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Abstract. – We investigate the motion of an overdamped Brownian particle in a periodic
potential with weak thermal noise and a time-periodic unbiased (i.e. 〈F (t)〉 = 0) external
driving force F (t). By introducing appropriate “waiting-periods”, where F (t) vanishes, an
arbitrarily strong enhancement of diffusion in a symmetric potential is possible. In asymmetric
periodic potentials (ratchets) the net flux of particles can be directed in both directions, even
in the absence of thermal noise. For finite temperatures we observe and explain additional,
pure-noise–induced flux reversal phenomena.

Directed transport induced by unbiased driving forces in periodic structures with broken
spatial symmetry (ratchets) has been investigated in the context of photovoltaic and photore-
fractive effects already for several decades [1]. Independent of such precursors, considerable
interest in this scheme resurfaced with both theoretical [2] and experimental [3] recent activities
that relate to the operation of Brownian machinery and molecular motors. On the other hand,
the exploration of diffusive transport in completely symmetric, driven systems is still at its
beginning [4-7]. In this letter we cover both modes of transport within a common model
that allows a quite detailed analytical treatment. In addition, it should be possible to realize
this set-up experimentally. In a first part, we modify the setup from [5, 6] so as to achieve a
controlled selective enhancement of diffusion that in principle can be made arbitrarily strong. In
the second part of our paper we introduce a new variant of the so-called “rocking ratchet” [8,9]
for which the flux of particles can be directed in both directions even in the absence of thermal
fluctuations, and which exhibits additional pure-noise–induced flux reversals as well.

Control of diffusion. – We consider an overdamped Brownian particle with coordinate x(t)
whose dynamics is governed by the Langevin equation

ηẋ(t) = −V ′(x(t)) + F (t) +
√
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Fig. 1. – a) Sawtooth potential V (x) with period L and barrier height V0. The lengths of the piecewise
linear parts to the left and right of each potential minimum are denoted as Ll = aL and Lr = (1−a)L,
respectively. Depicted is the symmetric case Ll = Lr. b) Time-periodic, piecewise constant driving
force F (t) with model parameters F0 (“tilt”), tt (“tilting-time”), and tw (“waiting-period”).

Here, η is the viscous friction coefficient, V (x) is a periodic potential, F (t) is an external driving
force, and ξ(t) are thermal fluctuations (at temperature T ) modeled by unbiased δ-correlated
Gaussian noise. The quantity of central interest is the diffusion coefficient

D := lim
t→∞

{σ2(t)/2 t}, σ(t) :=
√
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for the diffusion coefficient (2) the temperature-independent (extremal) result

D = L2/8(tt + tw) . (5)

In the case that tt does not match any of the tn from (4) (but still tw > L2η/4V0), the initial
single peak is split after half a period t = tt + tw into two peaks with unequal weights. If tt
is sufficiently different from any tn and the thermal fluctuations are sufficiently weak, one of
those two peaks has negligible weight. Consequently, after a full period almost all particles
will return to x = 0. The diffusion coefficient (2) is therefore very small, in particular much
smaller than for free diffusion (3). The next question is how much tt may deviate from tn in
order that the resulting diffusion coefficient (2) is still comparable to the peak-value (5). A
straightforward calculation leads to the following estimate for the mismatch ∆tn = |tt − tn|
corresponding to half the peak-value (5):

∆tn ≈ (2kTηL2tn)1/2/(LF0 − 2V0) . (6)

We remark that if tt becomes very large, then even an initially sharply peaked distribution of
particles will spread out over several periods L during such a long “tilting-time” tt under the
influence of the thermal fluctuations. The peak then gets split into more than two pieces with
appreciable weights and our above arguments have to be modified accordingly. To keep things
under control we exclude this case in the following. Because this condition is equivalent to
excluding that neighboring peaks of D merge, one arrives with (4), (6) in terms of this merging
condition at tt � L2η/8kT (1 + 2V0/LF0)2.

Summing up, under the assumptions that F0 > 2V0/L, tw > L2η/4V0, kT � V0, and
tt � L2η/8kT (1+2V0/LF0)2 the appearance of peaks in the diffusion coefficient (3) is predicted
when tt matches tn from (4). The height of the peaks is given by (5) and their width by 2∆tn
from (6). Outside those peak regions, a D-value much smaller than Dfree from (3) is predicted.
Note that such a multi-peak structure of D is not only expected upon variation of tt but also
by keeping tt fixed and varying any other parameter entering tn from (4), as for instance the
friction coefficient η.

By means of the dimensionless quantities

F̃0 := F0L/V0 , t̃t := ttV0/ηL
2 , t̃w := twV0/ηL

2 (7)

and upon noting the condition that F̃0 > 2, t̃w > 1/4, kT � V0, and t̃t � V0/8kT (1+ 2/F̃0)2,
the position of the peaks (4) can be rewritten as

t̃n := tnV0/ηL
2 = n/(2F̃0 − 4) + (n− 1)/(2F̃0 + 4) (8)

and with (3), (5) the corresponding peak-values of D take the form

D/Dfree = V0/8kT (t̃t + t̃w) . (9)

Finally, the scaled approximate width ∆̃n := 2∆tnV0/ηL
2 of the n-th peak can be read off

from (6) as

∆̃n ≈ (8t̃nkT/V0)1/2/(F̃0 − 2) . (10)

These predictions (8)-(10) for the diffusion coefficient D as a function of the scaled “tilting-
time” t̃t agree very well with the numerical simulations depicted in fig. 2a. Especially, with
increasing n the peaks become approximately equidistant, their height decreases like 1/n, and
their width increases like

√
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Fig. 2. – a) Diffusion coefficient (2) in units of Dfree from (3) vs. scaled “tilting-time” t̃t (7) from
numerical simulations of the stochastic dynamics (1). The wiggles reflect the statistical uncertainty
due to the finite though extensive number of realizations. The relevant dimensionless parameters
(cf. (7)) are kT/V0 = 0.01, t̃w = 0.375, and F̃0 = 3. The theoretical predictions for the location and
height of the peaks (8), (9) are indicated by stars, and their approximate widths at half-height (10)
by arrows. b) Diffusion coefficient vs. friction coefficient from simulations of (1) with kT/V0 = 0.005

and F̃0 = 22. The (unscaled) times tt and tw = 13 tt are both kept at fixed values and also define η0

via η0 = (2LF0 − 4V0)/L2tt. The scaled times (7) are thus varying as t̃t = t̃w = η0/η. Theoretical
predictions are indicated analogous to a). Note that the absolute heights (i.e. not in units of Dfree)
are the same for all peaks.

F (t) ≡ −F0, is larger than Dfree! A more detailed study of this remarkable behavior will be
the subject of a forthcoming paper.

Of particular interest is the dependence of the diffusion coefficient D upon the friction
coefficient η, corresponding to the situation in which different types of particles are moving in
the same rocked periodic potential (1). Of course, particle interactions must still be negligible
and —for eqs. (4)-(6) to be applicable— the range of η-values has to respect the restrictions
tw > L2η/4V0 and tt � L2η/8kT (1 + 2V0/LF0)2. As fig. 2b demonstrates, the dynamics (1)
can indeed act as an extremely selective device for separating different types of particles by
controlled colossal enhancement of diffusion. Note that eqs. (3), (9) in combination with
t̃w > 1/4 and t̃t > 0 imply the inequality D/Dfree < V0/2kT , which goes over into an equality
for t̃w → 1/4 and F̃0 → ∞. In combination with (10) it follows that the peaks in the
diffusion coefficient D can in fact be made arbitrarily narrow and high by a proper choice of
parameters! One possibility is to decrease the temperature, another to increase V0 at fixed
T while at the same time keeping F0L/V0 large. Similarly as for the friction coefficient η,
particles can also be separated, e.g., according to their electrical charge since this implies
different values of the “coupling-parameters” V0 and F0. A practical realization of such a
particle separation device (1) along the lines of the beautiful previous experiments [3] should
be rather straightforward.

Our findings are robust against various modifications of the model in (1). For instance,
more realistic potentials V (x) and driving forces F (t) may be chosen, inertia effects may be
included, or more than one spatial dimension may be taken into account. The latter opens
interesting perspectives, e.g., to manipulate reaction-diffusion systems. We further note that
the symmetries of V (x) and F (t) simplify matters but are not absolutely necessary and that
also fluctuations ξ(t) other than of thermal origin will do the job. The indispensable ingredients
are strict periodicity in space and time [11] and sufficiently long “waiting-periods” tt with
F (t) ≡ 0 between subsequent “tilting-times” with non-vanishing F (t). The latter requirement
is the crucial difference between our model and the otherwise closely related studies [5, 6].
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Not only does our model admit a much better qualitative and quantitative understanding of
the basic physical mechanisms but —more importantly— it also seems that only weak-to-
moderately pronounced enhancement of the diffusion coefficient D can be obtained with a
sinusoidal driving F (t) as considered in [6].

Selective control of current in asymmetric potentials. – Our above reasoning can also be
applied to asymmetric sawtooth potentials with two different lengths of the potential slopes,
Ll = aL and Lr = (1− a)L (fig. 1a). As demonstrated in [8,9], with such a “rocking ratchet”,
a net particle flux can be produced by a deterministic periodic force of zero average. In
the deterministic case (T = 0) the flux becomes a very complicated function of the model
parameters, but for a given potential V (x) and a sinusoidal driving force F (t) it exhibits strictly
the same sign [8]. While this deterministic behavior is now well understood, the numerically
observed appearance of so-called flux reversals in the presence of thermal noise [8] has up
to this date never been satisfactorily explained. Our model also shows a quite complicated
but different deterministic behavior; especially deterministic flux reversals are now possible
(cf. fig. 3a). Additionally, pure-noise–induced reversals are observed as well.

For an asymmetric sawtooth potential the deterministic traveling times tn,r from a potential
minimum to the n-th neighboring maximum to the right in the presence of a constant tilt
F (t) ≡ F0 are different from the corresponding traveling times tn,l to the left when F (t) ≡ −F0.
The results in scaled units (cf. (8)) read:

t̃n,r =
n(1− a)2
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Fig. 3. – a) Scaled traveling times (11) to the right (solid) and left (dashed) vs. tilt F̃0 for n = 1, 2, 3

and a = 0.2. In the (t̃t-F̃0) parameter plane these curves separate areas with different net particle flux
for the deterministic dynamics (1) with T = 0. White areas denote regimes of zero flux, shaded areas
correspond to positive valued flux and the black regions to negative flux values given in multiples of
the “unit flux” L/2(t̃t + t̃w). Additional shaded and black areas associated with n = 4, 5, . . . in the

right upper part of the plot have been omitted. The dotted lines F̃0 = 1/(1 − a) and F̃0 = 1/a refer
to the asymptotics of the solid and dashed curves for large t̃t, respectively. The arrow marks the
intersection of t̃1,r and t̃1,l at F̃0 = 1/a(1−a) = 6.25. b) Current 〈ẋ〉 in units of L/(t1,r + tw) vs. scaled

“tilting-time” t̃t for a = 0.2 and F̃0 = 5.2 (solid and dashed lines). The solid line shows results from
simulations of the stochastic dynamics (1) with kT/V0 = 0.1 and the corresponding dashed line depicts
the analytical solution for T = 0 as discussed below eq. (11). A pure-noise–induced flux reversal is
observed for 0 < t̃t < a(1 − a) = 0.16. The dotted line exemplifies a multiple deterministic current

reversal for F̃0 = 6.5.

if temperature fluctuations are included, the particles may also move to the left (cf. fig. 3b).
This effect arises from the fact that the left slope is shorter than the right one. As long as
t̃t < a(1 − a), particles cannot deterministically cross any of the maxima of V (x) but while
F (t) ≡ −F0 they can get closer to the left maximum than they get to the right maximum while
F (t) ≡ F0. Because the thermal broadening of the particle distribution during such excursions
is equal in both cases, more particles will thermally cross the left than the right maximum of
the potential, yielding a pure-noise–induced net flux to the left.

Our explanation for the noise-induced flux reversal should hold also for models without tw;
i.e. for high driving frequencies, such that particles do not move far away from the minima, and
with sufficiently large driving forces such that the particles can thermally cross the maximum
to the side of the steep, but short slope easier. As in these models no flux to the left occurs
deterministically, this noise-induced flux reversal constitutes a general phenomenon (cf. [8]).

Conclusion. – The key ingredient of our model (1) turned out to be the introduction of
“waiting time-intervals”, in order to concentrate the particles near the potential minima after
each half-period of the driving F (t). This opens not only a simple way to understand various
features of such a rocked periodic potential but also enables one to control selectively diffusive
as well as directed transport in an extremely efficient way. Both for the diffusive and the
directed transport, the underlying physical mechanism is rather simple. Symmetric periodic
potentials, which without additional force F (t) exponentially suppress thermal diffusion [10],
can be used to greatly enhance the diffusion over its free value by an appropriate choice of
parameters. Remarkably, the peak-diffusion values (6) do not depend on temperature but
solely on parameters of the deterministic forces.

In asymmetric potentials the flux of particles can be directed deterministically either to
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the left or to the right. The addition of noise can induce a current reversal that is absent
otherwise. Our asymmetric model can again be exploited for particle selection in various
ways. By properly adjusting parameters, one type of objects may be forced to stay localized
while the other ones moves. Likewise, both types may move in opposite directions.

The unraveled paradigmatic features of giant diffusion enhancement, and related, the se-
lective control of sign and magnitude of rocking-induced current of this ratchet class, calls
for intriguing applications in physics, chemistry and biomedical sciences, e.g. to speed up
corresponding sluggish diffusion-controlled transport schemes.
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