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Decoherent Dynamics of a Two-Level System Coupled to a Sea of Spins
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The dynamics of a two-level system which is coupled to an environmental sea of infinitely many
spin-1y2 particles is investigated by use of the resolvent operator approach. Only at zero temperature
does this spin-spin-bath model exhibit identical behavior as the more familiar spin-boson model. It is
found that increasing temperature favors coherent dynamics. At high temperatures, the spin-spin-bath
model for an Ohmic spectral density sustains a coherent dynamics if the dissipation coefficient a is
sufficiently small, i.e., a , 1y2; while the decoherence exhibits pure exponential decay if a . 1y2.
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In order to explore macroscopic quantum phenomena
the influence of dissipation on quantum coherence has
been extensively investigated over the past eighteen years.
These efforts culminated in the systematic study of the
spin-boson model [1–3]. The spin-boson system has wit-
nessed many applications in physics and chemistry [1–7].
To take into account the effect of dissipation in a micro-
scopic model a central task comprises the formulation
of the environment. For weak couplings, Caldeira and
Leggett [8] suggested that a bosonic heat bath consisting
of an infinite number of harmonic oscillators constitutes a
universal realization for any environment that occurs
generically in the real physical world. In fact, when
the couplings between the system and the heat bath are
sufficiently weak, interactions between the excitations of
the heat bath are negligibly small. Consequently, every
excitation can be regarded as a quantum transition taking
place in an individual two-level (sub)system. Based on
such a reasoning, one may put forward the hypothesis that
a spin bath composed of an infinite number of two-level
systems may equally well provide a physically realistic
environment [9]. Of course, such a spin-bath modeling
is not merely of academic interest. Realistic physical
situations are (i) a spin that interacts with the surrounding,
effectively independent spin modes [10]; (ii) the magnetic
relaxation of molecular crystals of Mn12 and Fe8 [11]
or coupled nanomagnets [12]. Moreover, this model
is relevant for decoherence studies of stylized quantum
measurement setups [13,14], and predominantly also for
physical quantum computers [15] for which the ubiquitous
phenomenon of spin decoherence within quantum infor-
mation processors operating in terms of coupled two-level
units (qubits) is limiting the performance [16,17].

A prominent question is whether (or to what extent)
the two types of reservoirs exert identical effects on
quantum coherence. In this Letter we shall answer this
challenge by studying the dynamics of a two-level system,
a spin or a qubit, immersed in a thermal sea of two-
level systems composed of independent modes of weakly
0031-9007y98y81(26)y5710(4)$15.00
interacting spins or qubits. The model Hamiltonian H ;
Hs 1 Hb 1 Hint reads [18]
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where Hs is the Hamiltonian of the central two-level sys-
tem (written in the basis of localized states), Hb consti-
tutes the spin bath, while Hint denotes the couplings. The
zero-temperature thermostatics of this Hamiltonian for the
idealized case that the spectral density is Einstein-like,
i.e., vk ­ vyN and Ck ­ lyN for all k sk ­ 1, 2, ..., Nd,
was studied by Mermin [18]. Within this mean-field ver-
sion he was able to explain the physics of a phase tran-
sition (at T ­ 0) in quantum mechanics. Here, we shall
reveal the characteristic features of the dynamics of the
generic spin-spin-bath model. In order to compare the
finding with the known results for the spin-boson model,
we assume an Ohmic dissipation mechanism, i.e., Jsvd ;
p

P
k C2

kdsv 2 vkd ­ 2pave2vyvc , where a is the dis-
sipation coefficient and vc denotes the cutoff frequency
vcyD0 ¿ 1.
Use of a transformation.—Suppose that the system

evolves from a localized initial state while the spin
bath is initially at thermal equilibrium. This uncou-
pled initial density matrix is r0 ­ rs ≠ rb , where
rs ­ s1 1 szdy2 and rb ­

Q
k ≠ hexps2bh̄vks

z
ky2dy

Trkfexps2bh̄vks
z
ky2dgj. A diagnostic quantity related to

quantum coherence is the probability difference between
the two localized states, i.e., Pstd ­ Trfrstdszg. We ap-
ply to the Hamiltonian (1) a transformation U ­

Q
k Uk ,
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Note that each individual transformation acts on the com-
posite Hilbert space of the central two-level system and the
kth spin of the bath. The transformed Hamiltonian, which
is feasibly diagonalized in the central spin manifold [19],
© 1998 The American Physical Society
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This transformation is similar to the polaron transforma-
tion frequently used in the spin-boson model [20]; it allows
us to diagonalize H̄ if D0 ­ 0. Upon comparing Eqs. (1)
and (2) we find–—as the two-level system becomes
dressed by the spin bath—that the couplings between
them are now converted into interactions within each
two-level system of the bath. Moreover, the initial
density matrix changes to r̄0 ; Ur0U

21 ­ rs ≠ r̄b ,
with r̄b ­

Q
k ≠ hf1 2 tanhsbh̄vky2dsx

k gy2j; thus, the
transformed spin bath remains formally no longer at initial
equilibrium.

Given the Hamiltonian H̄, it is convenient to use the
resolvent operator approach to elucidate the behavior of the
probability difference Pstd. Solving formally the Liouville
equation, we obtain Pstd ­ TrfszQstdr̄s0dg, where the
superoperator Qstd ; expsiLtd is the propagator related to
the Liouvillian L, being defined by LA ­ fH̄, Agyh̄ for any
operator A. Let us denote the Laplace transform of Qstd by
Q̂szd, i.e., Q̂szd ­ L hQstdj. The thermodynamic average
of Q̂szd with respect to the nonequilibrium bath r̄b reads
kQ̂szdlb ­ fz 2 kM̂cszdlbg21, where kMcszdlb is termed
the relaxation (self-energy) matrix [21,22]. Resorting to
the perturbation expansion method, we obtain
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b

, (3)

where G ­ 1ysz 2 iLbd and Lb , Lint are the Liouvillians
corresponding to H̄b and H̄int, respectively. Note that Li-
ouvillians act on the linear operators (of the Hilbert space)
which themselves form the four-dimensional Liouville
space. Thus, the superoperators kQ̂szdlb and kM̂cszdlb can
be represented by 4 3 4 matrices. Let j "l and j #l denote
the two localized states of the two-level system. The four
independent operators jml knj ; jmnd (m, n ­ " or #) are
used as the basis of the Liouville space. One can show
that P̂szd ­ L hPstdj is only related to two elements of
kQ̂szdlb , i.e., P̂szd ­ s"" jkQ̂szdlbj ""d 2 s## jkQ̂szdlbj ""d.
Second-order perturbation theory.—In applying the

second-order perturbation theory in Lint the self-energy
matrix becomes

kM̂cszdlb ­ zfikLintGlb 2 ksLintGd2lb 1 kLintGl2
bg .

(4)
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terms on the right-hand side (rhs) in Eq. (4), respectively.
For instance, the first-order term can be cast as
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where jml and em are the mth eigenvectors and eigenen-
ergies of H̄b and the tilde represents the interaction
representation, i.e., r̃bstd ­ eiH̄b ty h̄r̄be2iH̄b ty h̄. Defining
gszd ­ izD0L hAstdjy2, where Astd ­ Trf

Q
k s

x
k r̃bstdg,

we readily obtain M̂c
1 szd ­ 2gszd s1 2 sxd ≠ sx . Next

we invoke the second-order perturbation approximation
with respect to the coupling constants Ckyvk . This has
been verified for a reasonable scaling rule Ckyvk ,
1y

p
N , where N is the number of bath spins (cf. [23]).

We find for the Ohmic dissipation Astd ­ qsbd s1 1
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where H is the Struve function and N is the Bessel
function of the second kind [24]. Similarly, we find the
correlation part of the second-order self-energy matrix
contribution M̂c

2,cszd ­ 2fszd s1 2 szd ≠ 1, where
fszd ­ zD

2
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dissipation we obtain Fsu, td ; A1sud exphifBsud 2

Bstd 1 Bst 2 udgj, where the amplitude A1sud ­
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(6)
Note that the amplitude A1sud is independent of tem-
perature. The influence of temperature is manifested
through the three phase terms. At zero temperature,
i.e., b ! `, we find Bstd ­ 2a tan21svctd. In ad-
dressing the dynamics in a meaningful domain, i.e.,
t ¿ v21

c or tan21svctd ­ py2, one gets Fsu, td ­
eipy2A1sud exphifBsud 1 Bst 2 udgj 1 c.c. By virtue
of the convolution theorem, we obtain fszd ­
zD

2
0eipy2L hA1std expfiBstdgjL hexpfiBstdgj 1 c.c. At

a very high temperature, i.e., b ! 0, Bssd vanishes.
Thus one gets fszd ­ L hA1stdj. In the following we will
focus on the dynamics at zero and infinite temperatures.
Recognizing that Mc

2,uszd ­ 2fMc
1 szdg2yz, we know all

three contributions to the self-energy matrix kMc
2 szdlb .

The behavior of Pstd for times much larger than v21
c

is determined by the leading order term of P̂szd for
jzv21

c j ø 1 and it suffices to examine the asymptotic
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properties of kMc
2 szdlb or functions gszd and fszd as z !

0. By virtue of the known features of the Struve and
Bessel functions, one can show that, for z ! 0, gszd ,
z2a if a , 1y2, and gszd , z for a . 1y2 [cf. Eq. (5)].
At zero temperature, one finds that, for a , 1, fszd ­
D

2s12ad
eff z2a21 1 OfzsD0yvcd2g, where

Deff ­ fcossapdGs1 2 2adg1y2s12adsD0yvcday12aD0

coincides precisely with the effective tunneling frequency
defined in the spin-boson model [1]. If a . 1, fszd is
linear in z. In the opposite limit of high temperatures we
find that fszd ­ 22iD0gszdyzqsbd. Thus, for a , 1y2
we obtain fszd ­ D̄

2s12ad
eff z2a21 1 OsD2

0yvcd, where

D̄eff ­

∑
Gs1 2 adGs1y2 2 ad

p
p

∏1y2s12ad

3 sD0y2vcday12aD0

is the effective (high temperature) tunneling fre-
quency. In contrast, for a . 1y2, one finds fszd ­
g 1 Osz2a21D

2
0yv2a

c d, where g ­
p

p D
2
0Gs 1

2 1 ady
fvcs2a 2 1dGsadg is the corresponding decay rate. We
should stress that these formulas are valid for the dissi-
pation coefficient a being not close to 1y2. Of course,
a more accurate asymptotic analysis is possible for all
values of a.
Results for the quantum coherence dynamics.—Let us

focus on the zero-temperature behavior of the quantum
coherence function Pstd. Comparing the three contribu-
tions to the self-energy [recall that M̂c

2,uszd , g2szdyz] we
find that M̂c

2,cszd dominantly rules the expression for the
self-energy if a , 1. Upon replacing kMcszdlb simply
by M̂c

2,cszd in the averaged Liouvillian propagator
yields kQ̂szdlb ­ fz 2 M̂c

2,cszdlbg21, we obtain P̂szd ­
fz 1 fszdg21. This is exactly the result of the spin-boson
model within the noninteracting blip approximation
(NIBA), being a valid approximation in the case consid-
ered herein [1–3]. The prominent feature of Pstd is a
crossover from coherent (i.e., oscillatory) exponentially
damped decay to pure incoherent decay at a ­ 1y2;
see Refs. [1,2] for details). When a . 1, all of the
leading terms of the three self-energy contributions
are linear in z, as z ! 0. In this case, we obtain
P̂szd ­ z21f1 1 OssssD0yvcd2dddg. Put differently, for
a . 1, Pstd ­ 1, i.e., localization takes place [5]. Thus,
these findings confirm that the spin-boson model and the
spin-spin-bath model exhibit the same physics at zero
temperature.

At high temperatures b ! 0, the correlation term
M̂c

2,cszd always dominates the self-energy for small z,
which leads to P̂szd ­ fz 1 fszdg21. From the foregoing
discussion about the property of fszd, one thus expects
similar behavior from Pstd. Note that P̂szd has a branch
point at z ­ 0. The complex z plane is cut along the
negative real axis. By calculating the inverse Laplace
transform it is clear that Pstd contains two parts, Pcohstd
5712
and Pincstd, for a , 1y2. The coherent contribution
Pcohstd emerges from the conjugate pair of simple poles
z0 and zp

0 in the principal sheet, and the incoherent
contribution Pincstd results from the cut. Performing
the required manipulations gives us z0 ­ G0 1 iV0,
where G0 ­ D̄eff cosfs1 2 2adpys2 2 2adg and V0 ­
D̄eff sinfs1 2 2adpys2 2 2adg. After some algebra we
arrive at Pcohstd ­ cossV0td exps2G0tdys1 2 ad and

Pincstd ­ 2
sins2apd

p

Z `

0
dx

3
x122a exps2xyd

x222af1 1 2 coss2apd 1 1g
,

where y ­ D̄efft. Pcohstd exhibits damped oscillations
while Pincstd obeys a power law. Therefore, if a , 1y2,
Pstd manifests similar characteristics, both at zero and in-
finite temperatures. The only difference is a change of the
effective tunneling frequency. By direct comparison we
know that the ratio of the two effective tunneling frequen-
cies Rsad ­ D̄effyDeff fRs0d ­ 1g is an increasing func-
tion of a: For instance, Rs0.1d ­ 1.05. If a becomes
larger than 1y2, however, a qualitatively different behav-
ior, is expected. In fact, we find that Pstd ­ exps2gtd,
where g ­

p
p D

2
0Gs 1

2 1 adyfvcs2a 2 1dGsadg, i.e., an
exponential decay. The decay rate g decreases as a in-
creases. It is interesting to note that, at a ­ 1, the decay
rate g ­ pD

2
0y2vc is identical to that of the spin-boson

model for a ­ 1y2 at zero temperature. The dynamics of
Pstd is subtle in a critical regime at about a ­ 1y2 and
defies (in clear contrast to the spin-boson case) an exact
solution. The main feature is, of course, that a crossover
from coherent relaxation to exponential decay occurs [25].
At finite temperatures, we find P̂szd ­ fz 1 fszdg21,

where

fszd ­ zD2
0L

(Z t

0
du

eifBsud2Bstd1Bst2udg

s1 1 v2
cu2da

)
1 c.c.

Here the phase Bstd is proportional to the dissipation coef-
ficient and to some degree its value reflects quantum dis-
sipation. Since Bstd is a monotonic increasing function of
b, decoherence is partially suppressed by increasing tem-
perature. Therefore, temperature plays, though weakly,
a positive role in maintaining coherent dynamics. This
means that the spin-spin-bath model prefers coherent dy-
namics in the whole range of temperatures if the dissi-
pation coefficient a is sufficiently small, i.e., a , 1y2.
To get an idea of the temperature dependence, we turn
to the expression of the phase Bstd [Eq. (6)]. Taking the
first term sn ­ 0d in the series on the rhs leads to Bssd ­
2ahtan21svcsd 2 tan21fvcsys1 1 vcbh̄dgj. When the
temperature is sufficiently low, say, b ¿ tyh̄, to first or-
der in 1yb, fszd does not depend on b for vct ¿ 1. A
similar behavior is also observed for very high tempera-
tures. Therefore, temperature only weakly affects the dy-
namics at low and high temperatures. We suspect that this
is also true at any finite temperatures.
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In summary, we have investigated the properties of the
quantum coherence dynamics in a two-level system that
are coupled to a sea of thermally prepared spin-1y2 parti-
cles. Using the resolvent operator method we have shown
that the spin-spin-bath model exhibits at nonzero tempera-
tures a distinctly different physics as compared to
spin-boson model. At zero temperature, however, the
dissipative dynamics of the two models is identical. In
particular, we could assess that for the spin-spin-bath
the decoherence measure Pstd is effectively temperature
independent at low and high temperatures. For weak cou-
plings sa , 1y2d, quantum coherence, i.e., the oscillatory
decay of coherence, sustains up to infinite temperature.
For strong couplings sa . 1y2d, however, the system
obeys an exponential decay law at high temperatures, and
its decay rate becomes smaller as the coupling parameter
a becomes larger. The most interesting effect is that
temperature helps the system suppress decoherence. The
difference between the finite temperature behavior of
this spin-spin-bath model and the spin-boson model (or,
equivalently, also the spin-Fermion-bath model with its
infinitely many excitation energies [3,26]) can be traced
back to the severe restriction of the thermal induced
excitation possibilities of the bath degrees of freedom
(only a single level in each individual two-level system
composing the spin bath); i.e., the mechanism of thermal
excitation of many levels of a single bath degree of
freedom that characterizes the crossover behavior from
quantum coherent to quantum incoherent tunneling at
weak coupling a , 1y2 in the spin-boson model is
simply not at work in this spin-spin-bath case. Clearly,
our findings may have an impact on studies involving the
decoherence properties in nanomagnets and, as well, the
(spin) decoherence-limited efficiency of interacting qubits
in realistic quantum computing schemes. In particular,
the result that temperature favors the coherent dynamics
is good news for the quantum computing efforts.
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