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Transformations of nonlinear dynamical systems to jerky motion and its application
to minimal chaotic flows
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Third-order explicit autonomous differential equations in one scalar variable or, mechanically interpreted,
jerky dynamics constitute an interesting subclass of dynamical systems that can exhibit many major features of
regular and irregular or chaotic dynamical behavior. In this paper, we investigate the circumstances under
which three dimensional autonomous dynamical systems possess at least one equivalent jerky dynamics. In
particular, we determine a wide class of three-dimensional vector fields with polynomial and non-polynomial
nonlinearities that possess this property. Taking advantage of this general result, we focus on the jerky
dynamics of Sprott’s minimal chaotic dynamical systems and Rössler’s toroidal chaos model. Based on the
interrelation between the jerky dynamics of these models, we classify them according to their increasing
polynomial complexity. Finally, we also provide a simple criterion that excludes chaotic dynamics for some
classes of jerky dynamics and, therefore, also for some classes of three-dimensional dynamical systems.
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I. INTRODUCTION

Since Lorenz’s discovery of the appearance of determin-
istic nonperiodic flow in 1963 and the emergence of chaos in
the middle of the 1970s, autonomous three-dimensional dy-
namical systems play an outstanding role in modern nonlin-
ear dynamics @1–6#. These systems are still low dimensional
enough that their long-time behavior, the attractor, can be
visualized in the three-dimensional phase space. They are,
however, already complicated enough to exhibit a plethora of
complex dynamical behavior such as quasiperiodic and ir-
regular or chaotic oscillations. By virtue of the Poincaré-
Bendixson theorem @2#, two-dimensional nonlinear dynami-
cal systems can only possess fixed points or periodic
solutions as long-time solutions. Therefore, the transition
from the phase space dimension two to the phase space di-
mension three opens a whole new world of dynamical be-
havior.

During the last two decades, there has been an immense
effort and success towards the identification and understand-
ing of irregular or chaotic dynamics, including the routes to
irregularity. In this context, the geometric theory of dynamics
@2–5# that analyzes dynamical vector fields in terms of their
flow in phase space, and its numerical counterpart have been
proven to be particularly powerful.

There are, however, still many open basic problems even
for the case of three-dimensional dynamical systems. For
example, how can we decide only on the basis of the func-
tional form of a given three-dimensional dynamical system
whether it might possess irregular dynamics for some ranges
of its parameters? Another example deals with minimal cha-
otic flows: What are the minimal functional forms of nonlin-
earities in a three-dimensional dynamical system that are
needed for a chaotic flow?

In 1994, a seminal investigation towards an identification
of minimal chaotic systems was reported by Sprott @7#. Us-
ing a numerical search for three-dimensional vector fields
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with only quadratic nonlinearities, Sprott was able to identify
nineteen distinct functional forms of dynamical systems ~la-
beled A to S! that show irregular dynamics and are all func-
tionally simpler than the paradigms of nonlinear dynamics,
the Lorenz model @8#, and the Rössler model @9#.

In several recent papers @10–14#, the problem of minimal
chaotic dynamics has been attacked from a quite different
point of view. Here, the starting point has not been dynami-
cal systems or flows, but third-order explicit scalar ordinary
differential equations or, suggestively speaking, jerky dy-
namics. It is well known that any explicit ordinary differen-
tial equation can be recast in the form of a dynamical system
although the contrary does not hold in general. Therefore,
jerky dynamics should also have the potential to show ir-
regular evolution in time.

By performing a similar procedure as in Ref. @7#, Sprott
@10,11# was able to identify minimal polynomial dissipative
and conservative jerky dynamics that show chaotic behavior.
Surprisingly, one quadratic nonlinearity suffices to generate
irregular evolution in time for some parameter values. Simi-
lar results have also been stated by Linz @12# on the basis of
the jerky dynamics for Sprott’s model R @7#. In this paper, it
has also been shown that the jerky dynamics for the Lorenz
@8# and the Rössler @9# model possess a functionally compli-
cated form. For an interesting introduction into jerky dynam-
ics with reference to the above-mentioned studies @10–12#,
we refer to the popular article by von Baeyer @15#.

Not taken literally, jerky dynamics can also be found in
nonmechanical disciplines of physics. Probably the first
work concerning third-order differential equations that can
show irregular dynamics traces back to Moore and Spiegel
@16# and appeared in the context of a simple oscillator model
of thermal convection. Jerky dynamics also appear, for ex-
ample, in the context of the single-mode equations for a
semiconductor laser subject to large optical injection, as re-
ported by Erneux et al. @17#, in geometric models for den-
drite growth subject to special boundary conditions as dis-
cussed by Kruskal and Segur @18#, and for the non-
7151 © 1998 The American Physical Society
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relativistic motion of a radiative point charge subject to an
external force ~the Abraham-Lorentz equation! @19#.

Since jerky dynamics ~i! show all major features that
three-dimensional vector fields possess, ~ii! are conception-
ally simpler than dynamical systems ~as we will see in this
study!, and ~iii! are the natural generalization of oscillator
dynamics, they might serve as a useful tool to obtain further
insight into nonchaotic and chaotic behavior including the
routes to chaos.

In this context, the following questions that are the subject
of our study arise. ~i! Which three-dimensional dynamical
systems can be recast into a jerky dynamics? ~ii! Do appar-
ently functionally different dynamical systems obey similar
or even identical jerky dynamics? ~iii! If so, can jerky dy-
namics be used as a tool to classify dynamical systems? ~iv!
Can we learn anything about the possible time evolution just
by looking at the functional form of a jerky dynamics?

Our paper is organized as follows. In Sec. II we fix the
notation and discuss some general circumstances under
which a dynamical system cannot be transformed to uniquely
determined jerky dynamics. Section III contains, as a major
result, a wide class of nonlinear and not necessarily polyno-
mial three-dimensional dynamical systems that can be recast
into a jerky dynamics. Moreover, a systematic method of
finding the jerky dynamics is also given. Taking advantage
of the results of Sec. III, we derive in Sec. IV all existing
jerky dynamics for Sprott’s minimal chaotic models @7# and
the toroidal Rössler model @20#. Based on similarities of their
functional forms, we classify these jerky dynamics according
to their polynomial complexity. We also present simple con-
ditions under which chaotic behavior is excluded. These are
based on an elementary no-chaos theorem given in Appendix
C. In Sec. V we summarize our findings.

II. BASICS

Generally speaking, an autonomous dynamical system is
specified by a set of n coupled first-order, ordinary differen-
tial equations ~ODEs! that are not explicitly dependent on
time t . In particular, three-dimensional dynamical systems
are specified by

ẋ5V~x!, ~1!

where x5(x ,y ,z)T denotes a point in a three-dimensional
phase space G#R3, V(x) the, in general, nonlinear vector
field of the dynamical system and the overdot the derivative
with respect to time. Specifying the initial conditions
x(t50)5x0 , x(t) represents the orbit or trajectory of the
dynamical system ~1! in the phase space. It is also a well
known fact @2# that any autonomous nth order ODE that is
given in an explicit form can be recast into an n-dimensional
dynamical system. In particular, third-order explicit ODEs

x̂5J~x , ẋ , ẍ ! ~2!

can be immediately transformed into a dynamical system ~1!

by introducing, for example, ẋ5v , v̇5a , and ȧ5J(x ,v
5 ẋ ,a5 ẍ) @2#. The contrary, however, is generally not true
and constitutes the starting point of our investigation.
Motivated by the mechanical interpretation of Eq. ~2! as
evolution equation for the rate of change of the acceleration
or the jerk, a third-order ODE of the form ~2! that is ~i!
autonomous and ~ii! explicit is called a jerky dynamics. Ob-
viously, jerky dynamics ~2! are a restricted class of all third-
order ODEs and also of all third-order dynamical systems
~1!. As a necessary, but not sufficient requirement for a non-
trivial jerky dynamics that is not just the derivative of a
second-order explicit autonomous ODE, the jerk function
must depend explicitly on x . Under certain constraints, in
particular, when the acceleration ẍ enters only linearly into
the jerky dynamics, it can also be interpreted as the deriva-
tive of a one-dimensional Newtonian equation with a
memory term that depends on the dynamical history of the
motion @13,14#. Throughout this paper, the jerk function is
supposed to be an arbitrary and, in general, nonlinear func-
tion of its variables x , ẋ , and ẍ that is well defined for all
x , ẋ , ẍ .

One main subject of this paper is ~i! to find classes of
three-dimensional dynamical systems

ẋ5V1~x ,y ,z !, ~3a!

ẏ5V2~x ,y ,z !, ~3b!

ż5V3~x ,y ,z ! ~3c!

that can be recast into an equivalent jerky dynamics ~2! and
~ii! to determine a systematic transformation method to ob-
tain Eq. ~2! from Eq. ~3! if it exists at all. We call a jerky
dynamics in the variable x , Eq. ~2!, equivalent to the dy-
namical system ~1! or ~3! if, for the same initial conditions,
the signals x(t) generated by Eqs. ~2! and ~3! are identical.

Trying to calculate the equivalent jerky dynamics ~2! for a
dynamical system ~3!, four distinct situations can appear:

~i! There is no jerk function J(x , ẋ , ẍ) that is well defined
in the sense that it is free of singularities for all x , ẋ , and ẍ .
Therefore, there is no equivalent jerky dynamics although a
transformation to an implicit third-order ODE might be pos-
sible.

~ii! The equivalent jerky dynamics must be defined differ-
ently for distinct regions of the phase space G . As an ex-
ample for this case consider the dynamical system ẋ5x
1y , ẏ5z2, ż5x1xz . Rewriting this system into a jerky
dynamics ~2! in x leads to x̂5 ẍ12x( ẍ2 ẋ)12xAẍ2 ẋ for
the region z>0 and x̂5 ẍ12x( ẍ2 ẋ)22xAẍ2 ẋ for z,0.
Such jerky dynamics are hard to handle and, therefore, will
not be taken into consideration throughout this paper.

~iii! There is a well-defined and unique jerky dynamics in
x that is obtained from a dynamical system ~3! by a nonin-
vertible transformation of variables. An example for this case
is ẋ5x1y , ẏ5z2, and ż5xz . Deriving the ẋ equation with
respect to time and using ẏ5z2, we obtain ẍ5 ẋ1z2. Further
derivation and insertion of the ż equation yields the unique
and well-defined jerky dynamics x̂5 ẍ12x( ẍ2 ẋ). From the
equations for ẋ and ẍ , however, we observe that two differ-
ent points (x ,y ,6z) of the phase space G of the original
dynamical system are mapped onto one single value of the
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jerk function J(x , ẋ , ẍ)5 ẍ12x( ẍ2 ẋ). Therefore, two differ-
ent trajectories of the dynamical system correspond to one
trajectory of its jerky dynamics if interpreted as a dynamical
system.

~iv! There is a well-defined and unique jerky dynamics in
x that is obtained from a dynamical system ~3! by a globally
invertible transformation. In this case, it is clear that the to-
pological structure, e.g., periodicity or irregularity, of the
trajectories of the system ~3! is transfered to the solutions of
the equivalent jerky dynamics.

As an aside we note that these considerations suggest a
distinction between two different, more detailed definitions
of equivalence of a dynamical system ~3! and a jerky dynam-
ics ~2!: ~i! A dynamical system ~3! and a jerky dynamics ~2!
are dynamically equivalent, if both describe the same dy-
namical behavior of the variable x . ~ii! A dynamical system
~3! and a jerky dynamics ~2! are topologically equivalent, if
any trajectory of the dynamical system belongs exactly to
one trajectory of the jerky dynamics if interpreted as dynami-
cal system and vice versa. Dynamical equivalence requires
the existence of a unique and well-defined jerk function
J(x , ẋ , ẍ). For topological equivalence there must also exist a
globally invertible, ~at least! continuous transformation be-
tween the dynamical system ~3! and the jerky dynamics ~2!.
If, moreover, this transformation is a diffeomorphism, i.e.,
invertible and differentiable, the dynamical system ~3! and
the jerky dynamics ~2! should be called diffeomorphically
equivalent. Obviously, topological or diffeomorphic equiva-
lence implies dynamical equivalence. The converse, how-
ever, is not true.

Throughout this paper, the concept of equivalent jerky
dynamics always refers to jerky dynamics of the latter type
~iv!, i.e., to topologically equivalent jerky dynamics ~apart
from Appendix D!. Moreover, the guiding reasoning in con-
structing classes of dynamical systems ~3! that possess at
least one equivalent jerky dynamics ~2! is based on the ex-
istence of an invertible transformation between both.

III. TRANSFORMABLE DYNAMICAL SYSTEMS

In this section we present a wide class of nonlinear dy-
namical systems that can be recast into a jerky dynamics by
invertible and, in general, nonlinear transformations. As al-
ready mentioned, any jerky dynamics ~2! can be rewritten in
the form of a dynamical system

u̇5W~u! ~4!

by introducing u5(x ,v ,a)T and W(u)5@v ,a ,J(x ,v ,a)#T. If
there is a jerky dynamics ~2! or, equivalently, a dynamical
system ~4! for the system ~3!, then there must also be a
transformation T5(T1 ,T2 ,T3)T:x°u of variables

u5T~x! ~5!

that converts the original dynamical system ~3! to the dy-
namical system ~4!. From Eqs. ~3!, ~4!, and ~5! we can read
off the components of T,

T1~x!5x , ~6a!

T2~x!5V1~x!, ~6b!
T3~x!5 ẋ•¹V1~x!5V~x!•¹V1~x!, ~6c!

with ¹5(]x ,]y ,]z)T. Obviously, the transformation T de-
pends on the structure of the vector field V(x) of the original
dynamical system ~3!. It can be calculated for any arbitrary
vector field. In order to find an equivalent jerky dynamics
from ẋ5V(x), however, there must also be a uniquely de-
termined inverse transformation T215(T1

21 ,T2
21 ,T3

21)T:
u°x given by

x5T21~u! ~7!

such that T21 maps the system ~4! onto ~3!. By virtue of Eqs.
~6!, the condition of invertibility of T is effectively a con-
straint on the general form of the vector field V(x), and,
therefore, defines the dynamical systems that possess an
equivalent jerky dynamics.

In the following, it proves convenient to distinguish ex-
plicitly between the linear and nonlinear parts of the vector
field. Therefore, we write it in the general form

V~x!5c1Bx1n~x!, ~8!

where cPR3 is a vector of constants, BPR333 a matrix with
constant coefficients b i j (i , j51,2,3) and n(x)
5@n1(x),n2(x),n3(x)#T a three-dimensional vector of solely
nonlinear functions in x ,y ,z that are at least twice differen-
tiable and do not contain additive constants. Then, the fol-
lowing holds.
Theorem. Any dynamical system of the functional form

ẋ5c11b11x1b12y1b13z1n1~x !, ~9a!

ẏ5c21b21x1b22y1b23z1n2~x!, ~9b!

ż5c31b31x1b32y1b33z1n3~x! ~9c!

with n i (i51,2,3) being nonlinear functions of the indicated
arguments can be reduced to a jerky dynamics, x̂
5J(x , ẋ , ẍ), if the conditions

b12n2~x!1b13n3~x!5 f ~x ,b12y1b13z ! ~10a!

with f being an arbitrary function of the indicated arguments
and

b12
2 b232b13

2 b321b12b13~b332b22!Þ0 ~10b!

hold.
Before we prove the statement we remark the following.

~i! From Eq. ~9a! we see that the variables y and z are only
allowed to enter linearly into the ẋ equation. ~ii! An impor-
tant special case of the dynamical system ~9! is obtained by
setting b1350. Then the condition ~10b! reduces to

b12Þ0, b23Þ0. ~11!

Moreover, it follows from Eq. ~10a! that in this case the
nonlinearity n2(x) is solely a function of x and y , while
n3(x) can be an arbitrary function of x. Altogether, the dy-
namical system ~9! therefore reads
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ẋ5c11b11x1b12y1n1~x !, ~12a!

ẏ5c21b21x1b22y1b23z1n2~x ,y !, ~12b!

ż5c31b31x1b32y1b33z1n3~x!. ~12c!

The functional form of Eqs. ~12! can also be obtained from
Eq. ~9! by using the obviously invertible transformation h
5y1(b13 /b12)z , since Eq. ~10a! is valid and, therefore, the
function f (x ,b12y1b13z) corresponds to the nonlinearity
n2(x ,h) in the new ḣ equation.
Proof. The demonstration of the theorem requires three

steps: the calculation of the transformation T and its inverse
T21 and, finally, the derivation of the jerky dynamics. The
transformation T can immediately be obtained from the dy-
namical system ~9! by virtue of Eqs. ~6!,

T1~x!5x , ~13a!

T2~x!5c11b1
•x1n1~x !, ~13b!

T3~x!5c•b11b1
•b1x1b1

•b2y1b1
•b3z1b1

•n~x!

1@c11b1
•x1n1~x !#]xn1~x !. ~13c!

For convenience, we have introduced in Eq. ~13! the notation

bi5~b i1 ,b i2 ,b i3!T ~ i51,2,3 ! ~14a!

for the row vectors and

bj5~b1 j ,b2 j ,b3 j!
T ~ j51,2,3 ! ~14b!

for the column vectors of the matrix B5(b i j) introduced in
Eq. ~8!. The dot denotes the scalar product.

To calculate the inverse transformation T21, we have to
solve Eqs. ~13! with respect to x , y , and z . Since x
5T1(x) and Eq. ~13a! hold and, therefore, T1 maps x only
onto itself, solely the second and third components of T and
the variables y and z need to be considered while x can be
handled like a simple parameter. To solve Eqs. ~13b! and
~13c! with respect to y and z , both variables should enter
only linearly into T2 and T3 . In T3 , however, nonlinear
terms are present that contain y and z . Since we want to
determine y and z as functions of u, this does not cause a
problem if these nonlinearities can be replaced by terms of u.
This explains why one has to demand the condition ~10a!
since in this case the part b1

•n(x) of Eq. ~13c! can be written
as b11n1(x)1 f (x ,b12y1b13z). Using Eq. ~13b! and v
5T2(x), the second argument of f can be substituted by an
expression that solely depends on x and v . Next, again using
v5T2(x) and Eq. ~13b! we can rewrite the second line of
Eq. ~13c! as v]xn1(x). As a consequence, T3 depends lin-
early on y and z . Taking into account Eq. ~5!, the second and
third component of the transformation T, ~13b! and ~13c!,
can therefore be written as

S v

a D 5S r~x !

s~x ,v !
D 1MS yz D ~15!

with the abbreviations
r~x !5c11b11x1n1~x !, ~16a!

s~x ,v !5c•b11b1
•b1x1v]xn1~x !1b11n1~x !

1 f „x ,v2r~x !… ~16b!

and the matrix

M5S b12 b13

b1
•b2 b1

•b3
D . ~17!

Therefore, the problem of calculating T21 is reduced to a
simple matrix inversion. The condition that is necessary for
invertibility of M is given by detM5b12

2 b232b13
2 b32

1b12b13(b332b22)Þ0. This is exactly the condition ~10b!.
Since we require that Eq. ~10b! holds, it follows that the
inverse of M and, therefore, also the inverse transformation
T21 exist. Consequently, from Eq. ~15! one can finally cal-
culate T21 by additionally taking into account Eq. ~7!. The
result reads

T1
21~u!5x , ~18a!

T2
21~u!5$c•b1b132c1b1

•b31~b12A322b13A22!x

1@b1
•b31b13]xn1~x !#v2b13a

2~b12b231b13b33!n1~x !

1b13f „x ,v2r~x !…%/detM, ~18b!

T3
21~u!5$c1b1

•b22c•b1b121~b12A332b13A23!x

2@b1
•b21b12]xn1~x !#v1b12a

1~b12b221b13b32!n1~x !

2b12f „x ,v2r~x !…%/detM, ~18c!

where A i j denotes the adjunct or the cofactor to the element
b i j of the matrix B @21,22#.

The general form of the jerky dynamics corresponding to
the dynamical system ~9! can be obtained by the following
procedure. The derivative of the third component of Eq. ~5!
with respect to time reads

ȧ5 x̂5V~x!•¹T3~x!. ~19!

Since ȧ5 x̂5J(u) holds, Eq. ~19! yields the jerk function
J(u). The expression ~19!, however, still depends on y and
z , so that we must insert the inverses y5T2

21(u) and z
5T3

21(u) to obtain J as a function of u. A straightforward,
but somewhat tedious calculation then leads to the final re-
sult for the jerky dynamics. Using the matrix A5(A i j) ~with
the adjuncts A i j of B) and accordingly to Eq. ~14! defined
row and column vectors Ai and Aj , it reads

J~u!5g~x ,v !a1h~x ,v !v1k~u! ~20!

with

g~x ,v !5trB1]xn1~x !1 f 8†x ,v2r~x !‡, ~21a!
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h~x ,v !52trA2~b221b33!]xn1~x !1]x f „x ,v2r~x !…

1v]x
2n1~x !1@b111]xn1~x !# f 8„x ,v2r~x !…,

~21b!

k~u!5c•A11b1
•A1x1A1•n„x ,T2

21~u!,T3
21~u!…,

~21c!

and ]x f denoting the derivative with respect to x only of the
first argument of f , f 8 the derivative with respect to the
second argument of f and tr the trace of a matrix. If the
nonlinear functions n2 or n3 in k(u) depend on y or z , one
has to insert the inverse transformations y5T2

21(u) and
z5T3

21(u), Eqs. ~18b! and ~18c!. This completes the proof.
Several remarks are in order.
~i! If the condition ~10b! does not hold, i.e., b12

2 b23
2b13

2 b321b12b13(b332b22)[0, the corresponding dynami-
cal system ~9! describes an effectively two-dimensional dy-
namics. This can be seen as follows. If both b12 and b13 are
equal to zero, the first component of Eq. ~15! reduces to the
first-order ODE v5 ẋ5r(x). If, however, e.g., b12Þ0 holds,
one can solve the first of Eqs. ~15! with respect to y and
insert the resulting equation into the second component of
Eq. ~15!. Then, due to b12

2 b232b13
2 b321b12b13(b332b22)

50, the z term vanishes and it remains the second-order
ODE a5 ẍ5s(x , ẋ)1(1/b12)b1

•b2@ ẋ2r(x)# .
~ii! For the special case b1350, i.e., no dependence on z in

Eq. ~9a!, Eq. ~18b! does not depend on a and f „x ,v
2r(x)…. Moreover, in this case the nonlinear function n3(x)
does not appear in the transformation T, Eqs. ~13!. There-
fore, also the inverse T21 cannot contain n3(x). This can be
seen from Eq. ~10a!, which reduces to f (x ,b12y)
5b12n2(x ,y) for b1350. Consequently, Eqs. ~21a! and ~21b!
do also not depend on n3(x) if b1350 holds. Additionally,
one obtains f 85]yn2 for the derivative f 8.

~iii! The part g(x ,v)a of the jerk function ~20! does not
contain all terms that are linear in a . Linear and nonlinear
terms in a can also appear in k(u) after insertion of the
inverses T2

21 and T3
21 into the nonlinear functions n(x). In

the same way also linear and nonlinear terms in v can be
contained in k(u).

~iv! From Eq. ~21c! follows that an additive constant term
in the jerk function ~20! can only appear if cÞ0 and, there-
fore, if the original dynamical system also contains an addi-
tive constant term.

~v! Consider the functions n(x) to be polynomials of a
certain degree d.1. Then, the transformation to the jerky
dynamics does not necessarily conserve the degree of the
polynomials entering into the jerk function.

~vi! Two special cases are included in the functional
forms of the dynamical systems, Eqs. ~9! and ~12!, the trans-
formations, Eqs. ~13! and ~18!, and the jerk function, Eq.
~20!. First, by setting n(x)[0 in Eq. ~9!, one directly infers
that any linear dynamical system can always be converted
into an equivalent jerky dynamics in x if it fulfills the con-
dition ~10b!. Then, we can read off the jerk function from
Eqs. ~20! and ~21!,

J~u!5c•A11b1
•A1x2trAv1trBa . ~22!
Needless to mention, the jerk function of linear dynamical
systems is also linear. The second special case refers to non-
linear dynamical systems that can be converted into a jerky
dynamics by linear transformations. Only if the conditions
n1(x)[0 and n2(x ,y)[0 hold for the system ~12!, the trans-
formation T, Eq. ~13!, and its inverse T21, Eq. ~18!, are
linear. This agrees with results found in Ref. @13# where,
however, only Newtonian jerky dynamics were considered
and, therefore, also the general functional form of n3(x) has
been restricted.

~vii! It is possible that a dynamical system that is con-
tained in the class specified by ~9! can be converted simul-
taneously into two or even three jerky dynamics in different
variables ~the jerky dynamics in one certain variable is
unique, if it exists!. Then, however, additional restrictions
apply. From the structure of the dynamical systems that pos-
sess a jerky dynamics in x , Eqs. ~9!, we see that for a simul-
taneous existence of a jerky dynamics in y and/or z , it is
necessary that n2(x)5n2(y) and/or n3(x)5n3(z) hold.
Moreover, there are additional conditions for each variable y
and/or z that are similar to Eq. ~10!. Details are given in
Appendix B. For the case of three simultaneous jerky dy-
namics, the set of all conditions leads to two formally differ-
ent dynamical systems ~apart from certain permutations of
variables!. Also here, we refer to Appendix B, in particular,
Eqs. ~B4! and ~B6!.

The above theorem constitutes an important tool in two
respects. ~i! Given a specific dynamical system, one can de-
cide only on the basis of the functional form of its vector
field V(x) if it belongs to the class specified by Eq. ~9! and,
therefore, possesses an equivalent jerky dynamics in x . Here,
also an exchange of the variables y and z and the indices 2
and 3, respectively, has to be taken into account. The jerky
dynamics can immediately be calculated by using Eqs. ~20!
and ~21!. ~ii! It can be possible that the given dynamical
system possesses a jerky dynamics in y or z , but not in x .
This can also be verified with the help of the Eqs. ~9! by
considering all permutations of variables (x ,y ,z) and indices
(1,2,3), respectively. If, e.g., after exchanging x and y ~and
the indices 1 and 2), the given dynamical system is of the
form ~9!, we can conclude that it possesses a jerky dynamics
in y . Equation ~20! can be used to determine it.

IV. MINIMAL CHAOTIC FLOWS

In this section, we apply the results of Sec. III on the
transformability of the dynamical systems, Eq. ~9!, to the
nonlinear dynamical systems A to S found by Sprott @7# and
a system of Rössler @20# that exhibits toroidal chaos ~denoted
by TR!. These models are minimal dynamical systems that
can show chaotic behavior for some parameter range where
minimal is understood in an algebraic sense. They have only
five terms with two quadratic nonlinearities ~models A to E!
or six terms with one quadratic nonlinearity ~models F to S
and TR!. Moreover, Sprott also has found dynamical systems
with five terms and only one quadratic nonlinearity that are
chaotic in a certain parameter range @10,11#. These models
are already given in form of a jerky dynamics. Zhang and
Heidel @23# have shown that three-dimensional dissipative
quadratic systems with less than five terms cannot exhibit
chaotic behavior.



7156 PRE 58RALF EICHHORN, STEFAN J. LINZ, AND PETER HÄNGGI
The nineteen models of Sprott and the toroidal Rössler
model are given in the second column of Table I. In Sprott’s
models @7# we have substituted all coefficients that are not
equal to 61 as well as numerical constants by parameters
that are denoted by greek letters. Using the results of Sec. III,
we infer that the models A to C and E do not belong to the
class of dynamical systems ~9!. On the other hand, we can
analytically calculate all existing equivalent jerky dynamics
for each of the systems D and F to S and TR. The resulting
jerky dynamics as well as the corresponding transformations
T and their inverses T21 are also given in the third, fourth,
and fifth columns of Table I. The method of comprehensive
Gröbner bases described in appendix D has been used to
verify whether there are additionally equivalent jerky dy-
namics that are not contained in the class ~9! and, simulta-
neously, to check the analytical results. It turns out that all
existing jerky dynamics are of the type being described by
Eqs. ~9!.

The entry ‘‘none’’ for the models A, B, C, and E means
that there are no equivalent jerky dynamics for these systems
in the sense that the jerk function is a nonsingular and poly-
nomial expression. Therefore, only one of the models with
two quadratic nonlinearities, namely, system D, can be con-
verted into an equivalent jerky dynamics. This is mainly due
to the fact that two of the total of five terms contained in
these models are nonlinear. This leads, in general, to a lack
of sufficiently many linear terms that are necessary for the
existence of the inverse transformation. On the other hand,
any system with six terms and only one nonlinearity ~F to S
and TR! can be recast into at least one jerky dynamics. The
models F, I, and L possess even two.

If, for a certain model, Eq. ~10b! yields a condition on the
parameters, it is possible that the inverse transformation, and,
therefore, also the jerky dynamics, does not exist for some
parameter values. In fact, this occurs for the system F if
a521 and for I, L, and S if a50. In the cases I, L, and S,
this can also be read off from the form of the dynamical
system since, for a50, they do not describe an effectively
three-dimensional dynamical behavior. Therefore, a jerky
dynamics is not well defined in these cases. This fact trans-
fers to the specific structure of the corresponding jerky dy-
namics, which reduce to one- or two-dimensional dynamical
equations or are not defined if a50. As well, the dynamics
of model F is effectively two dimensional if a521. This
can be seen from the corresponding transformation that leads
to the jerky dynamics in x .

From Table I one can also see that most of the transfor-
mations are linear ~models D, F ~the jerky dynamics in x),
G, I, L, M, O, Q, R, S, and TR!, solely one contains a cubic
term ~model P! and the remaining are quadratic. In contrast
to that, all derived jerky dynamics have only quadratic non-
linearities. Moreover, it is interesting that not all of the six
possible quadratic combinations of x , ẋ , ẍ appear in the
models. Terms like ẋ ẍ and ẍ2 are missing. The absence of
the ẍ2 term means that all models are even Newtonian jerky
@14#.

A. Relations between the jerky dynamics

Comparing the jerky dynamics of Table I, one observes
that some of them look rather similar as far as the functional
form of the jerk functions is concerned. Consider, e.g., the
jerky dynamics of system J and the jerky dynamics in y of
model I. Both consist of the same terms; they only differ
with respect to their coefficients. Also the jerky dynamics of
model L ~in x) and of N are of the same functional form
apart from an additional nonzero constant. The systems F
and H possess even identical jerky dynamics. Furthermore,
there are three models ~F, I, and L! that possess two equiva-
lent jerky dynamics that contain similar terms. These obser-
vations raise the question of whether there are relations be-
tween different ~but similar! jerky dynamics, or if there are
even invertible transformations that map them onto each
other.

To discuss this point in more detail, we consider a trans-
formation TJ :(x , ẋ , ẍ)°(j , j̇ , j̈) with

j5TJ ,1~x , ẋ , ẍ !, ~23a!

j̇5TJ ,2~x , ẋ , ẍ !, ~23b!

j̈5TJ ,3~x , ẋ , ẍ ! ~23c!

that maps a jerky dynamics x̂5Jx(x , ẋ , ẍ) onto another jerky
dynamics ĵ 5Jj(j , j̇ , j̈). Such a transformation is completely
determined by its first component TJ ,1 and the jerk function
Jx . The second and third components TJ ,2 and TJ ,3 are only
derivatives of TJ ,1 with respect to time and the jerk function
Jx must be used to substitute x̂ terms that appear after each
derivation. Therefore, the transformation ~23! contains only
one independent component that can be chosen as j

5TJ ,1(x , ẋ , ẍ). This property and the condition of invertibil-
ity strongly restrict the class of possible transformations ~23!
between different jerky dynamics. Therefore, it is only pos-
sible for very special cases to convert similar jerky dynamics
to each other by invertible transformations.

However, different jerky dynamics that belong to the
same dynamical system can always be transformed to each
other by an invertible transformation. This follows from the
fact that the jerky dynamics themselves are obtained from
the dynamical system via invertible transformations. For il-
lustration, assume that we have a dynamical system that pos-
sesses two equivalent jerky dynamics ~like the models F, I,
and L! for its variables, say, x and y . Suppose that the jerky
dynamics are calculated from the dynamical system by the
invertible transformations Tx :(x ,y ,z)°(x , ẋ , ẍ) and
Ty :(x ,y ,z)°(y , ẏ , ÿ). Then, we can immediately write
down the transformation TJ that maps the jerky dynamics in
x to the one in y as a combination of Tx

21 and Ty , TJ
5Ty+Tx

21 . Moreover, since we have y5TJ ,1(x , ẋ , ẍ) and
also y5Tx ,2

21(x , ẋ , ẍ), one can immediately read off the char-
acteristic first component of TJ from Tx

21 . Analoguous ar-
guments are valid for the inverse TJ

21 .
For model F, the first component of the transformation

between its jerky dynamics reads ~cf. Table I! x52 ẏ1ay
„or y5@1/(11a)#( ẍ1 ẋ1x2x2) for the inverse…, where a
Þ21 must hold. Invertibility of this transformation is based
on the property of the jerky dynamics for y that it can be
written as ŷ5(a21) ÿ1(a21) ẏ2y2(2 ẏ1ay)2.
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TABLE I. Minimal models and their jerky dynamics.

Model Equations Jerky Transformations Inverse
dynamics transformations

A ẋ5y none none none
ẏ52x1yz
ż5a2y2

B ẋ5yz none none none
ẏ5x2y
ż5a2xy

C ẋ5yz none none none
ẏ5x2y
ż5a2x2

D ẋ52y x̂5xẍ2 ẋ2a ẋ21x2 ẋ52y y52 ẋ
ẏ5x1z ẍ52x2z z52x2 ẍ

ż5xz1ay2

E ẋ5yz none none none
ẏ5x22y
ż5a2bx

F ẋ5y1z x̂5(a21) ẍ1(a21) ẋ2x ẋ5y1z y5
1

11a
( ẍ1 ẋ1x2x2)

ẏ52x1ay 2ax212xẋ ẍ52x1x21ay2z z5
1

11a
(2 ẍ1a ẋ2x1x2)

ż5x22z
ŷ5(a21) ÿ1(a21) ẏ2y ẏ5ay2x x52 ẏ1ay

2a2y212ay ẏ2 ẏ2 ÿ5(a221)y2ax2z z52 ÿ1a ẏ2y

G ẋ5ax1z x̂5(a21) ẍ1(a21) ẋ2x ẋ5ax1z y5 ẍ2a ẋ1x
ẏ5xz2y 2ax21xẋ ẍ5(a221)x1y1az z5 ẋ2ax
ż52x1y

H ẋ52y1z2 ẑ5(a21) z̈1(a21) ż2z ż52z1x x5 ż1z
ẏ5x1ay 2az212zż z̈5z1z22x2y y52 z̈2 ż1z2
ż5x2z

I ẋ52ay x̂52 ẍ2a ẋ22ax2
1
a
ẋ2 ẋ52ay y52

1
a
ẋ

ẏ5x1z ẍ52ax2az z52
1
a
ẍ2x

ż5x1y22z

ŷ52 ÿ2a ẏ22ay12y ẏ ẏ5x1z x5
1
2 ( ÿ1 ẏ1ay2y2)

ÿ52ay1y21x2z z5
1
2 (2 ÿ1 ẏ2ay1y2)

J ẋ5az ŷ52b ÿ1(12a) ẏ2aby12y ẏ ẏ52by1z x52 ÿ2b ẏ1y1y2

ẏ52by1z ÿ5(11b2)y1y22x2bz z52 ÿ2 ẏ1y ẏ1y2

ż52x1y1y2

K ẋ5xy2z ŷ5(a21) ÿ1(a21) ẏ2y ẏ52y1x x5 ẏ1y
ẏ5x2y 1y ÿ1(22a)y ẏ2ay21 ẏ2 ÿ5y2x2z1xy z52 ÿ2 ẏ1y ẏ1y2

ż5x1az

L ẋ5y1az x̂52 ẍ2a ẋ2ax12bxẋ1ag ẋ5y1az y52 ẍ2ax1bx21ag

ẏ5bx22y ẍ52ax1bx22y1ag z5
1
a

( ẍ1 ẋ1ax2bx22ag)
ż5g2x

ẑ52 z̈1(2bg2a) ż2az ż5g2x x5g2 ż
2b ż22bg2 z̈52az2y y52 z̈2az

M ẋ52z x̂52 ẍ2b ẋ2bx1x22a ẋ52z y52 ẍ2bx2a
ẏ52x22y ẍ52bx2y2a z52 ẋ
ż5a1bx1y
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TABLE I. ~Continued!.

Model Equations Jerky Transformations Inverse
dynamics transformations

N ẋ52ay ẑ52g z̈2a ż2agz12zż1ab ż52gz1y1b x5 z̈1g ż2z2

ẏ5x1z2 z̈5g2z1z21x2gy2bg y5 ż1gz2b
ż5b1y2gz

O ẋ5y x̂5xẍ1(12a) ẋ2x2x2 ẋ5y y5 ẋ
ẏ5x2z ẍ5x2z z52 ẍ1x

ż5x1xz1ay

P ẋ5ay1z ŷ52y ÿ1(12a) ẏ2y12 ẏ22y2 ẏ5y22x x52 ẏ1y2

ẏ52x1y2 ÿ52y32ay22yx2z z52 ÿ12y ẏ2ay
ż5x1y

Q ẋ52z ŷ5(b21) ÿ1(b2a) ẏ2ay2y2 ẏ52y1x x5 ẏ1y
ẏ5x2y ÿ5y2x2z z52 ÿ2 ẏ

ż5ax1y21bz

R ẋ5a2y x̂52 ẍ2ax1xẋ2b ẋ52y1a y52 ẋ1a
ẏ5b1z ẍ52z2b z52 ẍ2b
ż5xy2z

S ẋ52x2ay ẑ52 z̈2a ż2az21ab ż5x1b x5 ż2b
ẏ5x1z2 z̈52x2ay y5

1
a

(2 z̈2 ż1b)
ż5b1x

TR ẋ52y2z ŷ52b ÿ2 ẏ2(a1b)y1ay2 ẏ5x x5 ẏ
ẏ5x ÿ52y2z z52 ÿ2y

ż5a(y2y2)2bz
The jerky dynamics of model I can be converted to each
other by a transformation with y52(1/a) ẋ as its first com-
ponent ~cf. Table I! @or x5 1

2 ( ÿ1 ẏ1ay2y2) for the in-
verse#, where aÞ0 must hold. Here, the corresponding
transformation is invertible, because nonlinear terms contain-
ing x do not appear in the jerky dynamics for x . The trans-
formation for the jerky dynamics of model L is of the same
type as for model I.

As already mentioned, the dynamical systems F and H
possess identical jerky dynamics apart from the labels of the
variables. Therefore, these systems must be equivalent and
there must be an invertible transformation between both. Re-
labeling the variables (x ,y ,z) of model H by (j ,h ,z), the
corresponding transformation TFH :(x ,y ,z)°(j ,h ,z) reads

j5x1y1z , h5x2~11a !y , z5x . ~24!

Since all transformations we use here are invertible and
model F can be recast into two equivalent jerky dynamics,
the second jerky dynamics of F must also be equivalent to
system H. To obtain it from system H, however, one has to
transform all variables. Therefore, it is not a jerky dynamics
for H. Using the above notation, the transformation
T:(j ,h ,z)°(y , ẏ , ÿ) reads explicitly

y5
1

11a
~z2h !, ~25a!
ẏ52
a

11a
h2

1
11a

z , ~25b!

ÿ52j2
a2

11a
h1

1
11a

z , ~25c!

where aÞ21 must hold.

B. Classification of simple chaotic jerky dynamics

To discuss the relations of jerky dynamics that belong to
different dynamical systems, we consider the linear transfor-
mation

j5k~x1c !, j̇5kẋ , j̈5kẍ ~26!

~with k ,cPR, and kÞ0) that moves the origin and simulta-
neously rescales variables. This transformation is the only
one that ~i! converts a jerky dynamics ~for a variable x) into
another equivalent jerky dynamics ~for a new dynamical
variable j), ~ii! is invertible and, ~iii! independent of the
specific form of the jerk function Jx(x , ẋ , ẍ). In general, Eq.
~26! does not convert the different jerky dynamics of Table I
to each other, but transforms them to seven basic classes of
jerky dynamics that differ by the type and the number of
terms appearing in the corresponding seven jerk functions.
Transformations between these different classes have not
been found. In Table II the basic classes ~denoted by JD1 to
JD7) are listed as well as the models that belong to each
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TABLE II. Basic classes of dissipative jerky dynamics.

Basic classes
Model coefficients 5 values for which there is irregular behavior Transformation

JD1 ĵ 5k1j̈1k2j1jj̇1k3

I k1521 k2522a520.4 k3522a2520.08 j52y2a

J k152b522 k252ab524 k35ab(12a)524 j52y1(12a)
L k1521 k252a523.9 k35a(2bg2a)528.19 j52bx2a

N k152g522 k252ag524 k35a(2b2ag)524 j52z2a

R k1521 k252a520.9 k352b520.4 j5x
SJ k152A522.017 k2521 k350 j5v

JD2 ĵ 5k1j̈1k2j̇1j21k3

M k1521 k252b521.7 k352a2
b2

4 522.4225 j5x2
b

2

Q k15b21520.5 k25b2a522.6 k352
a2

4 522.4025 j52y2
a

2
S k1521 k252a524 k352a2b5216 j52az

TR k152b520.2 k2521 k352
1
4 (a1b)2'20.0858 j5ay2

1
2 (a1b)

JD3 ĵ 5k1j̈1k2j̇1k3j
21jj̇1k4

F k15a21520.5 k25a2
1
a

21522.5 k352
a

2 520.25 k45
1

2a
51 j52x1

1
a

G k15a21520.6 k25a2
1

2a
21521.85 k352a520.4 k45

1
4a

50.625 j5x1
1

2a

H k15a21520.5 k25a2
1
a

21522.5 k352
a

2 520.25 k45
1

2a
51 j52z1

1
a

JD4 ĵ 5k1j̈1k2j̇1k3j
21jj̈1k4

O k152
1
2 k2512a521.7 k3521 k45

1
4 j5x1

1
2

JD5 ĵ 5k1j̇1k2j
21k3j̇

21jj̈

D k1521 k251 k352a523 j5x

JD6 ĵ 5k1j̈1k2j̇1k3j
21k4j̇

21jj̈1k5

P k1521 k2512a521.7 k352
1
2 k451 j52y11

k55
1
2

JD7 ĵ 5k1j̈1k2j̇1k3j
21k4j̇

21k5jj̇1jj̈1k6

K k15a2
1

2a
21'22.37 k25a2

1
a

2
1
2 '23.53 k352a520.3 k451 j5y1

1
2a

k5522a51.7 k65
1

4a
'0.83
class. Moreover, the concrete realization of the first compo-
nent of the transformation ~26! for each model is given. Also
the simplest dissipative chaotic jerky dynamics

x̂52Aẍ2x1 ẋ2, ~27!

which Sprott has reported in Ref. @11# fit into these classes.
Its jerk function consists only of three terms with one qua-
dratic nonlinearity. Rewriting Eq. ~27! as @11#

v̂52A v̈2v1vv̇ ~28!
by differentiating it with respect to time and defining the new
variable v52 ẋ , it is of the basic form JD1 . Equation ~28! is
chaotic over the same range of A as is Eq. ~27!. Conse-
quently, the simple jerky dynamics ~28! is also listed in
Table II where it is denoted by SJ. Since the jerky dynamics
SJ is the simplest model of the class JD1 as far as the number
of terms appearing in the jerk function is concerned (k3
50), it is interesting to check if there are other JD1 models
where the parameters a , b , and g can be chosen such that
they are identical to SJ, i.e., k152A , k2521 and k350
are valid. It turns out that this is the case only for model N
with a5A21, b5 1

2 , and g5A . However, by rescaling time



7160 PRE 58RALF EICHHORN, STEFAN J. LINZ, AND PETER HÄNGGI
of the jerky dynamics SJ, Eq. ~28!, by t→A21t ~which does
not change the direction of time in the relevant parameter
range, since chaotic dynamics appears for positive A) and
substituting v by A2v ~for AÞ0), Eq. ~28! turns into

v̂52 v̈2A23v1vv̇ ~29!

and still belongs to the basic class JD1 . Equation ~29! is
again equivalent to model N @by choosing a5A23, b
51/(2A3), g51] but also to two other jerky dynamics of
the class JD1 . These are model L @for a5A23, bg
51/(2A3)] and model R ~for a5A23 and b50). In par-
ticular for model R, this means that the underlying dynami-
cal system can exhibit irregular behavior if b50. In this
case, model R has only five terms with one quadratic non-
linearity. However, the range of the parameter a5A23 for
which a route to chaotic behavior appears via a Feigenbaum
scenario is rather narrow. It can be determined from the
range of A given in Refs. @10,11#. We infer that the jerky
dynamics ~29! has a period-doubling Feigenbaum route to
chaos for 0.111&a&0.121.

The jerky dynamics that belong to the same basic class
are not necessarily identical. Their jerk functions do consist
of the same functional form, but, in general, with different
parameters or combinations of parameters as coefficients.
Using the values of the parameters a , b , and g for which
Sprott found chaotic behavior @7#, one can easily determine
values of the coefficients k i of the basic jerky dynamics JD1
to JD7 that lead to a chaotic dynamics. These values of the
coefficients are also shown in Table II. For the classes with
several models, i.e., JD1 to JD3 , we accordingly find several
distinct points in the parameter space of the k i’s where the
corresponding jerky dynamics exhibit chaotic behavior. To
find numerically such irregular behavior, the initial condi-
tions j(0), j̇(0), and j̈(0) have to be chosen appropriately
for each jerky dynamics. These initial conditions can be
found by applying successively the transformations of Table
I and Table II to the original initial conditions
x(0)5y(0)5z(0)50.05 ~for the models D and F to S! @7#
and x(0)50.4, y(0)520.4, z(0)520.7 ~for the model
TR! @20# that has been used to generate a chaotic solution of
the original models.

It should be noted that the algebraic structure of the seven
classes is not uniquely determined. For reasons that will be-
come clear below, we have chosen them such that no linear j̇
term appears in JD1 and no linear j term in JD2 to JD7 .
Moreover, the coefficient of one quadratically nonlinear term
of each model is chosen to be equal to 11. This corresponds
to a rescaling of the variable j and is achieved by an appro-
priate choice of k in the transformation ~26!.

It is interesting that the transformations that convert the
models of Table I to the, in general, algebraically simpler
basic classes of jerky dynamics generate more complicated
dynamical systems with a larger total number of terms if
substituted into the original systems. Moreover, the total
number of terms on the right-hand side of the basic jerky
dynamics of Table II varies from four to seven and the num-
ber of nonlinear terms from one to four although all the
corresponding minimal dynamical systems ~except from
model D! have the same number of terms and nonlinearities.
Therefore, simplicity of the dynamical systems does, at least
in general, not correspond to simplicity of the equivalent
jerky dynamics.

C. Conditions that exclude chaos

For the seven basic classes of jerky dynamics JD1 to JD7
listed in Table II, we show in this section that chaotic dy-
namics is excluded for some ranges of the parameters k i .

According to the Appendix C, a jerky dynamics can, in
general, be written as an integro-differential equation

j̈1V~j , j̇ !5E t
f „j~t !,j8~t !,j9~t !…dt , ~30!

where the prime denotes the derivative with respect to t . It
can be proven ~cf. Appendix C! that the jerky dynamics that
underlies Eq. ~30! cannot exhibit irregular dynamics if the
integrand f (j ,j8,j9) of the memory term is either positive
semidefinite or negative semidefinite for all j , j8 and j9.
Next, we apply this statement to the jerky dynamics of the
basic models JD1 to JD7 .

Since all these models do not contain a ẍ2 term, the inte-
grand f of Eq. ~30! does not depend on j9, i.e., f
5 f (j ,j8). For the model JD1 the function f reads

f ~j ,j8!5k2j1k3 ~31!

and is therefore also independent of j8. Taking into account
the above statement, we can immediately infer that chaotic
dynamics cannot appear for k250. For k3 no condition can
be given; in particular, k350 is not excluded. In fact,
Sprott’s simplest dissipative chaotic jerky dynamics SJ ~cf.
Table II! serves as example for a JD1 model with k350 that
can exhibit chaotic dynamics.

In this context, it is interesting that the jerk model

ĵ 5k1j̈1k2j̇1jj̇1k3 ~32!

cannot show irregular behavior at all. This also follows from
the theorem in Appendix C. Eq. ~32! is very similar to the
basic model JD1 ; the term linear in j has only been substi-
tuted by a term linear in j̇ .

For the remaining basic models JD2 to JD7 the structure
of the jerky dynamics has been chosen such that the inte-
grand of the memory term is of the functional form

f ~j ,j8!5Aj21Bj821C . ~33!

The parameters A , B , and C for each model are determined
by the coefficients of the nonlinear terms j2, j̇2, and jj̈ and
by the additive constant of the underlying jerky dynamics. If
the corresponding terms are not present A , B , and/or C are
zero. From the specific form ~33! of f (j ,j8) we obtain con-
ditions on the ~relative! signs of the coefficients A , B , and C
that exclude chaotic behavior of the corresponding jerky dy-
namics. In particular, irregular dynamics cannot appear if
either A>0, B>0, C>0 or A<0, B<0, C<0 hold si-
multaneously. For the jerky dynamics JD2 , e.g., we have A
51, B50, C5k3 and we can infer that for k3.0 chaotic
dynamics cannot appear. This condition translates into con-
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ditions for the parameters a and b of each model that is
contained in the class JD2 . For the model M, e.g., we obtain
2a2 1

4 b2.0. Similar considerations hold for the other ba-
sic classes.

V. CONCLUSION AND DISCUSSION

In summary, our investigations consist of two major parts.
~i! In Sec. III, we have provided a broad class of three-
dimensional dynamical systems with polynomial and even
nonpolynomial nonlinearities that possess at least one
uniquely determined jerky dynamics @24#. ~ii! In Sec. IV, we
have shown that fifteen of Sprott’s minimal chaotic dynami-
cal systems @7# are in fact jerky. Moreover, we have shown
that these models, the toroidal Rössler model @20#, and
Sprott’s minimal dissipative jerk model @10,11# can be clas-
sified in seven classes of jerky dynamics with increasing
polynomial complexity. Based on the description of nonlin-
ear three-dimensional dynamical systems as jerky dynamics,
we also have been able to derive criteria for the functional
form of the jerk function that exclude chaotic behavior.

So far, our investigation has only been applied to known
vector fields that are algebraically very simple and is, there-
fore, far from being complete. We expect that the classifica-
tion scheme for three-dimensional dynamical systems pro-
posed above can also be used for many other three-
dimensional vector fields that appear in physics, chemistry,
and ecology. Also transformations of fourth and higher-
dimensional vector fields to fourth and higher-order scalar
differential equations do not pose a conceptual problem.

In perspective, we think that a sound understanding of
jerky dynamics might also be important in the following re-
spects. ~i! Quite natural experimental realizations of jerky
dynamics are obviously electric circuits with internal feed-
back. Here, a basic understanding of jerky dynamics can help
to systematically ‘‘manufacture’’ simple nonchaotic and cha-
otic electric circuits. ~ii! An interesting, albeit technical point
is that systematic analytical perturbation methods are easier
to handle if a three-dimensional dynamical system is avail-
able in a jerky form. As an example, we refer to the work by
Erneux et al. @17#. ~iii! Since jerky dynamics exhibit many
major features of chaotic dynamical behavior, a comprehen-
sive investigation of jerky dynamics could lead to a deeper
understanding of chaos and the routes to chaos.

Particularly challenging is a thorough understanding of
the simplest classes of jerky dynamics that can exhibit non-
chaotic and chaotic dynamics depending on the values of the
entering parameters. Systematic investigations of the jerky
dynamics JD1 ,

ĵ 5k1j̈1k2j1jj̇1k3 , ~34!

and JD2 ,

ĵ 5k1j̈1k2j̇1j21k3 , ~35!

will be reported in a subsequent study @25#. Although these
two models are comparably simple they differ in an impor-
tant point. The model ~34! possesses one fixed point inde-
pendent on the specific values of the parameters k1 , k2 , and
k3 ~except for k250), while the model ~35! possesses two
fixed points for k3,0 and no fixed point for k3.0 indepen-
dent of k1 and k2 .
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APPENDIX A: CONSTRUCTION OF THE SYSTEM „9…

The problem of finding dynamical systems that possess an
equivalent jerky dynamics consists of finding criteria for the
transformation ~6! such that it is globally invertible. In the
following, we present considerations that guided us to find
the classes of transformable dynamical systems stated in Eqs.
~9!. Restricting to multivariate polynomial vector fields V(x)
in Eq. ~3! for the moment, the transformation T, Eq. ~6!, is
also polynomial. Then we can take advantage of the Jacobian
conjecture @26# to find criteria for the vector field V(x), such
that an inverse of T exists.

The Jacobian conjecture @26# states that a polynomial
transformation T is globally invertible if and only if its func-
tional determinant fulfills

]~T1 ,T2 ,T3!

]~x ,y ,z ! 5U]xT1 ]xT2 ]xT3

]yT1 ]yT2 ]yT3

]zT1 ]zT2 ]zT3

U5constÞ0.

~A1!

The Jacobian conjecture, which has not been soundly proven
yet, is related to the following well-known theorem about
inverse functions @21#. An arbitrary multivariate transforma-
tion is uniquely invertible in a vicinity of the point x0 if the
functional determinant is nonzero at x0 . This theorem, how-
ever, provides only local invertibility in the neighborhood of
a point. The Jacobian conjecture constitutes a global exten-
sion of this theorem but only for polynomial transformations.

Using Eqs. ~6!, the functional determinant reads

]~T1 ,T2 ,T3!

]~x ,y ,z ! 5~]yV1!]z~V•¹V1!2~]zV1!]y~V•¹V1!.

~A2!

Inserting Eq. ~8! yields

]~T1 ,T2 ,T3!

]~x ,y ,z ! 5~b121]yn1!@~b31]zn!•~b11¹n1!

1~c1b1x1b2y1b3z1n!•~]z¹n1!#

2~b131]zn1!@~b21]yn!•~b11¹n1!

1~c1b1x1b2y1b3z1n!•~]y¹n1!#.

~A3!
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Next, assuming that the polynomial n1(x) is only a function
of x , n1(x)5n1(x), one obtains from Eq. ~A3!

]~T1 ,T2 ,T3!

]~x ,y ,z ! 5b12@b12~b231]zn2!1b13~b331]zn3!#

2b13@b12~b221]yn2!1b13~b321]yn3!#

5constÞ0. ~A4!

As a consequence, one has to demand further conditions on
the nonlinear polynomials n2(x) and n3(x) such that the
functional determinant is a nonzero constant. This yields the
following condition for the terms in Eq. ~A4! that contain
n2(x) and n3(x),

b12~b12]zn21b13]zn3!2b13~b12]yn21b13]yn3!5C ,
~A5!

with CPR being a constant. Equation ~A5! might have many
solutions, but, taking into account the requirement of invert-
ibility of T(x), it is necessary that the sum b12n2(x)
1b13n3(x) is a function only of x and b12y1b13z , as is
stated in Eq. ~10a!. With this constraint, Eq. ~A5! is fulfilled
and the constant C is zero. This can easily be shown by
taking the derivative of Eq. ~10a! once with respect to y and
once with respect to z , multiplicating the first resulting equa-
tion by 2b13 , the second by b12 and finally summing up
both equations. Since the constant in Eq. ~A5! is zero, Eq.
~A4! reduces to the condition ~10b!.

In the above considerations, we have not made explicit
use of the assumption that the nonlinearities n(x) only con-
sist of polynomials apart from the fact that the Jacobian con-
jecture has been used as starting point. Therefore, we con-
jecture that they might also be valid for arbitrary nonlinear
functions n1(x), n2(x), and n3(x) that are at least twice
differentiable and fulfill Eq. ~10a!. The theorem of Sec. III
and its rigorous proof show the validity of this conjecture
and also provide some evidence for the validity of the Jaco-
bian conjecture.

APPENDIX B: DYNAMICAL SYSTEMS WITH TWO OR
THREE JERKY DYNAMICS

To obtain dynamical systems of the class ~9! with two
simultaneously existing jerky dynamics, e.g., in x and y , one
has to restrict the nonlinear function n2(x) such that it is
only a function of y , n2(x)5n2(y). This follows directly
from Eqs. ~9!. In addition to the conditions ~10!,

b12n2~y !1b13n3~x!5 f 1~x ,b12y1b13z !, ~B1a!

b12
2 b232b13

2 b321b12b13~b332b22!Þ0, ~B1b!

that ensure the existence of the jerky dynamics in x , there are
also corresponding constraints for the jerky dynamics in y
that read explicitly

b21n1~x !1b23n3~x!5 f 2~y ,b21x1b23z !, ~B2a!

b23
2 b312b21

2 b131b21b23~b112b33!Þ0, ~B2b!
where f 1 and f 2 are functions of the indicated arguments.
Any dynamical system of the functional form ~9! with
n2(x)5n2(y) that fulfills the conditions ~B1! and ~B2! can
be recast into an equivalent jerky dynamics in its variables x
and y . For simultaneously existing jerky dynamics in two
other variables one has to take into account permutations of
variables and indices, respectively.

For dynamical systems that possess simultaneously three
jerky dynamics, further constraints apply. Clearly, n3(x)
5n3(z) must hold. Furthermore, in addition to Eqs. ~B1! and
~B2! there is a third condition reading explicitly

b31n1~x !1b32n2~y !5 f 3~z ,b31x1b32y !, ~B3a!

b31
2 b122b32

2 b211b31b32~b222b11!Þ0. ~B3b!

Combining the conditions ~B1!, ~B2!, and ~B3!, one obtains
two distinct dynamical systems that simultaneously possess
three equivalent jerky dynamics, namely, first

ẋ5c11b11x1b12y1b13z1n1~x !, ~B4a!

ẏ5c21b21x1b22y , ~B4b!

ż5c31b31x1b33z , ~B4c!

with the constraints

b12Þ0, b13Þ0, b21Þ0, b31Þ0, ~B5!

and second

ẋ5c11b11x1b12y1n1~x !, ~B6a!

ẏ5c21b22y1b23z1n2~y !, ~B6b!

ż5c31b31x1b33z1n3~z ! ~B6c!

with the constraints

b12Þ0, b23Þ0, b31Þ0. ~B7!

In general, for both systems ~B4! and ~B6! one should also
consider permutations of variables and indices, respectively.
Therefore, there are dynamical systems with nonlinearities in
each component of the vector field that possess three equiva-
lent jerky dynamics. Even if a three-dimensional dynamical
system can be transformed to a jerky dynamics in each of its
variables x , y , and z , the resulting three scalar differential
equations are, at least in general, not of the same functional
form.

APPENDIX C: NO-CHAOS THEOREM

Looking at the functional form of a jerky dynamics x̂
5J(x , ẋ , ẍ), it is highly nontrivial to decide whether it can
have chaotic solutions for some parameter ranges or not. On
a pragmatic level, chaotic dynamics means that the long-time
evolution of the underlying system is ~i! bounded, i.e.,
ux(t)u,` for all t , and ~ii! neither a fixed point nor a peri-
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odic or quasiperiodic solution.
For some subclasses of jerky dynamics, however, one can

derive a simple criterion under what circumstances aperiodic
or chaotic solutions cannot appear. Consider the following
integro-differential equation

ẍ1V~x , ẋ !5E t
f „x~t !,x8~t !,x9~t !…dt ~C1!

with V and f being differentiable functions with respect to
their arguments and the prime denoting the derivative with
respect to t . Taking the time derivative of Eq. ~C1!, one
obtains a jerky dynamics

x̂1p~x , ẋ !ẍ1q~x , ẋ , ẍ !50 ~C2!

with

p~x , ẋ !5] ẋV~x , ẋ !, ~C3a!

q~x , ẋ , ẍ !5 ẋ]xV~x , ẋ !2 f ~x , ẋ , ẍ !. ~C3b!

In turn, any jerky dynamics x̂5J(x , ẋ , ẍ) can be recast in the
functional form ~C2!. Moreover, if p(x , ẋ) and q(x , ẋ , ẍ) are
integrable functions with respect to their arguments, it can
also be rewritten in form of Eq. ~C1!. Then the following
holds.
Theorem. Any jerky dynamics ~C2! with integrable

p(x , ẋ) and q(x , ẋ , ẍ) cannot show chaotic behavior if
f (x , ẋ , ẍ) is either a positive or a negative semidefinite func-
tion for all x , ẋ and ẍ .
Proof. To demonstrate the statement, we first write Eq.

~C1! as

ẍ1V~x , ẋ !5h , ~C4a!

ḣ5 f ~x , ẋ , ẍ !. ~C4b!

The condition that f (x , ẋ , ẍ) is positive ~or negative!

semidefinite for all x , ẋ , and ẍ and, therefore, also for all t ,
implies that ḣ(t)>0 @or ḣ(t)<0] holds for all t . Conse-
quently, h(t) is a monotonically increasing ~or decreasing!
function of t . In the long-time limit, the modulus of h(t) can
only attain zero, a finite nonzero constant or infinity.

If limt→`uh(t)u5C,` holds, the time evolution of Eq.
~C4a! reduces to an effectively second-order dynamics,

ẍ1V~x , ẋ !56C , ~C5!

in the long-time limit t→` . By virtue of the Poincaré-
Bendixson theorem @2#, the time evolution of Eq. ~C5! can
only approach a fixed point ~including infinity! or be peri-
odic.

If limt→`uh(t)u5` holds, the time evolution of Eq. ~C4a!
eventually escapes to infinity. Fixed points and bounded so-
lutions cannot be attained, since the left-hand side of Eq.
~C4a! also has to diverge. Therefore, the proof is complete.

Two remarks are in order. ~i! The theorem generalizes a
previously presented theorem in Ref. @14# in two respects. ~a!

It does not require the boundedness of ẍ1V(x , ẋ)50. ~b! It
is not restricted to Newtonian jerky dynamics, i.e., f is also
allowed to depend on x9. ~ii! Under the conditions stated in
the theorem, not only chaotic solutions are excluded, but also
quasiperiodic and even period-doubling solutions cannot ex-
ist in the long-time limit.

APPENDIX D: GRÖBNER BASES TECHNIQUE

In this section, we present a computational method that
can be used to check the existence and to compute symboli-
cally the jerky dynamics of a given dynamical system ~3!.
This method is based on an algebraic elimination procedure
for nonlinear polynomial equations known as (comprehen-
sive) Gröbner bases technique. For details and a mathemati-
cally rigorous treatment of this technique we refer to the
literature, especially the two monographs @27,28#. Here we
only summarize some facts and results about Gröbner bases
that are needed to solve our problem.

To apply the algebraic theory of ~comprehensive! Gröb-
ner bases to the problem whether a dynamical system ~3!
possesses an equivalent jerky dynamics, we reformulate it in
an algebraic way. From Eqs. ~3! we obtain the seven equa-
tions

f 15 ẋ2V1~x ,y ,z !50, ~D1a!

f 25 ẏ2V2~x ,y ,z !50, ~D1b!

f 35 ż2V3~x ,y ,z !50, ~D1c!

f 45 ẍ2~ ẋ]xV11 ẏ]yV11 ż]zV1!50, ~D1d!

f 55 ÿ2~ ẋ]xV21 ẏ]yV21 ż]zV2!50, ~D1e!

f 65 z̈2~ ẋ]xV31 ẏ]yV31 ż]zV3!50, ~D1f!

f 75 x̂2~ ẋ2]x
2V11 ẏ2]y

2V11 ż2]z
2V11 ẍ]xV11 ÿ]yV1

1 z̈]zV1!50. ~D1g!

Considering x , ẋ , ẍ , x̂ ,y , ẏ , ÿ ,z , ż , z̈ as ten independent vari-
ables, the problem of finding a third-order differential equa-
tion for the variable x , P(x , ẋ , ẍ , x̂ )50, requires the elimi-
nation of the six variables y , ẏ , ÿ ,z , ż , z̈ from the seven Eqs.
~D1!. In general, P(x , ẋ , ẍ , x̂ )50 is not necessarily an ex-
plicit equation. Moreover, there is no general systematic
strategy to find P(x , ẋ , ẍ , x̂ )50 for arbitrary nonlinearities in
the vector field V(x). For polynomial nonlinearities, how-
ever, the Gröbner bases technique applies.

The basic idea behind this technique is as follows. For a
given finite set of polynomials F5$ f 1 , f 2 , . . . , fm% in sev-
eral variables x1 ,x2 , . . . ,xq find a set of polynomials
G5$g1 ,g2 , . . . ,gn% ~with nÞm in general!, the Gröbner
basis, that possess the same common zeros as F and are the
multivariate generalization of the greatest common divisor of
a finite set of polynomials in one variable. The explicit form
of the Gröbner basis polynomials depends on the choice of a
term order of the variables x1 ,x2 , . . . ,xq that one has to fix,
e.g., one can choose the lexicographical order x1ax2a•••

axq . Gröbner bases, however, are only well defined for
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polynomials with coefficients that are real numbers. For
polynomials containing real parameters, as is mostly the case
for dynamical systems, the normal Gröbner basis can possi-
bly lose its property of being Gröbner basis for certain values
of the parameters. This problem can be overcome by the
construction of a comprehensive Gröbner basis for F that
remains stable under any specialization of the parameters
@29#. In Ref. @29# an algorithm for the symbolic computation
of comprehensive Gröbner bases is given. Moreover, this
algorithm is implemented in the experimental computer al-
gebra system MAS ~Modula-2 Algebra System! by
Weispfenning and co-workers that is freely available by ftp
@30#.

The jerky dynamics for a given dynamical system can be
found with the help of the elimination theorem @27,28# for
~comprehensive! Gröbner bases. From this theorem one can
extract the following statement: If there is exactly one poly-
nomial P(x , ẋ , ẍ , x̂ ) in the ~comprehensive! Gröbner basis G
for the set of polynomials $ f 1 , f 2 , . . . , f 7% given in Eqs. ~D1!

that does not depend on the variables y , ẏ , ÿ ,z , ż , z̈ , then there
is a ~possibly implicit! third-order ODE given by
P(x , ẋ , ẍ , x̂ )50 that is equivalent to the dynamical system
~3! that determines ~D1!. If, moreover, P(x , ẋ , ẍ , x̂ ) is of the
form c x̂2Q(x , ẋ , ẍ) ~where cPR is a nonzero constant!,
then there exists a unique and polynomial jerky dynamics for
the dynamical system that leads to Eq. ~D1!. The jerky dy-
namics is given by x̂5J(x , ẋ , ẍ) with J(x , ẋ , ẍ)
5Q(x , ẋ , ẍ)/c . The constant c can contain parameters of the
original dynamical system. Since cÞ0 must hold, we obtain
a condition on these parameters that corresponds to Eq. ~10b!
or Eq. ~11!. The above statement only holds for the term
order x , ẋ , ẍ , x̂ay , ẏ , ÿ ,z , ż , z̈ of the independent variables
x , ẋ , ẍ , x̂ , y , ẏ , ÿ , z , ż , z̈ , where the order of the
right-hand variables and the left-hand variables among them-
selves is irrelevant.

Using MAS, one can symbolically compute the Gröbner
basis of the polynomials ~D1! and, therefore, determine the
jerky dynamics in x of the dynamical system that underlies
Eqs. ~D1! if it exists. The existence of a jerky dynamics in
the other variables y or z can be checked by taking into
account the ŷ or ẑ equation instead of the polynomial ~D1g!
and choosing appropriate term orders. This computational
approach is especially of advantage for dynamical systems
that do not belong to the class ~9!. According to our experi-
ence, the comprehensive Gröbner bases method is hard to
use to derive criteria for the existence of an equivalent jerky
dynamics for a general dynamical system with a polynomial
vector field that contains all linear and nonlinear combina-
tions up to some degree with arbitrary real parameters as
coefficients. Here, the computational effort is still too high,
because of the large number of parameters ~even for polyno-
mials of degree two!.
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