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Abstract. – We investigate dissipative quantum transport in extended periodic systems that
are subjected to electric harmonic mixing fields Ehm(t) = E1 cos(Ωt)+E2 cos(2Ωt+ϕ). Although
such a drive possesses no net bias on average, the interplay of quantum dissipation and nonlinear
response causes a finite directed current. We thus discover the paradigm of a dissipative quantum
rectifier. The quantum current exhibits multiple reversals when driven in the nonadiabatic
regime. As a function of temperature the quantum current displays a bell-shaped characteristic
—constituting the benchmark for quantum stochastic resonance. Moreover, harmonic mixing
also serves as a novel tool to selectively control quantum diffusion.

The constructive role of time-dependent external driving and inherent dissipation can
produce a variety of unexpected phenomena such as fluctuation-induced directed current in
periodic structures that lack reflection symmetry (ratchets) [1], or anomalous amplification
of weak signals in threshold-like systems (stochastic resonance) [2]. Here, our focus will be
on a quantum version of classical ratchet systems; an extension that has been studied only
recently for the class of adiabatically rocked ratchets [3]. Such a generalization of classical
ratchet work into the world of quantum mechanics is far from being straightforward —due to
the necessity of treating dissipation and external driving within a quantum-mechanical setting.
As has been demonstrated previously for classical systems, directed current is possible also in
symmetric periodic potentials, when driven by unbiased forces with nonvanishing odd numbered
cumulant averages of order n ≥ 3 [4]. Such a particular realization appears by considering the
harmonic mixing signal of two ac fields of angular frequencies Ω and 2Ω that drive overdamped
noise-driven classical transport in a cosine potential [5]. The phenomenon has implicitly been
experimentally observed by means of microwave harmonic mixing in one-dimensional organic
conductors as early as in 1978 by Seeger and collaborators [6] (see fig. 1 therein). Current, or,
equivalently, a finite voltage under open circuit condition [5, 6] (i.e. a nonzero stopping bias)
emerges due to a nonlinear response to the unbiased harmonic mixing signal

Ehm(t) = E1 cos(Ωt) +E2 cos(2Ωt+ ϕ) (1)

with relative phase ϕ. However, these prior works [5, 6] did not discuss the rectification
phenomenon, or the “ratchet effect” [1, 4]; thus the concept of Brownian machinery has been
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overlooked. As we demonstrate with this work, this harmonic-mixing mechanism is also of
profound importance for driving induced dissipative quantum transport in periodic multi-state
systems, such as THz-driven superlattices [7].

Driven dissipative quantum transport has recently been studied theoretically for monochro-
matic periodic driving (i.e. E2 = 0 in (1)) in refs. [8-10], and for symmetric random driving
in [11], in the presence of an additional static dc-bias. In both cases the current-voltage
characteristics exhibit an interesting behaviour on dissipation strength and —most strikingly—
the phenomenon of a zero-bias negative differential conductance (sometimes termed “absolute
negative conductance”). This latter effect has been experimentally observed in GaAs-AlGaAs-
superlattice structures [7]. Here, we shall demonstrate that similar quantum systems can act
as nonadiabatic quantum rectifiers when driven by harmonic mixing signals.

To start, let us consider tunneling of a charged particle (electron) among sites in a one-
dimensional lattice in the presence of an electric field Ehm(t). We restrict the analysis to a
single-band tight-binding treatment. The Hamiltonian then reads

HTB(t) = −
h̄∆
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transport quantities of interest are the net quantum current

j = e lim
t→∞

〈q(t)〉
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Upon solving (9) and (10) explicitly in terms of the Laplace transform x̃(s) =
∫∞

0 e−st〈q(t)〉dt
and ỹ(s) =

∫∞
0
e−st〈q2(t)〉dt, one finds

x̃(s) =
∞∑

m=−∞

aγ̃−m(s)
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As is seen from (18), the current in this approximation is linear in the strength of the second
harmonic E2. Hence the second harmonic creates an effective bias. Moreover, this result also
shows that the phase ϕ can be used to selectively control the strength of the rectification
effect and the current direction. If in addition ξ1 is also weak one finds from (18) that

j ∝
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