
                                

                                     

Quantum rectifiers from harmonic mixing

I. Goychuk and P. Hänggi

Institut für Physik, Universität Augsburg
Memminger Str. 6, D-86135 Augsburg, Germany

                                                 

                                         
                                         

Abstract. – We investigate dissipative quantum transport in extended periodic systems that
are subjected to electric harmonic mixing fields Ehm(t) = E1 cos(Ωt)+E2 cos(2Ωt+ϕ). Although
such a drive possesses no net bias on average, the interplay of quantum dissipation and nonlinear
response causes a finite directed current. We thus discover the paradigm of a dissipative quantum
rectifier. The quantum current exhibits multiple reversals when driven in the nonadiabatic
regime. As a function of temperature the quantum current displays a bell-shaped characteristic
—constituting the benchmark for quantum stochastic resonance. Moreover, harmonic mixing
also serves as a novel tool to selectively control quantum diffusion.

The constructive role of time-dependent external driving and inherent dissipation can
produce a variety of unexpected phenomena such as fluctuation-induced directed current in
periodic structures that lack reflection symmetry (ratchets) [1], or anomalous amplification
of weak signals in threshold-like systems (stochastic resonance) [2]. Here, our focus will be
on a quantum version of classical ratchet systems; an extension that has been studied only
recently for the class of adiabatically rocked ratchets [3]. Such a generalization of classical
ratchet work into the world of quantum mechanics is far from being straightforward —due to
the necessity of treating dissipation and external driving within a quantum-mechanical setting.
As has been demonstrated previously for classical systems, directed current is possible also in
symmetric periodic potentials, when driven by unbiased forces with nonvanishing odd numbered
cumulant averages of order n ≥ 3 [4]. Such a particular realization appears by considering the
harmonic mixing signal of two ac fields of angular frequencies Ω and 2Ω that drive overdamped
noise-driven classical transport in a cosine potential [5]. The phenomenon has implicitly been
experimentally observed by means of microwave harmonic mixing in one-dimensional organic
conductors as early as in 1978 by Seeger and collaborators [6] (see fig. 1 therein). Current, or,
equivalently, a finite voltage under open circuit condition [5, 6] (i.e. a nonzero stopping bias)
emerges due to a nonlinear response to the unbiased harmonic mixing signal

Ehm(t) = E1 cos(Ωt) +E2 cos(2Ωt+ ϕ) (1)

with relative phase ϕ. However, these prior works [5, 6] did not discuss the rectification
phenomenon, or the “ratchet effect” [1, 4]; thus the concept of Brownian machinery has been
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overlooked. As we demonstrate with this work, this harmonic-mixing mechanism is also of
profound importance for driving induced dissipative quantum transport in periodic multi-state
systems, such as THz-driven superlattices [7].

Driven dissipative quantum transport has recently been studied theoretically for monochro-
matic periodic driving (i.e. E2 = 0 in (1)) in refs. [8-10], and for symmetric random driving
in [11], in the presence of an additional static dc-bias. In both cases the current-voltage
characteristics exhibit an interesting behaviour on dissipation strength and —most strikingly—
the phenomenon of a zero-bias negative differential conductance (sometimes termed “absolute
negative conductance”). This latter effect has been experimentally observed in GaAs-AlGaAs-
superlattice structures [7]. Here, we shall demonstrate that similar quantum systems can act
as nonadiabatic quantum rectifiers when driven by harmonic mixing signals.

To start, let us consider tunneling of a charged particle (electron) among sites in a one-
dimensional lattice in the presence of an electric field Ehm(t). We restrict the analysis to a
single-band tight-binding treatment. The Hamiltonian then reads

HTB(t) = −
h̄∆

2

∞∑
n=−∞

(|n〉〈n + 1|+ |n+ 1〉〈n|)− eEhm(t)q̂ , (2)

where |n〉 denotes the localized (Wannier) states, h̄∆ is the tunneling coupling energy between
neighboring states, and q̂ = a

∑
n n|n〉〈n| is the position operator for the particle on the

lattice with period a. In the absence of driving, this Hamiltonian is the archetype for variety
of physical quantum transport phenomena [12,14]. For instance, it could be used to describe
the current in semiconductor superlattices [14], or in charge-transferring molecular chains [16].

The harmonic mixing signal in (1) constitutes the simplest kind of an asymmetric periodic

field possessing a nonvanishing third moment E3
hm(t) = 3

4E
2
1E2 cosϕ. Here (...) indicates the

time average over the temporal period, T = 2π/Ω. The Hamiltonian in (2) has intensively been
studied for the monochromatic case withE2 = 0; it describes, e.g., the remarkable phenomenon
of dynamical localization [13-15]. It cannot, however, yield net current for an initially localized
particle —because there is no thermal bath that balances the generated heat power— even in
the case of additional presence of a dc-field. Thus, to realize finite current one has to invoke a
dissipation mechanism. We adopt here the conventional model of quantum dissipation, i.e. we
couple the quantum particle bilinearly to a thermal bath of harmonic oscillators [12]:

HB =
1

2

∑
i

[
p̂2
i

mi
+miω

2
i x̂i −

ci

miω
2
i

q̂
2
]
. (3)

The environmental influence is fully captured by the Gaussian thermal force operator F̂ (t) =∑
i cix̂i(t), possessing the complex-valued autocorrelation function

〈F̂ (t)F̂ (0)〉eq =
h̄

π

∫ ∞
0

J(ω)
cosh(h̄ω/2kBT − iωt)

sinh(h̄ω/2kBT )
dω . (4)

Here, J(ω) = π
2

∑
i

c2i
miωi

δ(ω − ωi) denotes the bath spectral density. In the present work

we focus on Ohmic friction with spectral density J(ω) = (2πh̄/a2)αωe−ω/ωc , with cut-off
frequency ωc � ∆ and dimensionless friction strength α.

Let the quantum particle be localized initially at the origin n = 0. To describe quantum
transport, we study the mean particle position 〈q(t)〉 = a

∑
n nPn(t) and the mean-squared

position 〈q2(t)〉 = a2
∑
n n

2Pn(t), with Pn(t) denoting the site populations. The relevant
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transport quantities of interest are the net quantum current

j = e lim
t→∞

〈q(t)〉

t
, (5)

and the quantum diffusion coefficient

D =
1

2
lim
t→∞

〈δq2(t)〉

t
, (6)

where 〈δq2(t)〉 = 〈q2(t)〉 − 〈q(t)〉2. We consider here only the incoherent (i.e. sequential)
tunneling transport regime which predominantly describes the experimental situation [7]. As
a consequence, the so-termed noninteracting blip approximation (NIBA) [9, 11, 12] is valid,
and can be invoked to derive the related generalized master equation (GME) that governs the
non-Markovian time evolution of the site populations Pn. As discussed in [12], and confirmed
numerically by real-time quantum Monte Carlo calculations in [17], the NIBA provides indeed
very good results for Ohmic friction within the regime of incoherent quantum transfer. In
the absence of driving, NIBA is valid for any temperature at moderate-to-strong dissipation
(α > 1), and for not too low temperatures at weak dissipation (α < 1) [12, 17]. Moreover, in
fast periodic fields NIBA should be justified even better than without driving [18]. The related
driven GME reads [9, 11]

Ṗn(t) =

∫ t

0

{W (+)(t, τ)Pn−1(τ) +W (−)(t, τ)Pn+1(τ) −

−[W (+)(t, τ) +W (−)(t, τ)]Pn(τ)}dτ , (7)

with forward (+) and backward (−) transition kernels given in NIBA by

W (±)(t, τ) =
1

2
∆2e−Q

′(t−τ) cos[Q′′(t− τ)∓
ea

h̄

∫ t

τ

Ehm(t′)dt′] , (8)

where

Q′(t) + iQ′′(t) =
a2

h̄2

∫ t

0

dt1

∫ t1

0

〈F̂ (t2)F̂ (0)〉eqdt2 + iλt .

Here h̄λ = a2
∫∞

0 dωJ(ω)/πω denotes the bath reorganization energy [19]. It is worth noting
that precisely the same structure as in (7) holds true for the exact GME, as can be deduced
from the analysis in [20]. Here, we have approximated the exact memory kernels to order ∆2,
and yet we treat the field dynamics to all orders exactly.

From (7) we then obtain for the current

d

dt
〈q(t)〉 = a

∫ t

0

Γ−(t, τ)dτ , (9)

and for the quantum diffusion

d

dt
〈q2(t)〉 = a2

∫ t

0

dτ [Γ+(t, τ) + 2Γ−(t, τ)〈q(τ)〉/a] , (10)

where Γ± = W (+) ±W (−). Due to the periodicity of the driving Ehm(t), the kernels Γ±(t, τ)
can be expanded into a Fourier series, namely

Γ±(t+ τ, t) =
∞∑

n=−∞

γ±n (τ)e−inΩt. (11)
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Upon solving (9) and (10) explicitly in terms of the Laplace transform x̃(s) =
∫∞

0 e−st〈q(t)〉dt
and ỹ(s) =

∫∞
0
e−st〈q2(t)〉dt, one finds

x̃(s) =
∞∑

m=−∞

aγ̃−m(s)

s(s+ imΩ)
, (12)

ỹ(s) =
∞∑

m=−∞

a2γ̃+
m(s)

s(s+ imΩ)
+

2a2

s

∞∑
m,l=−∞

γ̃−l−m(s+ imΩ)γ̃−m(s)

(s+ imΩ)(s+ ilΩ)
, (13)

with γ̃±m(s) denoting the Laplace transform of γ±m(t). The long-time dynamics of 〈q(t)〉 and
〈q2(t)〉 is determined from the Tauberian theorems. For the net current we readily obtain
j = eaγ̃−0 (0). Furthermore, the long-time behaviour of the position variance 〈δq2(t)〉 follows
from (12), (13) as 〈δq2(t)〉 ∼ 2Dt+O(t), where O(t) is a bounded oscillating term, and

D = DM +
2a2

Ω

∞∑
m=1

Im γ̃−m(0)γ̃−−m(imΩ) + γ̃−0 (0)[γ̃−m(0)− γ̃−m(−imΩ)]

m
(14)

is the quantum diffusion coefficient. We denoted by DM = 1
2a

2γ̃+
0 (0) the result of the

Markovian approximation in (10). Note that essential non-Markovian effects can appear due
to the driving-induced coherence even if the tunneling dynamics is incoherent in the absence of
driving. However, a detailed analysis shows that for the present case these effects are negligible,
so that DM serves as a good approximation. For the rectification current j and the Markovian
diffusion coefficient DM we find in NIBA (cf. eq. (8)) the central results

j = ea∆2

∫ ∞
0

dτ exp[−Q′(τ)] sin[Q′′(τ)]Im[Φ(τ)] , (15)

DM =
1

2
a2∆2

∫ ∞
0

dτ exp[−Q′(τ)] cos[Q′′(τ)]Re[Φ(τ)] , (16)

where

Φ(τ) =
∞∑

k=−∞

J2k 2ξ1 sin(Ωτ/2) Jk ξ2 sin(Ωτ) e−ik(ϕ+π/2). (17)

Here, Jn(z) are the Bessel functions of the first kind, and ξ1,2 = eaE1,2/h̄Ω measure the field
strengths. Although no static bias is present, the net current can be nonzero because Im[Φ(τ)]
is different from zero if both E1 6= 0 and E2 6= 0. Thus, the current appears as a result of
interplay of the driving Ehm(t) and dissipation. This rectification effect is robust and does
not depend on the details of dissipation. This is clearly seen from the structure of (15) which
expresses the quantum current j via the equilibrium autocorrelation (4) of the dissipative force
F̂ (t) and the nonlinear response function Φ(τ).

For the present case of Ohmic friction, the corresponding bath correlation Q(t) in (15),
(16) can be evaluated in analytical form; see, e.g., in [9,11,12]. The result for the numerically
evaluated rectification current j vs. field strength E1 is depicted in figs. 1(a) and 1(b) for
two different friction strengths α. The current is maximal in the adiabatic limit Ω � ωc.
Most importantly, we notice that the current exhibits multiple reversals at moderate-to-strong
friction α when driven in the nonadiabatic regime. The temperature dependence of the
rectification current is depicted in fig. 2. At small (adiabatic) driving frequencies Ω and
strong dissipation the current exhibits a bell-shaped behaviour, which is the benchmark
of quantum stochastic resonance (QSR) [2]. This QSR feature gradually disappears with
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Fig. 1. – Net rectification current j vs. scaled field amplitude E1 for various field frequencies Ω and
for two different Ohmic dissipation strengths: (a) α = 1 and (b) α = 5. The phase ϕ = 0 is chosen.

increasing frequency Ω (nonadiabatic driving). It is absent also for weak dissipation. Notably
is also the phenomenon of current reversal as a function of temperature when kBT/h̄ωc ∼ O(1).
This phenomenon disappears however for Ω� ωc (not shown).

We stress that the finite rectification current j at zero external bias is a nontrivial nonlinear
response phenomenon. In view of the fact that the dc-conductance is symmetric for a reflection-
symmetric, periodic quantum system, this result is remarkable indeed. To obtain more insight
into the physical mechanism we assume that one of the harmonic mixing signals is weak, say
ξ2 � 1. Then the series in (17) is well approximated by

j = −ea∆2 eaE2

h̄Ω
cos(ϕ)

∫ ∞
0

dτ exp[−Q′(τ)] sin[Q′′(τ)] sin(Ωτ)J2 2ξ1 sin(Ωτ/2) . (18)

Fig. 2 Fig. 3

Fig. 2. – Quantum stochastic resonance-like feature for harmonic mixing signals with ϕ = 0: The net
rectification current j exhibits a bell-shaped maximum vs. temperature T .

Fig. 3. – The scaled diffusion coefficient DM vs. field amplitude E1 for various field frequencies Ω. D0

is the diffusion coefficient obtained by setting Ehm(t) = 0.
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As is seen from (18), the current in this approximation is linear in the strength of the second
harmonic E2. Hence the second harmonic creates an effective bias. Moreover, this result also
shows that the phase ϕ can be used to selectively control the strength of the rectification
effect and the current direction. If in addition ξ1 is also weak one finds from (18) that

j ∝ E3
hm(t) = 3

4E
2
1E2 cosϕ, with a nontrivial quantum prefactor. Thus, the phenomenon

is rooted in the leading 3rd-order nonlinear response.

The selective control of quantum diffusion is depicted in fig. 3 for the case of zero rectification
effect with E2 ≡ 0. The quantum diffusion coefficientDM has been normalized to the nondriven
quantum diffusion coefficient D0, obtained by setting Ehm(t) = 0. As can be deduced from
fig. 3, the quantum diffusion can either be enhanced or suppressed by harmonic driving. The
effect of enhancement is particularly interesting: With α ≥ 1, the dynamics is completely
localized in the absence of driving at T = 0, yielding D0 = 0 [21]. The “switch-on” of an
ac-drive will restore a finite quantum diffusion. The ac-drive thus destroys the dissipation-
induced localization phenomenon [12, 21]. The relative phase of the second-harmonic driving
field in (1) allows one to selectively control the direction (and magnitude) of the rectification
current j, and the strength of the quantum diffusion D as well. In contrast to the case of net
current j, cf. (18), the phase control of quantum diffusion occurs at second order of E2.

Next we address the experimental realization. Our novel results should be observable in
THz-driven superlattices [7, 8]. Given a typical superlattice period a ∼ 200 Å in GaAs-
AlGaAs superlattices, the miniband width ∆ is estimated as h̄∆ ∼ 0.5–2 meV [7, 22] and
the interband distance is of the order of 100 meV [22]. The used THz frequencies are
around h̄Ω ∼ 2–5 meV. With 20–50 photons needed to bridge the interband distance, our
single-band approximation is a valid approximation scheme. A reasonable estimation for the
cut-off frequency is h̄ωc ∼ 5 meV. The strongest field strengths, see, e.g., fig. 1(a), thus
correspond to E1 ∼ 25 kV/cm and E2 ∼ 2.5 kV/cm, being realistic values used in actual
experiments for ac-driven photon-assisted tunneling (PAT) [7, 8]. The maximal current in
fig. 1(a) is around 200 nA · Å. Given an active area S in a superlattice of S = 8 (µm)2

and a carrier density n = 3 × 1015 cm−3 [7], the predicted rectification current is of the
order imax ∼ 500 nA. Although our modelling oversimplifies the microscopic mechanisms
for dissipation and in addition neglects the many-particle Coulomb-interaction effects, the
predictions should, nevertheless, hold up against actual experimental testing. This assertion
has additional support from the fact that many of the previous monochromatically driven PAT
results could be explained within an independent particle theory [7, 8, 14,22].

In summary, we have studied the onset of nonzero current in periodic dissipative quantum
systems when driven by two ac electric fields with angular frequencies Ω and 2Ω (harmonic
mixing signal). This system thus exhibits rectification, i.e. the current maintains identical
sign when subjected to a (small) dc-bias of opposite sign. As such, this quantum rectifier
is minimal in the sense that its ingredients are elementary: A single-band periodic quantum
system and two signals of commensurable frequencies Ω and 2Ω. Nevertheless, it exhibits a rich
behaviour for quantum transport: These being —apart from rectification— the existence of
multiple reversals, cf. fig. 1(b), the QSR feature in combination with a reversal vs. temperature,
cf. fig. 2, and the possibility to selectively manipulate (via control of the phase ϕ in (1), and
choice of driving field parameters) the strength of both quantum diffusion and rectification
current, as well as current direction. By use of the harmonic mixing signal technique the novel
surprising features of this nonlinear quantum response rectification scenario are expected to be
observable in THZ-driven superlattices [7] and also in harmonic mixing driven current-biased
Josephson junctions.
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