. The driven double—doublet system

The first new feature arising in the full double-well potential (DW), as compared to the TLS, is
the possibility of vibrational relaxation (i.e., intradoublet transitions) in addition to left-to-right
tunneling (i.e., interdoublet transition). The competition between intra- and interwell relaxation
rates for the undriven DW has been discussed analytically in [296,297] and [298].

When an external ac-field is applied, the possibility of controlling tunneling by pumping
population from the lower to the upper tunneling pairs occurs. Very recently, a calculation in this
direction has been initiated in [299,300], where the authors restrict themselves to the case of a DW
when only the two lowest energy doublets are thermally accessible. In [299,300], the polaron
transformation [259] usually applied to investigate the two-level system [257,158] is extended to
the double—doublet system (DDS) problem. A second-order perturbative calculation in the
Franck—Condon renormalized tunneling doublets is then carried out. As suggested in [299,300],
because the upper doublet is at least one order of magnitude larger than the lower one, even a small
increase of the upper doublet’s population can lead to a significative increase in population transfer
between the localized states of the underlying double-well potential.

Some of the most intriguing results for an external field which is resonant with the interdoublet
spacing can be summarized as follows:

(i) The asymptotic upper doublet population p
61

(R) is naturally increased by an external
resonant field as compared to the nondriven case.

(ii) As long as the vibrational relaxation rate is larger than the interdoublet tunneling rates, the
upper and lower doublet populations will reach their asymptotic values on a shorter time scale as
compared to the left—right scale. The overall left—right rate constant is then the sum of the
individual doublet left—right rate constants, each weighted by the corresponding steady-state
doublet population. Because the asymptotic upper doublet population p

61
(R) is increased by an

external field as compared to the nondriven case, the external field serves to pump population in
the upper doublet, from where it can be more effectively transferred to the right well by left—right
tunneling transitions.

(iii) When, on the contrary, vibrational relaxation occurs on a much longer time scale as
compared to interdoublet tunneling, the two doublets are effectively decoupled in the absence of an
external field.

In the presence of an external resonant field, the up—down population would oscillate indefinitely
at the gap frequency if the left—right rate processes were absent. Dissipation qualitatively changes
the characteristics of the left (right) population, which reaches asymptotically the steady value
1
2
. The evolution of the left (right) population towards the steady-state value 1

2
may be underdamped

or extremely overdamped depending on the choice of the parameters.
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14.2. Coherent tunneling and dissipation

Here, we shall apply the Floquet—Markov—Born approach of Section 9 to investigate numer-
ically the effects of dissipation on driven tunneling in the DW. For the numerical calculations the
dimensionless variables and parameters are given by D"E

B
/+u

0
, ¹M "k

B
¹/+u

0
, c6 "c/u

0
,

X1 "X/u
0
, SM "Sx

0
/+u

0
, where x

0
"J+/mu

0
, see also Eqs. (174) and (175), and c is the damping

coefficient which enters in the Ohmic spectral density Eq. (235). In the following we omit the
overbars. The driven double-well potential »

1
(q, t) introduced in Eq. (226) then reads

V
1
(q, t)"!

q2

4
#

q4

64D
#Sq cos(Xt) , (417)

where D is the dimensionless barrier height.
We report on the predictions on the tunneling dynamics of the driven double-well resulting from

the simple RWA in Eq. (251), and from its improved version, see discussion above Eq. (251). The
latter form will have to be used when investigating the coherent destruction of tunneling induced
by the monochromatic field, where quasidegeneracies in the quasienergy spectrum occur. A ther-
mal bath with a spectral density J(u) of the Ohmic—Drude form as in Eq. (236) has been chosen.

Using the results of Refs. [191,192], the slow dynamics generated by the simplest RWA equation
(251) is depicted in Fig. 29 in a stroboscopic manner. In Fig. 29a we show the time evolution of the
correlation function P(t

n
)"TrMo(t

n
)o(t

0
)N/TrMo(t

0
)2N, where o(t

0
) is the reduced density matrix at

the initial time, and t
n
"nT. A pure coherent state centered at one of the classical attractors in the

right well is chosen as the initial state. The chosen parameters are D"6, c"10~5, ¹"0, S"
0.08485, and X"0.9, so that the driving frequency X is close to the fundamental first resonance.
Note that for these values of the damping and barrier height the condition D

0
<c for the validity of

the Markov—Born approximation, with D
0

of the order of the lowest tunneling doublet, is not
satisfied. Though, the results still qualitatively reproduce the correct dynamics. There is a slow
decaying oscillation of P(t

n
) between 0 and 1, which corresponds to the familiar tunneling, and

superimposed there is a fast oscillation of smaller amplitude due to a participation of additional,
higher lying quasienergy states. The broadening of the energy levels due to the incoherent
transitions induced by the reservoir can be read from the Fourier transform PI (u) of P(t

n
), which is

depicted in Fig. 29b. The spatially resolved states P(q, t
n
)"SqDo(t

n
)DqT after 20 (graph 1), 40 (graph

2), 8910 (graph 3) and 5]104 (graph 4) driving periods T of the ac-driving, respectively, as well as
for tPR are presented in Fig. 29c. While the slow oscillations [(1, 2)P3] correspond to a flow of
probability between the two potential wells, the fast oscillations are associated with transport
within the wells. The stationary state, thick line in Fig. 29c, in turn, does bear the signature of the
classical dynamics. Fig. 29d depicts a phase space representation of this state in terms of the
Husimi function [167]. A comparison with the corresponding stationary states of the deterministic
classical systems (sharp peaks in Fig. 29d) demonstrates that the occurrence of two pairs of maxima
coincides with the bifurcation of the classical stationary distribution into two separate point
attractors (in a stroboscopic picture) in each well.

Fig. 30a and b are dedicated to the inspection of the influence of dissipation on the coherent
suppression of tunneling. Because we have to investigate the dynamics in the vicinity of the
manifold where a crossing of quasienergies occurs, one cannot use the simplified RWA master
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Fig. 29. Tunneling in the ac-driven double well with Ohmic dissipation. The scaled parameters are D"6, X"0.9, S
"0.08485, c"10~5, and ¹"0. (a) Time evolution of the autocorrelation function P(t

n
), t

n
"2pn/X, over the first 104

time steps, starting from a state centered in one of the wells; (b) a section of the Fourier transform of (a) (dashed: the same
function for the undamped case); (c) spatially resolved states at times t

n
(graph 1) n"20, 2) n"40, 3) n"8910, 4)

n"5]104 and stationary state (thick curve); (d) Husimi distribution of the stationary state, compared with the
corresponding classical distribution (sharp peaks).

equation in Eq. (251). Fig. 30a depicts the time evolution of the correlation function P(t
n
) for

parameters of the double well slightly offset from the localization manifold for c"10~6, D"2 and
various values of the temperature ¹. P(t

n
) is evaluated in the improved master equation beyond

RWA, where only terms with kOk@ have been dropped. At low temperatures, P(t
n
) exhibits

a slowly decaying coherent oscillation with a very long period, due to the small detuning from the
quasi-energy crossing. The fast decay of superimposed oscillations reflecting the admixture of
higher order quasienergy states is shown in Fig. 30b. Asymptotically, the distribution among the
wells (in this stroboscopic picture) is completely thermalized. Upon increasing temperature, the
decay time of the coherent oscillations first decreases until this oscillation is suppressed from the
beginning (not shown). After going through a minimum, however, the decay time q

$
of P(t

n
), defined

by P(t
n
)Kexp(!n/q

$
), increases again, until it reaches a resonance-like maximum at an optimal

temperature ¹*, see Fig. 30b. This maximum occurs at a temperature ¹* such that the time scale of
the incoherent processes induced by the reservoir stabilizes the localization of the wave packet in
one of the two wells.
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Fig. 30. Coherent suppression of tunneling in the presence of Ohmic dissipation. (a) Time evolution of the autocorrela-
tion function P(t

n
) over the first 107 time steps. The scaled parameters being D"2, X"0.01, S"3.171]10~3 and

c"10~6. Inset: The first 2]104 time steps on an enlarged time scale; temperature dependence of the decay time
q
$

(defined by P(t
n
)Kexp(!n/q

$
) for three values of the detuning DX"X!X

-0#
(S) from the localization manifold.

Graph (1) DX"!1.4]10~7, (2) DX"5]10~7 at S"3.1712]10~3, (3) DX"1.4]10~6 at S"3.1715]10~3. The
other parameters are as in (a).

14.3. Dynamical hysteresis and quantum stochastic resonance

The QUAPI method discussed in Section 10 is applied to investigate the dynamics in a driven
double-well potential

»
1
(q, t)"!

q2

4
#

q4

64D
!Sq cos (Xt) , (418)

in the presence of Ohmic dissipation, cf. Eq. (237) [203,204]. In parametric form, i.e., in a panel of
SqT

t
vs. F(t)"!S cos(Xt), one then observes at asymptotic times a hysteresis loop, cf. Fig. 31,

where the area A comprised by the hysteresis curve is conveniently characterized by

A"Q SqT
t
dF(t)"SXP

2p@X

0

dtSqT
t
sin(Xt) . (419)

The area A of the hysteresis curve is investigated in Fig. 32. The driving strength is assumed to be
so strong that after the time interval q

"i
one of the two potential minima disappears and the

potential exhibits only one global minimum. This driven bistable device can then be thought as
a quantum switch. Moreover, in the investigated temperature regime both quantum and classical
fluctuations contribute to the particle’s dynamics. In Fig. 32 the area A is plotted vs. driving
frequency for different temperatures. For low driving frequencies the hysteresis area is very small,
because the particle has enough time to tunnel from one metastable minimum to the global
minimum induced by the driving force. Enhancing the frequency the area becomes larger. For even
higher frequencies, though, the particle cannot follow anymore the details of the potential
modulation and it feels an effective static barrier. In this latter case the area is reduced again, and
the particle is on average situated in the potential barrier region. From this discussion it is clear
that the maximal area occurs at some intermediate driving frequency. Similar as for the case of
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Fig. 31. Quantum hysteresis. The position expectation value SqT
t
computed parametrically as a function of an external

force F(t)"!S cos(Xt) exhibits a hysteresis loop. As a signature of quantum dynamics, steps in the quantum hysteresis
loop, as indicated by the arrows, occur. Inset: enlarged part of the hysteresis loop where steps can be observed.
Parameters in scaled units are D"1.5, S"1.2, X"10~4, c"0.005, ¹"0.1.

Fig. 32. The area A of the hysteresis loop for a driven and dissipative double well. The area A is shown vs. driving
frequency X for dimensionless parameters c"1.0, D"1 and S"0.8 at different temperatures. A maximum occurs at
finite frequencies which, at low temperatures, is independent of temperature.

classical hysteresis, it can be argued that the maximum occurs for the optimal frequency X
.!9

such
that half the time interval q

"i
J1/X

.!9
during which the system is bistable balances the decay time

q
$
to cross the barrier due to incoherent tunneling [203]. This matching condition is confirmed by

Fig. 32 which shows that at low temperatures the area is only weakly temperature dependent, in
agreement with semiclassical results on the decay time q

$
[33]. For higher temperatures, the

optimal matching frequency X
.!9

is shifted to lower values. This is surprising since it implies
a decrease of the relaxation rate with increasing temperatures.

An intriguing feature is shown in Fig. 31, where the quantum hysteresis loop exhibits
steps [204]. The same feature has recently been observed experimentally in high-spin molecular
magnets [306]. However, it should be remembered that the two physical systems are rather
different. To understand better the origin of these steps, the transient time-dependent response SqT

t
is plotted vs. time in Fig. 33. The system has been prepared in a steady state with a strong tilt to the
left, and subsequently has been let slowly evolve towards a positive tilt. Steps similar to those in the
hysteresis loop occur. In correspondence to these steps, the energy spectrum computed paramet-
rically as a function of a static control force (i.e., X"0) exhibits avoided level crossing. There,
tunneling is enhanced, and a step occurs. The first step for negative tilt is characteristic for
thermally assisted resonant tunneling. In agreement with such avoided level crossing features,
a multiresonance structure of the relaxation rate plotted vs. a static force is observed [204].
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Fig. 33. Avoided level crossing dynamics for a quantum switch. Upper panel: Position expectation value SqT
t

vs.
F(t)"!S cos(Xt). Characteristic steps are observed. The chosen parameters in scaled units are
D"2.5, S"0.7, X"10~4, c"0.001, ¹"0.1. Lower panel: The first adiabatic energy levels (alternatingly dashed and
solid lines) computed parametrically as a function of a static control force. The steps in SqT

t
occur in correspondence with

avoided level crossings.

Fig. 34. Quantum stochastic resonance (QSR) for a strongly driven double well. The spectral amplification g
1

is plotted
vs. temperature at X"0.015, S"0.4 and D"1, for various Ohmic friction strengths c. The occurrence of the maximum
at finite temperatures indicates QSR. As the damping strength c is decreased the maximum disappears, i.e., QSR vanishes
when quantum coherent processes start to dominate over incoherent ones.

Finally, upon noting that SqT
t?=

"+
m
p
m
(X,S)e~*mXt, the spectral amplification

g
1
"4pDp

1
(S,X)/SD2 , (420)

describes quantum stochastic resonance (QSR), cf. Section 12.1.4. The temperature dependence of
g
1

is shown in Fig. 34 for different damping strengths. A maximum at finite temperatures indicates
QSR. It should be observed that for the parameters chosen in the figure the unperturbed double
well potential has only one tunneling doublet below the barrier. Nevertheless, due to the very high
driving strength considered, and the relatively high-temperature regime at which the maximum
occurs, the two-level system approximation discussed in Section 11 is now no longer valid.

15. Conclusions

With this long review we have attempted to present a “tour of horizon” of the physics that is
governed by driven quantum tunneling events. With the present day availability of strong radiation
sources such as e.g. free-electron laser systems yielding strong and coherent electric driving fields,
together with the advances in micro- and nano-technology, the challenges involving driven
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quantum transport have moved into the limelight of present day scientific activities. In doing so,
several novel interpretative concepts as well as new analytic and computational tools have been put
forward. These tools, such as the Floquet approach, the (t, t@)-formalism or the computational
quasiadiabatic propagator method, to name only a few, are intrinsically nonperturbative in nature.
Thus, they are ideally suited to describe non-linear novel driven tunneling phenomena beyond
conventional perturbation schemes.

In the foregoing sections we hopefully have conveyed several novel features that characterize
quantum tunneling as it arises as the result from an interplay involving nonlinearity, time-dependent
forcing and dissipation. As shown repeatedly, the application of suitably tailored strong driving
forces allows one to selectively control, a priori, quantum tunneling-dominated processes such as
population transfer, energy transfer, tunneling probabilities, reaction rates, diffusion coefficients, or
current—voltage characteristics.

The material in the first seven sections solely deals with driven tunneling in absence of dissipative,
environmental influences. The remaining parts account for the modifications that are acquired
when frictional quantum effects additionally perturb the driven tunneling dynamics. Although the
main scope of this review has been on the theoretical development we have interfaced the
presentation with experimental corroboration and/or applications to the best of our knowledge. In
doing so, the authors share the hope that both theory and even more experiment will become
invigorated by readers of this present review.

Certain topics involving driven tunneling have remained untouched. To a large extent the
authors focused — although not exclusively — on tunneling problems for which the underlying
quantum states are localized, implying bounded transport quantities. In the case of a pure ac-drive,
these quantum states can be described in terms of a pure point spectrum for corresponding
quasienergies and corresponding square integrable Floquet modes, respectively. In contrast, driven
tunneling in periodic structures, cf. Sections 4 and 13, involve extended (scattering) states that
belong to an absolute continuous spectrum, which in turn rule unbounded transport quantities.
A field-induced barrier transparency in a periodically driven potential barrier has been recently
discussed in [301]. In situations where extended quantum states determine the physics, such as in
ionization, dissociation, decay of resonances, ac-driven quantum decay, etc., it is often necessary to
rotate the coordinates of the Hamiltonian into the complex plane (complex scaling) [302,303].
Characteristic applications are ac-induced dissociation from a nonlinear quantum well [304] or
ac-driven quantum decay out of a metastable well [305]. In both of these cases the quantum
dynamics becomes governed by complex-valued quasienergies.

The field of driven tunneling is presently enjoying widespread interest among the communities of
both physics and chemistry. Without doubt, we shall experience still many novel effects that are
predominantly ruled by driven quantum tunneling; nevertheless, we share the confident belief that
this survey, although not complete, captures a good snapshot of the present state of the art of a very
dynamic research area.

Note added in proof

After submission of this review several contributions to a timely topic, namely the spontaneous
dc-current generation in the presence of external, unbiased time-dependent fields have appeared.
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For example, this effect has been predicted in ac-driven semiconductor superlattices when a sym-
metry breaking mechanism due to repulsive electron—electron interaction occurs [307]. Likewise,
a new class of discrete Brownian rectifiers occurs when considering the dissipative motion of
a tightbinding particle in the presence of unbiased, asymmetric forcing, such as e.g. in the presence
of harmonic mixing signals of the form ê

1
cos()t)#ê

2
cos ()t#u) [308], or in the presence of an

asymmetric dichotomic Markov field [309]. Directed, quantum noise induced current is generated
also in quantum ratchets, i.e., in periodic structures that lack reflection symmetry. In this context,
the induced current in a continuous ratchet potential has been investigated in [310], and for
a discrete model in [311].
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