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1. Introduction

The thermally activated escape of a Brownian
particle over a potential barrier plays an important
role in a wide variety of physical, chemical, and

w xbiological contexts 1,2 . Correspondingly, with the
word ‘Brownian particle’ one may refer either to a
true physical particle but also to a chemical reaction
coordinate, or some other relevant state variable or
collective coordinate of the problem under investiga-
tion. In many cases, the potential experienced by the
Brownian particle cannot be regarded as static but as
subjected to random fluctuations with a characteristic
time scale that is comparable with one of the time
scales governing the escape problem itself. An exam-
ple is the escape of a O or CO ligand molecule out2

w xof a myoglobin ‘pocket’ after photodissociation 3 .

) Corresponding author.
1 Dedicated to the memory of V.I. Mel’nikov.

Further, a model for the ion channel kinetics in the
lipid cell membrane based on fluctuations in the

w xactivation energy barriers has been proposed in 4,5 .
In a new paradigm for the intracellular motion of a
molecular motor along a microtubule put forward in

w xRef. 6 , the binding of ATP and the release of ADP
serve to randomly modulate the potential experi-
enced by the motor protein as it travels along the
biopolymer backbone. Also in other strongly coupled

w xchemical systems 7–10 , the dynamics of dye lasers
w x11–13 , and even for some aspects of protein fold-
ing and relaxation in glasses, fluctuating potentials

w xare likely to be of relevance 3,14,15 . In all those
examples one has in mind the picture that the poten-
tial fluctuations experienced by the Brownian parti-
cle are controlled by some collective motion of the
environment with a much larger real or effective
mass, such that back-coupling effects can be ne-
glected. On top of that, this collective environmental
fluctuations must be far from thermal equilibrium
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since otherwise they would be negligibly small due
Ž .to their large effective mass. In the above-men-

tioned example of a ligand escaping from the
Ž .‘heavy’ myoglobin the far from equilibrium situa-
tion is created by the sudden photodissociation, while
in the ion channel kinetics and the molecular motors
it is maintained by permanent chemical reactions
which are themselves far from thermal equilibrium.
Finally, besides those examples of complex non-
equilibrium systems, potential fluctuations without
back-coupling, as we will study them here, can
obviously be realized also by means of external
noise imposed on a suitably designed experiment
w x16,17 .

If the ‘intrawell relaxation’ of the Brownian parti-
cle is much faster than the potential fluctuations, the
escape problem can be recast into the form of a

w x‘kinetic model’ 18,19 by means of an adiabatic
w xelimination procedure 20–22 . Such models have

Žalready been extensively studied in the literature see
w x .8–10,14,23–28 , and further references therein with
the most prominent qualitative results being tempo-
rally non-exponential decay laws. Here, we will not
consider such ‘slow’ potential fluctuations, but focus
instead on the regime where an exponential decay
law is valid. This is guaranteed if the typical escape
time is the slowest time scale of the problem, in
particular, much slower than the potential barrier
fluctuations. Additionally, both the thermal noise and
the typical barrier fluctuations must be reasonably

Ž .small in comparison with the average potential
barrier. Being abundant in natural systems as well as
in technical applications, we will assume Gaussian
distributed potential fluctuations. In the simplest case,
they are furthermore stationary and Markovian, thus
they correspond to an Ornstein–Uhlenbeck process
Ž w x.e.g. see in Ref. 29 . Generalizations for non-sta-
tionary cases, pertaining, e.g. the above-mentioned
myoglobin photodissociation, are straightforward.
Also generalizations including inertial effects of the
Brownian particle, which are neglected in our pre-
sent study, are possible and will be discussed in
detail elsewhere.

The quantity of foremost interest in this context is
the mean escape time across the fluctuating barrier
as a function of the characteristic time scale of these
fluctuations. The possibility that this dependence
may be non-monotonous has been exemplified first

w xin Ref. 30 and has been termed ‘resonant activa-
w xtion’ therein. This ‘surprising phenomenon’ 7 has

w xbeen further investigated in Refs. 19–22,31–36 ,
and is by now at least qualitatively well understood
w x w x20–22 ; see also Ref. 37 for a recent review. As

w x Žalready emphasized in 32–35 , the occurrence or
.not of ‘resonant activation’ may crucially depend on

how the distribution of the potential fluctuations
changes upon variation of their characteristic time
scale. This problem is addressed in more detail here
with particular emphasis on the two most natural

Ž .options that the in our case Gaussian distribution of
Žthe potential fluctuations is kept constant ‘constant

. w xvariance scaling’ 19–22,30,31 or the intensity of
Žthose fluctuations i.e. their integrated time-correla-

. Ž .tion is kept fixed ‘constant intensity scaling’
w x15,16,38–41 . While for constant variance scaling

w x‘resonant activation’ is typical 20,21,32 , we find
that for constant intensity scaling it is rather untypi-
cal, though not completely impossible. Similar find-
ings have been obtained in the previous ‘constant

w xintensity’ studies 38–41 of particular systems,
where no ‘resonant activation’ has been found, and

w xin the recent work 34 , where resonant activation
has been predicted for carefully tailored potentials
even with constant intensity scaling. For related stud-
ies of somewhat different working models we also

w xrefer to 42–44 .
Note that a somewhat related phenomenon occur-

ring for deterministic, time-periodic potential oscilla-
tions is presently much discussed under the label of

w x‘stochastic resonance’ 45 . While such periodic os-
cillations might in first priority be of interest in
technical applications, random fluctuations as studied
here might be more typical in natural or laboratory
systems. Potential fluctuations mediating between

Žthe purely random and periodic cases aperiodic
.stochastic resonance have been studied in Refs.

w x46–48 . It is not surprising that in all these models
many qualitatively similar features are observed.

From a technical point of view we are concerned
in this paper with a singular perturbation theory for a
two-dimensional dynamical flow perturbed by
asymptotically weak Gaussian white noise in the

Žabsence of detailed balance since we are far from
.thermal equilibrium .

In spite of the extensive literature on the closely
w xrelated topics of ‘colored noise’ 49 , the principal
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mathematical difficulties inherent in such a singular
perturbation theory have become clear only very

w xrecently 50 . In view of these problems, we will
restrict ourselves mainly to the exponentially domi-

Ž .nating contribution Arrhenius factor to the escape
rate. In fact, a consistent analytical treatment of the
non-exponential prefactor is at present still an un-
solved problem in our opinion. All the more, accu-
rate numerical methods are of paramount importance

w xin this context 41 . A prominent such method is
w xbased on matrix continued fraction techniques 49,51

which will be extensively invoked to test our analyti-
cal approximations. We finally mention that some of
our results have been derived already previously in

w xthe literature 22,39,41 . Here, we will put forward a
streamlined path-integral type formalism which
greatly simplifies the actual calculations needed for
the derivation of these known as well as various
novel results.

2. The fluctuating double well

As motivated in Section 1, the model we are
going to study is given by the following overdamped
Brownian motion in one dimension:

'x t syE V x t , y t q 2D j t 1Ž . Ž . Ž . Ž . Ž .Ž .˙ x

V x , y [U x qyW x , 2Ž . Ž . Ž . Ž .

where the time derivative is indicated by the dot and
the partial derivative with respect to x by E . Thex

Ž .friction coefficient of the particle x t has been
absorbed into the time scale, the thermal fluctuations
Ž .j t are modeled as usual by Gaussian noise of zero

² Ž . Ž .: Ž .mean and correlation j t j s sd tys , and D
controls the strength of those thermal fluctuations.

Ž .The potential V x, y consists of a static double well
Ž . Ž .U x and a fluctuating part W x that is driven by

the stationary Ornstein–Uhlenbeck process

'y t 2QŽ .
y t sy q h t 3Ž . Ž . Ž .˙

t t

Ž .of correlation time t and strength Q. With h t
being a second d-correlated Gaussian noise indepen-

Ž .dent of j t , the stationary distribution and the

time-correlation of the Ornstein–Uhlenbeck process
Ž .3 follow as

2t y t
r y s exp y 4Ž . Ž .0 ( ½ 52pQ 2Q

< <Q tys
² :y t y s s exp y . 5Ž . Ž . Ž .½ 5t t

A possible relaxation of the non-equilibrium fluctua-
Ž . Žtions y t towards thermal equilibrium cf. Section

. Ž .1 could be incorporated by allowing in 3 for initial
Ž .distributions different from 4 and a time-depen-

dence of Q but is omitted here for the sake of
simplicity.

We denote the left minimum of the double well
Ž . Ž .potential U x by a for ‘attractor’ , the local maxi-
Ž .mum by b for ‘barrier’ , and the right minimum by

Žc. A common example is the quartic double well we
use an appropriate scaling to yield dimensionless

.quantities
x 4 x 2

U x s y , 6Ž . Ž .
4 2

corresponding to asy1, bs0, and cs1. Typical
examples for the fluctuating part of the potential
Ž . Ž .W x complementing the static part from 6 are:

W x sU x 7Ž . Ž . Ž .
W x sx 8Ž . Ž .
W x sxyx 3 9Ž . Ž .

x 2

W x s . 10Ž . Ž .
2

Ž .In the first example 7 the qualitative shape of the
Ž . Ž .Ž .potential V x, y sU x 1qy experienced by the

Ž .Brownian particle 1 is always the same and only
Ž .the overall factor 1qy is fluctuating in time. The
Ž .second example 8 corresponds to a spatially con-

stant but temporally fluctuating force. In the third
Ž .example 9 , the extrema asy1, bs0, cs1 of

Ž .the bare potential 6 are left unaffected by the noise
Ž .y t , while producing a fluctuating shape of the

Ž .potential V x, y in between these extrema. The
Ž .fourth example 10 has been introduced in Refs.

w x35,40,41 and is included here for comparison. Note
Ž . Ž .that in Eqs. 7 – 10 we omitted a free coupling

constant on the right hand side since such an extra
parameter can always be absorbed into the noise

Ž .strength Q from 3 . Indeed, in our numerical exam-
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ples below we will have to choose quite different
Ž . Ž .Q-values in 7 – 10 to produce roughly comparable

effects in the rates. We further note that a change of
Ž .sign in W x does not affect the escape rates. Taking

Ž . Ž .those invariances into account, 7 – 10 is a fairly
representative selection of polynomials up to fourth
order.

Ž . Ž .Like in our specific examples 6 – 10 we will in
our more general theoretical calculations always as-

Ž . Ž .sume that the potentials U x and W x are suffi-
ciently smooth, whereas their symmetry about the
barrier xsb will in general not be required. Fi-
nally, for the sake of simplicity we will sometimes

Ž .make the additional weak assumption that U x is
strictly monotonically increasing between the well
xsa and the barrier xsb.

The main objective of our study will be the
calculation of the typical transition time of a particle
Ž .1 from the left well xsa into the right well xsc

Ž .of the static potential U x in the regime where such
transitions are rare events and therefore can be de-

w xscribed by a meaningful escape rate k 2 . This
means that both the thermal and the potential fluctua-
tions must be sufficiently much smaller than the

Ž . Ž .average barrier DU[U b yU a . In order that
none of these two noises is practically negligible in
comparison with the other, we express the intensity
Q of the potential fluctuations in units of the thermal
noise strength D,

QsRD , 11Ž .
keeping R fixed whenever D becomes asymptoti-
cally small. Of central interest is the dependence of
the escape rate k on the features of the fluctuating

Ž .potential W x and on the characteristic time scale t

of these fluctuations. Regarding the latter depen-
wdence, there are basically two different options 32–

x35 : either one considers a model for which the
` ² Ž . Ž .:‘intensity’ H y t y s d t of the potential fluctua-y`

tions is kept fixed upon variation of t , i.e.

RsR constant intensity scaling 12Ž . Ž .CI

Ž . Žor one keeps their distribution 4 and thus their
.variance independent of t , i.e.

Rst R constant variance scaling . 13Ž . Ž .CV

Here, R and R are meant to be t-independent,CI CV
Ž .while R and thus Q from 11 will henceforth be

considered as in general dependent on t . The con-
w xstant intensity scaling 15,16,38–41 is motivated by

the fact that it guarantees a sensible white noise limit
Ž .of the Ornstein–Uhlenbeck process y t when t™0

and is commonly used in investigations of the escape
w xproblem with a single colored noise 49 . In the

w xconstant variance scaling 20–22,32–35 the proba-
Ž .bility that the particle 1 experiences at any given

Ž .time instance t a certain potential V x, y is t

independent. This scaling is particularly natural when
Ž . w xy t is a dichotomous noise 19–21,30,31,36 , since

Ž .then the potential V x, y simply performs flips
Ž .between its two t-independent realizations. In gen-

Ž .eral, the proper choice of RsR t will depend on
w xthe physical situation under consideration 32,33 .

Ž . Ž . Ž .Though still other R t than in 12 and 13 may
arise, we will mainly focus on these two possibilities

Ž . afrom now on. Scalings R t sR t , 0(a(1,0
Ž . Ž .mediating between 12 and 13 have been studied

w xin detail in Ref. 34 . A generalization to such cases
of our results follows usually immediately, but will
not be discussed in detail.

3. Basic theoretical concepts

In order to get rid of the non-Markovian nature of
Ž .the one-dimensional Brownian motion 1 it is con-

venient to work with the extended two-dimensional
Ž . Ž .Markov process 1 , 3 . The corresponding probabil-

Ž .ity density r x, y, t is governed by the Fokker–
w xPlanck equation 29,51

r x , y , t sGr x , y , t 14Ž . Ž . Ž .˙
y R

G[E E V x , y qDE qE q DE .� 4Ž .x x x y y2t t

15Ž .

Ž .In the quasi-stationary state r x, y, t will decay like
Ž . yk tr x, y e provided particles are discarded from

Ž .the system once they have reached the well of U x
at xsc. Here, k is the escape rate, in which we are

Ž .interested, and r x, y is the quasi-stationary den-
sity, satisfying

Gr x , y sykr x , y 16Ž . Ž . Ž .
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Ž .for x,c and r x, y s0 for x0c. This standard
concept for calculating the escape rate goes back to
Farkas and Kramers and is reviewed in detail, e.g. in

w xMel’nikov’s report 1 .
For small values of D, on which we will focus

Ž .from now on, the problem 16 is still not even
w xqualitatively well understood in all its aspects 50 .

We only sketch here those parts of the presently
known general theory which will be needed later.
Expecting the usual Boltzmann-type structure of the
quasi-invariant density we make the ansatz

r x , y sZ x , y eyf Ž x , y.r D , 17Ž . Ž . Ž .

Ž .where the so-called ‘quasipotential’ f x, y is re-
quired to be D-independent and the ‘pre-factor’
Ž .Z x, y may depend on D at most algebraically.

Ž . Ž .Introducing this WKB type ansatz 17 into 16 and
collecting leading order D terms yields the following
Hamilton–Jacobi equation for the quasipotential
w x52–56

H E f x , y , E f x , y , x , y s0 18Ž . Ž . Ž .Ž .x y

H p , q , x , y [p2qq2Rrt 2ypE V x , yŽ . Ž .x

yyqrt , 19Ž .

where p and q denote the canonical momenta conju-
gate to x and y, respectively. Similarly, the remain-

Ž .ing terms in Eq. 16 give rise to a partial differential
Ž .equation for the prefactor Z x, y which, however,

has no elementary classical-mechanical interpreta-
tion.

In order to determine the rate k it turns out that
one only needs to solve these partial differential

Ž . Ž . Ž Ž ..equations for f x, y and Z x, y or directly 16
Ž .close to the stable fixed point xsa, ys0 and the

Ž .saddle point xsb, ys0 of the deterministic dy-
Ž . Ž .namics 1 , 3 . Outside these two small regions the

problem can be reduced to the solution of ordinary
differential equations due to the smallness of D.
However, the local solution about the saddle point
Ž .b, 0 is unfortunately not unique and the proper

Ž .choice, corresponding to the unique global solution
is not known in general. Yet, one can show that the

w xrate must be of the Arrhenius type from 52–54

ksz eyD f r D . 20Ž .

Ž .The exponentially leading part Df s f b, 0 y
Ž .f a, 0 can be obtained as

`
Dfs min H L x t , y t d t , 21Ž . Ž . Ž .y`

Ž . Ž .x t , y t

where the Lagrangian
2 2w xxqE V x , y t yqyŽ .˙ ˙xw xL x , y s q 22Ž .

4 4R
Ž .follows from the Hamiltonian 19 by Legendre

transformation and arguments t have been dropped
Ž . Ž .in 22 . The minimization in 21 is over all paths

Ž . Ž .x t , y t starting at time tsy` at the stable fixed
Ž .point a, 0 and ending at time ts` at the saddle
Ž . Ž . Ž . Ž .point b,0 . The minimizing x t , y t in 21 can be

Ž .interpreted as the most probable escape path MPEP
w xfor asymptotically small D 55,56 . While referring

w x Ž . Ž .to 52 for a detailed derivation of 20 – 22 we only
note here that the appearance of Hamiltons principle

Ž .of the least action 21 is plausible in view of the
Ž .Hamilton–Jacobi Eq. 18 governing the quasipoten-

Ž .tial f x, y . We further mention that the Hamilto-
Ž .nian dynamics corresponding to 19 is typically

w xnon-integrable 53,54 . Even though we actually only
need the ‘separatrix’ of the deterministic dynamics
Ž Ž ..see 18 it is not surprising that quantitative analyt-
ical results can be usually obtained only close to
‘integrable’ situations, see Sections 5 and 6 below.

Ž .Turning to the prefactor z in 20 , a way of
avoiding in the small D limit the solution of the full

Ž . Ž .problem 16 which is analytically hopeless is
Ž .known if and only if the quasipotential f x, y is at

least twice continuously differentiable at the saddle
Ž . w xpoint b,0 2,57 . In this case one first has to

determine the second derivatives of the quasipoten-
tial along the MPEP. This can be accomplished by
solving three coupled ordinary differential equations
Ž w xequivalent to a matrix Riccati equation 55 with
initial conditions at time tsy` that can be readily
extracted from the straightforward local solution of
Ž . Ž .16 about the stable fixed point a, 0 . The prefactor
Ž Ž . Ž ..Z x t , y t for asymptotically small D along the

w xMPEP then follows immediately 53 . For the prefac-
Ž . w xtor z of the rate 20 this finally yields 2,57 :

1r2Y Y< <U b f a Z b , 0Ž . Ž . Ž .
zs , 23Ž .Y2p f b Z a, 0Ž . Ž .
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YŽ .where f a denotes the determinant of the second
Ž . Ž .derivative Hessian of f x, y at the stable fixed

Ž . YŽ .point a, 0 and similarly f b at the saddle point
Ž .b, 0 . Unfortunately the assumption that the

Ž .quasipotential f x, y is at least twice continuously
Ž .differentiable at the saddle point b, 0 is typically

2 Žnot fulfilled . In our case this is so whenever the
Ž . Ž .potential fluctuations y t in 1 are not an effective

white noise at least near xsb, that is, for a generic
Ž . Ž .W x whenever t/0, and for special W x at least

.beyond a certain critical t)0. As demonstrated in
w x Ž .Ref. 50 , in some cases the quasipotential f x, y is

still piecewise smooth, but with a discontinuity of
XŽ .f x, y along a line that passes through the saddle

Ž . Ž .b, 0 . Though the Hessian of f x, y does not exist
Ž .at b, 0 , it is well-behaved along the entire MPEP,

Ž .even upon approaching b, 0 . In other cases, the
Ž .Hessian at b, 0 may still exist, but exhibits a van-

ishing determinant, and related problems will then
occur already along the MPEP. As a consequence of
those intriguing features of the quasipotential, Eq.
Ž .23 is no longer valid and an analytically practica-
ble, consistent way of how to calculate z in this case
is apparently not known. However, at least the quali-

Ž .tative property of 23 that z converges to a finite
limit when D™0 is expected to remain valid in the
Ž . w xgeneric general case 2,50 . Assuming in addition a
sufficiently smooth dependence of this limiting zs
Ž .z t upon t it follows that qualitative features of
Ž .Df t like monotonicity or the occurrence of ex-

Ž .trema will usually also apply to the full rate 20 , if
ŽD becomes sufficiently small. However, counterex-

.amples exist, see in Section 8. In view of the
above-mentioned subtle problems encountered near

Ž .the saddle point b, 0 it might not be superfluous to
mention that at least the MPEP minimizing the right

Ž .hand side of 21 is always guaranteed to be suffi-
ciently smooth, in spite of the possible non-analytici-

Ž .ties of the quasipotential f x, y off the MPEP.

2 This fact has been unraveled only very recently by Maier and
w xStein in their work 50 . Although they study the mean first

Ž .passage time problem from the stable fixed point a, 0 across the
Ž . Ž .separatrix of the deterministic dynamics 1 , 3 their main conclu-

sions remain valid also for the ‘well-to-well’ escape problem
considered here.

4. Streamlined framework

Due to the generic intractability of the prefactor z

Ž .in the rate 20 we will be mainly concerned with the
Ž .exponentially leading part Df defined through 21 .

The analysis of this quantity is greatly simplified by
taking advantage of some simple observations as
given in the following.

First, it is convenient to solve the variational
Ž .problem 19 not by means of the corresponding

Euler–Lagrange equations but rather by means of the
equivalent Hamilton equations

xsE Hs2 pyE V x , y 24Ž . Ž .˙ p x

psyE HspE V x , y 25Ž . Ž .˙ x x x

ysE Hs2qRrt 2yyrt 26Ž .˙ q

qsyE HspW X x qqrt , 27Ž . Ž .˙ y

where arguments t have been omitted, the Hamilto-
Ž .nian H is given in 19 , and

p[ xqE V x , y r2 28Ž . Ž .˙ x

w xq[t t yqy r2R 29Ž .˙
are the canonical momenta conjugate to x and y.
Introducing

r t [q t yt y t rR 30Ž . Ž . Ž . Ž .
Ž . Ž .it follows from 26 , 27 that

rspW X x yrrt . 31Ž . Ž .˙
The boundary conditions supplementing these equa-

Ž . Ž . Ž . Ž .tions are x y` sa, x q` sb, while y t , p t ,
Ž . Ž . Ž .q t , and r t must vanish for ts"`. The formal

Ž . Ž .solutions of 27 and 31 are readily found to be

q t syH`eŽ tys.rt W X x s p s d s 32Ž . Ž . Ž . Ž .Ž .t

r t sH t eŽ syt .rt W X x s p s d s 33Ž . Ž . Ž . Ž .Ž .y`

Ž . Ž .and we are left with only the two Eqs. 24 and 25
to be solved. A further integration can be saved by

Ž Ž ..using the conservation of energy cf. 18

H p t , q t x t , y t s0 for all t 34Ž . Ž . Ž . Ž . Ž .Ž .
Ž . Ž .in place of either 24 or 25 .

Next, let us denote by l an arbitrary parameter of
Ž .the escape problem 1 , for instance the correlation
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time t of the barrier fluctuations, their relative
strength R, or some other parameter characterizing

Ž .the fluctuating potential W x . Then, on the right
Ž .hand side of 21 in general both the Lagrangian and

the minimizing MPEP will change upon variation of
this parameter l. However, since the MPEP by

Ž .definition minimizes the integral in 21 those
changes are negligible when l is modified infinitesi-
mally, yielding
d E

`
DfsH d t L x t , y t , 35Ž . Ž . Ž .y`dl El

Ž . Ž .where x t , y t denote the MPEP corresponding to
the l-value under consideration. As a caveat we

Ž . Ž .remark that 24 – 34 clearly should not be intro-
Ž .duced into the Lagrangian 22 before the differentia-
Ž .tion with respect to l in 35 but only afterwards.

Ž . Ž .It is plausible that any local minimum x t , y t
Ž .on the right hand side of 21 that might be a

possible candidate for the MPEP, i.e. the absolute
minimum, changes smoothly upon variation of the
parameter l. If several such local minima exist then
at certain l-values a former absolute minimum may
become a relative minimum, while a former relative
minimum takes over the role of the absolute mini-
mum, leading to a discontinuous change of the
MPEP. Typically, those special l-values are isolated
points and they can be ruled out sufficiently close to
a ‘white noise situation’ such as lsts0 or lsR

Ž . Ž .s0 in 1 , 3 . Even more, close to lsts0 or
lsRs0 one expects that apart from the MPEP
there exists no further local minima nor maxima of

Ž .the integral in 21 , i.e. the solution of Hamilton’s
Ž . Ž .Eqs. 24 – 27 plus boundary conditions is unique.

This property will be tacitly taken for granted in
Sections 5 and 6 below. It further follows that if
some feature, for instance a monotonous dependence

q` w Ž . Ž .xof H L x t , y t d t upon l, can be demonstratedy`

Ž . Ž . Ž . Ž .for any solution x t , y t of 24 – 27 then the
Ž . Ž .same follows for the ‘true’ MPEP x t , y t and thus

Ž .for Df from 21 . This observation will be exploited
in Sections 7 and 8 below.

5. Small t approximation for constant intensity
scaling

w xAs demonstrated in 20–22 , a small-t approxi-
Ž .mation for constant variance scaling 13 is very

easy. Much more delicate is the case of constant
Ž .intensity scaling 12 as addressed in the following,

w xsee e.g. the discussion in Ref. 40 .
Ž .Assuming constant intensity scaling 12 of the
Ž .potential fluctuations, it follows from 22 that

w x Ž .E LrEts t yqy yr2R . With 35 and taking into˙ ˙ CI
` Ž . Ž .account that H y t y t d ts0 we obtain˙y`

d t 2`
Df t s H y t d t . 36Ž . Ž . Ž .˙y`dt 2RCI

Ž Ž .2Here and in the following terms like y t stands˙
w Ž .x2 .for y t . For later use we note that this is an˙

exact result for arbitrary t . Turning now to small t ,
one readily verifies by inspection that in leading

Ž . Ž .order t the solution of Hamilton’s Eqs. 24 – 27
Ž Ž . Ž ..see also 30 – 34 can be written as
x t sU X x t 37Ž . Ž . Ž .Ž .˙
p t sc x t 38Ž . Ž . Ž .Ž .
r t syq t stc x t W X x t , 39Ž . Ž . Ž . Ž . Ž .Ž . Ž .
where

U X xŽ .
c x [ . 40Ž . Ž .2X1qR W xŽ .CI

Ž . Ž .Introducing these results into Df from 20 , 21 ,
going over from the integration variable t to x by

Ž .exploiting 37 , and letting t™0 one obtains
Df ts0 sH bc x d x . 41Ž . Ž . Ž .a

Ž .Similarly, one finds from 36 that in leading order t

d
Xb

Df t s2t R H U xŽ . Ž .CI adt

=

2d
X

c x W x d x . 42Ž . Ž . Ž .
d x

We therefore can infer that
Df t sH bc x d xqt 2R H bU X xŽ . Ž . Ž .a CI a

=

2d
X 4c x W x d xqO t ,Ž . Ž . Ž .

d x
43Ž .

where we omitted the straightforward proof that no
contribution of order t 3 occurs. The very same

Ž . w xresult 43 has been derived previously in Ref. 39
but within our streamlined formalism from Section 4
the actually needed calculations become now almost
trivial.
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A somewhat more involved calculations is needed
Ž . Ž .to determine the prefactor z t in the rate 20
Ž .according to the recipe and Eq. 23 given in Section

3. Up to first order in t one finds that
< Y Y <1r2U a U b 1Ž . Ž .

z t s 1y t R B 44Ž . Ž .CIž /2p 2
2 2Y X Y X< <U a W a U b W bŽ . Ž . Ž . Ž .

Bs q2 2X X1qR W a 1qR W bŽ . Ž .CI CI

d W Y xŽ .
Xby4H d xc x W x .Ž . Ž .a 2Xd x 1qR W xŽ .CI

45Ž .
Although in the course of the evaluation of this
prefactor all expressions and manipulations are well

Ž .defined, the problems with Eq. 23 mentioned in
Section 3 can be rigorously ruled out only under the

XŽ . Žextra condition that W b s0. Only then, the Hes-
Ž .sian of the quasipotential f x, y is guaranteed to

Ž .exist in leading order t at the saddle point b, 0 and
can be obtained from its evolution along the MPEP,
see the discussion at the end of Section 3 and also

w x . XŽ .section 6 in Ref. 50 for more details . For W b /0
Ž .we thus can truly justify 44 only by invoking the

good agreement with the numerical results in Fig.
1b,c, and the obviously correct behavior in the white
noise limit ts0. Similar troubles are well known
from previous small t studies with constant intensity

w xscaling, see, e.g. the discussions in Refs. 32,40 . For
XŽ . XŽ .the special case that W a sW b s0 the same

Ž .result 45 has been obtained already by Iwaniszewski

Ž . Ž .Fig. 1. Escape rate k versus correlation time t of the potential fluctuations for constant intensity scaling 11 , 12 with Ds0.02, R s1CI
Ž . Ž . Ž . Ž . Žin a and d , and R s0.4 in b and c . Those different R-values are chosen to obtain roughly comparable values for the rates in all 4CI

. Ž . Ž . Ž . Ž . Ž . Ž . Ž .examples. The static part of the potential is given by the quartic double well 6 and the fluctuating part by 7 in a , 8 in b , 9 in c ,
Ž . Ž .and 10 in d . The solid lines are accurate numerical results from matrix continued fraction calculations, the dashed lines are the small-t

Ž . Ž .predictions from 43 – 47 , and the dotted lines represent the same theoretical prediction but without the prefactor corrections for finite t ,
Ž .i.e. with Bs0 in 46 .
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w x34 in a rather different way, namely by extending
w xthe approach of the early work 39 . Within the same

Ž .restrictions on W x , also the case of arbitrary
noise-strengths D and a more general t-dependence

w xof R can be found in this work 34 .
Ž .Through the prefactor 44 the rate acquires a

linear dependence on t although the exponentially
Ž . 2leading part 43 starts only like t . Taking into

waccount this feature, previous approximations 38–
x40 , which maybe seemed contradictory at first sight,

become perfectly compatible with each other and
Žwith our findings within their respective accuracy

.and regime of validity .
In order to reduce finite-D effects in the compari-

Ž . Ž .son of the small-t approximations 43 and 44 with
the numerics in Fig. 1 we plot

1k t sk ts0 1y t R BŽ . Ž . Ž .CI2

=
Df 0 yDf tŽ . Ž .

exp 46Ž .½ 5D
Ž . Ž .rather than 20 , where k ts0 is chose as half the

inverse of the exactly know mean first passage time
Ž . Ž w x.MFPT from a to b see, e.g. in Ref. 2

1 b xk ts0 s H d xH d yŽ . a y`2

=

y1
xexp H c z d zŽ .� 4y .
2 2X XD 1qR W x 1qR W yŽ . Ž .( CI CI

47Ž .

In Fig. 1 we compare those analytical small-t
approximations with accurate numerical results from

w xmatrix continued fraction calculations 49,51 . In
these calculations, the smallest non-vanishing eigen-

Ž .value of the Fokker–Planck operator 15 has been
determined which is known to approach twice the

Ž . Žescape rate k in 16 in the weak noise limit see
w x .Ref. 58 for more details . Results for the four

Ž . Ž .fluctuating potentials 7 – 10 are depicted in Fig. 1.
Note that in order to obtain roughly comparable
values of the rate in the considered t-range, different
choices of the R values are necessary. We see thatCI
in all cases the agreement between theory and nu-
merics is very good. The deviations at ts0 are due

Ž .to deviations for finite D of the exact inverse

Ž .MFPT from 47 and the smallest non-vanishing
Ž .eigenvalue of the Fokker–Planck operator 15 as

determined in our numerical calculations. In part,
they may also be due to the finite numerical accu-

Žracy. The estimated numerical uncertainty is defi-
Ž . Ž . Ž .nitely below 1% in a , b , d and at most a few

Ž . .percent in c . The remaining discrepancies in the
slopes at asymptotically small t are very small.

w xThey can be attributed to finite-D corrections 34 of
Ž .B from 45 . The dotted curves shown in Fig. 1

make it very clear that the exponentially leading
w xsmall-t contributions 39 alone are not sufficient

even for rather small noise strengths D.

6. Small R expansion of D f

Ž .For large R with D™0 and QsRD constant
Ž . Ž .the process 1 , 3 approaches a single colored noise

driven problem, and therefore is practically in-
w xtractable for general values of t 49 . In the opposite

limit of small R, a comparatively straightforward
analytical solution at least of the exponentially lead-

Ž . w xing part Df of the rate 20 is possible 22 . Intro-
ducing

'g[ R , y t [y t rg 48Ž . Ž . Ž .˜
Ž . Ž .Eqs. 1 – 3 take the form

X X 'xsyU x qygW x q 2D j 49Ž . Ž . Ž .˙ ˜
'y 2D˜P

ysy q h , 50Ž .˜
t t

Ž .where we exploited 11 and arguments t have been
dropped. If we now omit the tilde, one readily sees
that in the formalism from Sections 3 and 4 this

Ž .simply amounts to replacing R by 1 and W x by
Ž . Ž . Ž .gW x everywhere. From 22 and 24 it then

XŽ .follows that E LrEgspyW x . Introducing the so-
Ž . Ž . Ž .lution 30 , 32 , 33 for y and taking into account

Ž .35 we can infer that
d 2g

X` ` Ž tys.rt
Dfsy H d tH d s e W x t p tŽ . Ž .Ž .y` tdg t

=W X x s p s . 51Ž . Ž . Ž .Ž .
Ž .Similarly to 36 , this is an exact relation for arbi-

'trary gs R . Turning to small g , one readily veri-



                                            20

fies by inspection that the solution of Hamilton’s
Ž . Ž .Eqs. 24 – 27 in leading order g is of the form

x t sp t sU X x t , q t sy t s0 . 52Ž . Ž . Ž . Ž . Ž . Ž .Ž .˙
For the sake of simplicity we now restrict ourselves

Ž .to potentials U x that are strictly monotonically
increasing between the well at xsa and the barrier

Ž . Ž .at xsb. With 52 this implies that x t has a well
Ž . w x Ž .defined inverse t x for xg a,b . Introducing 52

Ž .into 51 and using x instead of t as integration
w xvariable one finds in leading order g that 22
1 d z

xd 2g H XyX X Ž .b b t U zDfsy H d xH d yW x W y e .Ž . Ž .a xdg t

53Ž .

The next order corrections can be obtained likewise.
Ž . Ž .Using the obvious identity DfsDU[U b yU a

'for gs0 and replacing g again by R we finally
arrive at our central result

DfsDUqRA qR2A qO R3 , 54Ž . Ž .1 2

where the t-dependent coefficients A and A are1 2
given by:

1 d z
x1 H XyX X Ž .b b t U zA [y H d xH d yW x W y e , 55Ž . Ž . Ž .1 a x

t

1
Xb bA [y H d xH d yK x , y W xŽ . Ž .2 a x32t

=

1 d z
xH XyX Ž .t U zW y e 56Ž . Ž .

r x r x r y r yŽ . Ž . Ž . Ž .q y q yK x , y [ qŽ . 2 2X XU x U yŽ . Ž .
rX z r z yr z rX zŽ . Ž . Ž . Ž .q y q yyqH d zx 2XU zŽ .

57Ž .
1 d z

zH XyX Ž .x t U zr x [H d yW y e 58Ž . Ž . Ž .q a

1 d z
xH XyX Ž .b t U zr x [yH d yW y e . 59Ž . Ž . Ž .y x

To get a feeling of how the corrections of order
Ž 3. Ž .O R in 54 behave as a function of t , we have to

specify the t-dependence of R. We start with a
Ž .closer look at constant intensity scaling 12 when t

becomes small. A straightforward calculation then
Ž .shows that Df from 54 indeed converges to a

finite limit for t™0:
2X Xb

Df ts0 sH d xU x 1yR W xŽ . Ž . Ž .a CI

4X2 3qR W x qO R 60Ž . Ž .Ž .CI CI

which is in perfect agreement with our previous
Ž .result 39 expanded in powers of R . This observa-CI

Ž 3. Ž .tion suggests hat the term O R in 54 will vanish
for small R uniformly in t for moderate-to-small t

in constant intensity scaling. The same can be con-
Ž .cluded for constant variance scaling 13 since in this

case the small t regime is obviously less ‘danger-
Ž .ous’ than for constant intensity scaling 12 . Even

more, we can infer that for constant variance scaling
Ž .the result 54 is not restricted to small R forCV

Ž 3.t™0, i.e. the term O R becomes small for arbi-
trary R when t approaches zero. Next we turn toCV

Ž .large t in constant variance scaling 13 , which is
the ‘dangerous’ choice in this limit. Again, Df from
Ž .54 is found to converge to a finite limit and to
agree with a previously derived large t expansion
w x22 . Since higher order terms are not very illuminat-
ing, we only give here the dominant contributions to

Ž .this large t asymptotics of 54 :

DW 2 RCV
DfsDUyR q ZCV 2 t

=
W b yW x W x yW aŽ . Ž . Ž . Ž .

bH d xXa U xŽ .

RCV2qO R , , 61Ž .CV 2ž /t

Ž . Ž .where DW[W b yW a . As before, this suggests
Ž 3. Ž .that the O R term in 54 is uniformly bounded for

moderate-to-large t in constant variance scaling,
Ž .while for constant intensity we even expect that 54

will be valid for arbitrary R when t becomesCI
large. These theoretical expectations about the ex-

Ž .tended validity of the small-R approximation 54
will be fully confirmed by the numerical results
presented in the following sections.

Without going into much details, we mention that
all the intriguing features of the quasipotential
Ž . w xf x, y unraveled in 50 can be recovered already
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within our small R approximation, as far as these
features manifest themselves along the MPEP. For

< YŽ . <instance, when t exceeds the critical value 1r U b ,
Ž .the quasipotential near the saddle point b, 0 is no

Ž .longer piecewise quadratic but more ‘flat’ and the
Ž . Ž .MPEP x t , y t becomes tangential to the separa-

trix of the two attraction basins of the deterministic
Ž . Ž .dynamics 1 , 3 .

Ž .Turning to the prefactor z in the rate 20 , we
first note that its limiting value for Rs0 is known

Ž .exactly in the same sense as the rate in 47 , namely
via the exact MFPT:

1 DUr D b xz Rs0 s e H d xH d yŽ . a y`2

=

y1exp U x yU y rD� 4Ž . Ž .
.

D
62Ž .

In the weak noise limit D™0 this yields by means
of a saddle point approximation

< Y Y <1r2U a U bŽ . Ž .
z Rs0, D™0 s . 63Ž . Ž .

2p

Due to the intriguing problems discussed at the end
of Section 3, even leading order R corrections to
Ž .62 cannot be obtained. It is only for small t that

Ž . Ž .we can conclude indirectly from 44 , 45 that the
Ž .leading order corrections are quadratic in R, i.e. 62

remains valid up to first order R for small t . Simi-
Ž Ž .larly, from a different large t approach eq. 4.16 in

w x.22 it is possible to infer indirectly the coefficient
Ž .of the leading order corrections of 62 for small R

and large t . In view of these problems, in the
comparison with the numerical results in the follow-
ing sections we will be bound to use for the prefactor

Ž .the zeroth order approximation 62 .

Ž . Ž . Ž . Ž . Ž .Fig. 2. Same as in Fig. 1 but for constant variance scaling 13 with R s0.8 in a , R s0.05 in b , and R s0.2 in c and d .CV CV CV
Ž . Ž . Ž . Ž . 3 Ž .Accurate numerical results solid are compared with the small-R approximation 20 , 54 , 62 , neglecting the terms of order R dashed

2 Ž . Ž .and R dotted in 54 .
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7. Constant variance scaling

Introducing the definition of constant variance
Ž . Ž .scaling 13 into the Lagrangian 22 one obtains

22 Ž .E LrEts y y yrt r4R . Exploiting 27 –Ž .˙ CV
Ž . Ž . Ž .31 it follows that dDf t rdt from 35 takes the
form
d RCV `

Df t s H q t r t d t . 64Ž . Ž . Ž . Ž .y`2dt t

w x Ž .Following 22 , we call a fluctuating potential W x
XŽ .of ‘type I’ if W x does not change sign for

Ž . Ž . Ž .a(x(b, like for instance in 7 , 8 , 10 . It is
w xsuggestive and can be proven rigorously 22 that in

Ž .this case the x t component of the MPEP does not
leave the domain between the well xsa and the

Ž . Ž .barrier xsb of the static potential U x and p t
Ž Ž .. Ž . Ž .never changes sign cf. 25 . With 32 , 33 this

Ž .implies that for a potential W x of type I the
Ž . Ž .derivative dDf t rdt from 64 is negative and

Ž .thus Df t is strictly monotonically decreasing with
t . Correspondingly, a monotonous increase is ex-

Ž .pected for the rate 20 at sufficiently small noise
strengths D. However, it should not be overlooked
that for any small but finite D, the escape is reason-
ably described by a single rate only within the

w xseparation of time scales t<1rk 2 . For even
larger t values the typical mean escape time is no

w xlonger given by 1rk 20,21 and can be shown to be
a monotonically increasing function of t . Conse-
quently, the typical mean escape time must exhibit a

Žminimum as a function of t ‘resonant activation’
w x. Ž .30 . For type I potentials W x it further follows
that the ‘resonant activation’ minimum occurs at a t

value where the rate concept starts to break down
and thus tends to ` as D approaches 0. Since our

Žnumerical results are essentially also rates cf. Sec-
.tion 4 , we only plotted t values substantially smaller

than 1rk in Figs. 2 and 3. Therefore no ‘resonant
activation’ minimum is visible in the type I examples
Ž . Ž . Ž .a , b , and d depicted in Figs. 2 and 3.

Ž .Next we turn to type II potentials W x defined
w x Ž . Ž .by the property 21,22 that DWsW b yW a

Ž .equals zero, see for instance 9 . In this case, the

Ž . Ž . Ž . Ž .Fig. 3. Same as in Fig. 2 but with R s0.2 in a , R s0.01 in b , and R s0.05 in c and d .CV CV CV
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location of the well xsa and the barrier xsb as
well as the barrier height DU are unaffected by the

Ž .potential fluctuations in 1 . It is only the shape in
Ž .between a and b of the potential V x, y that is

Ž .modulated by the Ornstein–Uhlenbeck noise y t .
Ž Ž . Ž ..Replacing R by t R see 12 and 13 it al-CI CV

Ž .ready follows from the zeroth order result 39 that
Ž .Df t equals DU for ts0 and then decreases with

Ž . Ž .t . On the other hand, we see from 61 that Df t

approaches again DU for t™`, but now from
w x Ž .below. It turns out 22 that this feature of 61

remains valid even if R is not assumed to beCV
Ž .small. It follows that Df t and thus the typical

escape time 1rk must exhibit a ‘resonant activation’
minimum at a t value that remains finite when

Ž .D™0 cf. Figs. 2b and 3b . For the occurrence of
this type II ‘resonant activation’ the breakdown of
the rate concept is thus not crucial, in contrast to the
type I case. Without going into further details we

Ž .mention that for potentials W x which are neither

Ž .type I nor II so-called mixed type one finds at least
one ‘resonant activation’ minimum of the typical
escape time which is either qualitatively similar to

w xthe type I or the type II case 22 . For some mixed
Ž .type W x also both kinds of minima may occur

simultaneously. In other words, for constant variance
scaling and sufficiently small D ‘resonant activation’

w xoccurs always 20,21 . For the generalization of this
w xresult beyond small D values see 20,21 .

In Figs. 2 and 3 we compare the theoretical
Ž . Ž .approximations from 54 and 62 for small RCV

with accurate numerical results. Our first observation
is that our qualitative predictions for both type I and

Ž .type II potentials W x are nicely confirmed. Sec-
ond, the agreement for small t is always excellent.
We did not include in Figs. 2 and 3 the small-t

Žapproximation from Section 5 with R replaced byCI
.t R since, as long as the latter approximationCV

itself can be trusted, it is almost indistinguishable
from the shown small-R curves. Thus, for constant

Ž . Ž . Ž . Ž .Fig. 4. Same as in Fig. 2 but for constant intensity scaling 12 with R s0.4 in a , R s0.05 in b , R s0.1 in c , and R s0.2 inCI CI CI CI
Ž . Ž . Ž .d . Additionally, the small-t approximations from 43 – 47 are shown as dashed-dotted lines.
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variance scaling our ‘small-R’ approximation indeed
seems to be a very good small-t approximation even
if R is actually not so small, as predicted belowCV

Ž .Eq. 60 . Third, the comparison of Fig. 2 and Fig. 3
Ž .shows that the second order correction in 54 be-

comes less relevant with decreasing R and is in fact
practically negligible in Fig. 3, implying the same
conclusions for the neglected higher order terms in
Ž .54 . In other words, the remaining difference be-
tween numerics and theory is almost entirely due to

Ž .the neglected finite-R prefactor corrections in 62 .
While these prefactor corrections indeed decrease

Ž .with decreasing R roughly speaking linearly ,CV
they are apparently still appreciable even for rather
small R values. We also checked that their rela-CV
tive importance indeed decreases with decreasing
noise strength D. Yet, the domain of D- and R-val-
ues where those corrections are faithfully negligible
even from a quantitative viewpoint is virtually of
academical interest only.

8. Constant intensity scaling

Ž .Recalling that 36 is an exact result for arbitrary
Ž .t for constant intensity scaling 12 , it immediately

Ž .follows that Df t is always strictly monotonically
increasing with t . One therefore might expect that
also the rate k is always monotonically decreasing
with t , at least for sufficiently small D. Yet this is
true in most cases, it should not be overlooked that

Ž .the small t expansion of Df in 43 has no linear
term and thus for sufficiently small t the prefactor
Ž . Ž .44 dictates whether the rate 20 increases or de-

Ž .creases as a function of t . Though B from 45 will
be positive in most cases, it is not difficult to tailor
Ž . Ž .U x and W x such that B is negative, leading to a

decreasing prefactor and thus a decreasing rate in the
small-t regime. The same prediction of a prefactor-
induced resonant activation scenario for constant in-

Ž .tensity scaling and specially tailored potentials U x
Ž . w xand W x has been made also in the work 34 and

an explicit example has been figured out therein.
In Fig. 4 we compare our small-R predictions

Ž . Ž .from 54 , 62 with numerical results for the usual
Ž . Ž . Ž .potentials W x from 7 – 10 . For large t the

agreement is excellent, in accordance with the theo-
Ž .retical expectation below 61 . For small-to-moderate

t the agreement is somewhat worse. From the small
deviations between the dashed and dotted lines in
Fig. 4 we conclude, like in the previous section, that
the discrepancy between theory and numerics in Fig.
4 is mainly due to the neglected R-dependence of

Ž .the prefactor in 62 . As already seen in Fig. 1, these
prefactor contributions are especially important in

Žthe small-t regime see also the dashed-dotted lines
.in Fig. 4 . A particularly interesting feature is the

non-monotonicity of the numerical results in Fig. 4c.
An analytical explanation of this effect follows im-

Ž . w xmediately from formula 4.16 in Ref. 22 . The
latter theoretical result also confirms that the effect is
entirely due to prefactor contributions. A similar
effect in a rather different model has already been

w xdescribed in Ref. 33 . A more closely related effect
w xhas been predicted theoretically in 34 under the

label of ‘resonant inhibition of activation’, and has
been confirmed numerically as well as explained in

w xsimple terms in 35 . We, however, emphasize that
the latter effect is only possible in the regime of very
large t , while in our case the effect appears for
moderate t . In further accordance with this distinc-

Ž . w xtion is: i that in 35 the effect under discussion has
Ž .been observed for the fluctuating potential 10 , while

it is absent in our corresponding Fig. 4d within the
Ž .here considered t-regime, and ii that also the ana-

lytical explanations are completely different.

9. Conclusions

We have studied the thermally activated rate of
escape in a double well potential that is itself sub-
jected to fluctuations driven by additive or multi-
plicative Ornstein–Uhlenbeck noise. The depen-
dence of the rate upon the correlation time t of the
potential fluctuations has been addressed for both
most often considered cases, namely constant inten-

Ž . Ž .sity scaling and constant variance scaling 11 – 13 .



                                            25

Under the assumption of small noise strengths we
have tackled this problem by means of analytical
path integral methods as well as accurate numerical
matrix continued fraction calculations. Particular em-
phasis has been put on a clear statement of the
principal analytical difficulties and on an efficient
formulation of the path integral approach.

Ž .Our main results for the rate 20 are the small-t
Ž . Ž .approximation 43 – 47 and the small-R approxima-

Ž . Ž .tion 54 , 62 . The qualitative agreement of those
predictions with the numerical findings in Figs. 1–4
is very good and in some limits also an excellent
quantitative comparison is achieved. Especially, all
numerically observed qualitative features are well
understood analytically.

On the quantitative side, substantial further
progress seems possible only if prefactor effects will
be successfully included. As repeatedly emphasized,
to do this in a systematic and controlled manner is a
very difficult task. One possible way out are non-sys-
tematic approximations like for instance the unified
colored noise approximation put forward in
w x32,40,41 . Another possibility are ad-hoc interpola-
tions between the by now well understood small- and

w xlarge-t limits 20–22,34 . A paradigm for such an
w xapproach has been worked out in 36 for dichoto-

mous potential fluctuations, where the respective
regimes of validity of ‘small’- and ‘large’-t approxi-
mations have been systematically extended so far
that they overlap.

We finally mention the possibility of generalizing
our analytical approximations to include mass effects
of the Brownian particle. That will be the subject of

w xa forthcoming work 59 .
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