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Tunneling Center as a Source of Voltage Rectification in Josephson Junctions
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A novel mechanism of fluctuation-induced voltage rectification in a Josephson junction is analyzed.
A point contact with a defect tunneling incoherently between two states is proposed as a source
of nonthermal fluctuations which produce asymmetric dichotomic noise. The dc current-voltage
characteristics are calculated, and several transport regimes are identified according to the frequency,
amplitude, and asymmetry of the noise. The limiting cases of fast and slow fluctuations are investigated
analytically. The loaded dc curves exhibit voltage rectification (nonzero voltage at zero current bias)
and pronounced singularities in the differential resistance. The system can be used to measure selected
characteristics of the tunneling dynamics. [S0031-9007(97)05019-9]

PACS numbers: 74.40.+k, 74.50.+r, 85.25.Dq
The effect of thermal noise on the current-voltage (I-V )
characteristics of Josephson junctions for a long time has
been the object of considerable research activity. A great
deal of the theoretical work performed in this context has
been based on the capacitively and resistively shunted
junction (CRSJ) model, in which the Josephson junction
is viewed as a superconducting link of critical current Ic

placed in parallel with an Ohmic resistance R and a capaci-
tance C [1]. The parallel capacitance C can be neglected
when s2eyh̄dIcR2C ø 1 (overdamped limit). Within this
approximation, the authors in [2] found that the main
effect of thermal noise is that of smoothing the cusplike
features in the I-V curves and bending them towards the
linear behavior of an Ohmic resistor. More recently, there
has been a growing interest in the study of directed trans-
port induced by nonequilibrium fluctuations in spatially
periodic structures without reflection symmetry (ratchets)
[3,4]. It has been demonstrated that the phase across an
asymmetric dc superconducting quantum interference de-
vice (SQUID) threaded by a magnetic flux is subject to an
effective ratchet potential [5], and in the presence of ac cur-
rent sources this feature has been shown to yield remark-
able transport properties such as displaced Shapiro steps
and, in particular, the existence of a nonzero dc voltage in
the presence of a zero dc current.

Privileged particle motion in one direction can also
be induced in systems with symmetric periodic (i.e., not
ratchetlike) potentials but subject to asymmetric two-state
noise of zero average [6]. Such dynamical systems have
received theoretical attention in the recent past [7–9].
However, these prior studies have been restricted to the
case of zero bias force, and no consideration has been
given to specific situations that might be of interest for
applications in Josephson devices. Another limitation
of the existing literature is that only diffusive transport
regimes have been considered in which the particle slides
(experiences no barriers) for both values of the dichotomic
0031-9007y98y80(4)y829(4)$15.00
force. In this Letter, we aim to fill these gaps and study
the full I-V characteristics of a Josephson junction subject
to an external current which fluctuates asymmetrically
between two possible values. Most importantly, we also
propose a specific realization of this device, consisting of
coupling a Josephson junction to a point contact whose
resistance fluctuates randomly due to the presence of an
active asymmetric tunneling center such as observed in
[10]. Unlike in the prominent case of thermal fluctuations
[2], the presence of dichotomic noise does not smooth the
current-voltage characteristics. On the contrary, it gives
rise to a nondifferential structure caused by the emergence
of novel transport regimes.

We wish to analyze the dynamic behavior of the
circuit schematically depicted in Fig. 1. All its elements
are conventional except for a resistance that fluctuates
between two values ra and rb with mean waiting times
ta and tb , respectively. This can be achieved by inserting
into the circuit a point contact whose conductance is
controlled by an asymmetric two-level system tunneling
incoherently between the two states with rates 1yta

and 1ytb [10,11]. Accordingly, the fluctuations in the
point contact resistance can be modeled as a stationary
Markovian dichotomic process (telegraphic noise).

In the overdamped regime, the dynamics of the circuit
is governed by the stochastic equations for current Istd
and the Josephson phase wstd, i.e.,

Istd ­ Ilstd 1 Ir std ­ Ic sinswd 1
h̄

2eR
Ùw 2 Jstd , (1)

h̄
2e

Ùw ­ Vl 1 frstd 1 Rlg Ilstd ­ 2Vr 1 RrIrstd , (2)

where rstd [ hra, rbj is telegraphic noise and Jstd de-
scribes thermal fluctuations. If R ø Rl , Rr , (1) and (2)
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FIG. 1. Plot of the circuit proposed to test the influence of
random telegraphic noise on a Josephson junction. The novel
element is a normal point contact whose resistance randomly
takes values tisi ­ 1, bd, with mean waiting times ti , due to
the presence of a near defect tunneling incoherently between
two sites.

lead to the equation

I0 1 Lstd 1 Jstd ­
h̄

2eR
Ùw 1 Ic sinswd , (3)

I0 ;
Vr

Rr
2

Vl

ta 1 tb

µ
ta

Rl 1 ra
1

tb

Rl 1 rb

∂
(4)

being an average load current. The variable Lstd [
h2Ia, Ibj behaves as dichotomic noise, with Ia,b ­
tb,aVlsta 1 tbd21fsRl 1 rad21 2 sRl 1 rbd21g, and has
a zero mean, i.e., kLstdl ­ 0. The combined effect
of the voltage sources Vr ,l and large resistances Rr ,l

shown in Fig. 1 is that of providing a fluctuating current
source whose dc value I0 can be adjusted—for a given
telegraphic noise pattern—by varying Rr .

At this point we introduce dimensionless variables t ­
s2eRIcyh̄dt and xstd ­ fstd, and rewrite (3) as

F 1 jstd 1 lstd ­
dx
dt

1 sinsxd , (5)
where F ­ I0yIc. The rescaled Gaussian thermal noise
jstd ­ JstdyIc has zero average kjstdl ­ 0 and corre-
lation kjstdjs0dl ­ 2DT dstd, with DT ­ 2ekBTyh̄Ic.
The dimensionless dichotomic noise lstd ­ LstdyIc [
h2IayIc, IbyIcj ; h2a, bj is uncorrelated with jstd,
again has zero mean, and is exponentially correlated,
i.e., klstdls0dl ­ sQyt0d exps2jtjyt0d, where t

21
0 ­

t21
a 1 t

21
b [with ta,b ­ s2eRIcyh̄dta,b] is the inverse

correlation time and Q ­ abt0 is the noise intensity.
Hereafter, we take ra , rb , which implies a . 0, b . 0.

The dc voltage V0 is given by the Josephson relation
V0 ­ RIckdxydtl, where the brackets denote an average
over noise. We will focus mostly—but not exclusively—
on the effect of dichotomic noise. Thermal effects
are indeed negligible if DT ø 1. Since DT . 4.4 3

1025T sKdyIcsmAd, we expect that temperature effects can
be neglected over a wide region of parameters.

The process xstd defined in (5) is a non-Markovian
stochastic process. From the continuity equation for its
830
probability distribution Psx, td one obtains an expres-
sion for the probability current Jsx, td [6]. The station-
ary probability current J is obtained in the long time
limit t ! ` by imposing periodic boundary conditions
Psxd ­ Psx 1 2pd on the corresponding stationary dis-
tribution Psxd and normalizing it over the period 2p asR2p

0 Psxd dx ­ 1. For vanishing temperature, i.e., when
jstd is set to zero, the probability current J is determined
by the equation [see Eq. (11) in [7] ]

2fDsxdPsxdg0 1 fsxdPsxd ­ f1 1 t0f 0sxdgJ , (6)

where Dsxd ­ Qf1 2 fsxdyag f1 1 fsxdybg is the effec-
tive diffusion function and fsxd ­ F 2 sinsxd is a de-
terministic “force.” The stationary mean phase velocity
is given by kdxydtl ­ 2pJ, which leads to a dc volt-
age V0 ­ 2pRIcJ. Equation (6) is an ordinary differen-
tial equation that can be solved in closed analytical form.
Three cases must be distinguished according to the struc-
ture of the roots of Dsxd. In the first case, when Dsxd fi 0
for all x, the probability current J assumes the form [7]

J ­
1 2 eCs2pdR2p

0 dz D21sxde2Csxd
Rx12p

x dyf1 1 t0f 0s ydgeCsyd
,

(7)

where Csxd ­ 2
Rx

0 dy fs ydyDs yd is a nonequilibrium
potential. Equation (7) can in turn be applied to two
physically different situations: (i) When a . 1 1 F and
b . 1 2 F, then barriers are suppressed for the two
values of the dichotomic noise. Hence, both forward
and backward transitions are possible [this corresponds
to a diffusive regime with Dsxd . 0]. (ii) When F .

1 1 a or F , 21 2 b, then “particles” can move only
to the right or to the left, respectively fDsxd , 0g. The
second case occurs when both 1 2 fsxdya and 1 1

fsxdyb have real roots. Now, the probability current
J vanishes because the particle cannot overcome the
barriers posed by the effective potentials Vlsxd ­ 2sF 1

ldx 2 cossxd, with l ­ 2a, b; hence the voltage is zero
(cf. dashed curve for Q ­ 0.2 in Fig. 4 below). In the
third case, the roots of Dsxd come from only one of the
two brackets. If, for instance, 1 2 fsxdya has two real
roots in the period interval and 1 1 fsxdyb has none, then
only forward transitions take place. Let x1 be a root of
1 2 fsxdya with f 0sx1d , 0 [the potential V2asxd has a
local minimum at x1], and let x2 , x1 be the root in the
interval sx1 2 2p , x1d. From (6), we arrive at the novel
result

J21 ­
Z x1

x122p
dx D21sxde2Csxd

3
Z x2

x
df1 1 t0f 0s ydgeCs yd. (8)

Since a variation of F may drive the system to a different
transport regime, we expect some type of cusps in the
dc I-V curves. While these curves remain continuous,
the differential structure exhibits jumps. These sharp
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FIG. 2. dc V -I curves in the adiabatic limit, at temperatures
DT ; s2eyh̄IcdkBT ­ 0 (solid), 0.01 (dashed), and 0.1 (dash-
dotted). The linear resistor behavior sV0 ­ RI0d is shown for
comparison (dotted). Inset: enlarged plot for the case of zero
temperature (solid) and for a linear resistor (dotted). Here,
a ­ 1

p
2 and b ­

p
2.

transitions in the differential resistance are caused by
the appearance and disappearance of barriers in the
effective potentials Vlsxd, and they occur at values F ­
61 1 a, 61 2 b. This nondifferential structure can be
observed in Figs. 2–4, and all four cusps can be clearly
seen in the inset of Fig. 2. We note that for zero current
bias the voltage does not drop to zero. This effect
can be clearly seen in Figs. 2–4. We conclude that
a single Josephson junction subject to a current source
with asymmetric dichotomic noise can yield voltage
rectification.

Let us consider several limiting cases. In the adiabatic
limit st0 ! `d with intensity Q ­ abt0 and asymmetry
try ayb of the noise kept fixed (i.e., a ! 0, b ! 0),
the deterministic load behavior [i.e., jstd ­ lstd ­ 0] is
recovered. On the other hand, if t0 ! ` with a and b
fixed, we obtain

FIG. 3. dc V -I curves for t0 ; s2eRIcyh̄dt0 ­ 0.1, Q ;
abt0 ­ 1, and for several values of the asymmetry parameter:
IbyIa ­ 1 (solid), 2 (dashed), 32 (dotted), and 128 (dash-
dotted). The linear resistor dc curve V0 ­ RI0 (thin, short
dotted) is also shown. Inset: the corresponding dimensionless
differential resistances sdV0yRdI0d.
ø
dx
dt

¿
­

ta

ta 1 tb
ky2al 1

tb

ta 1 tb
kybl , (9)

where kyal ­ sgnsF 1 ad
p

sF 1 ad2 2 1, if jF 1

aj . 1 sa ­ 2a, bd, and zero otherwise. Clearly,
kyal is the steady-state average velocity of a particle
whose dynamics is governed by the equation of motion
dxydt ­ F 1 a 2 sinsxd. The structure which follows
from (9) can be observed in Fig. 2. The main physical
features of these dynamical systems are present already
in this simple, well-defined adiabatic limit: namely, rec-
tification and a discontinuous structure in the differential
resistance.

In the opposite limit of fast fluctuations st0 ! 0d with
fixed a and b, the noise has practically no time to act,
and the deterministic load curve kya­0l is recovered. An
alternative realization of the fast limit occurs when both
a, b ! `, and Q is fixed. Then, the dichotomic noise
tends to Gaussian white noise with the noise strength Q
playing the role of an effective dimensionless tempera-
ture. We can use Eq. (7) to obtain J0sQ, Fd ­ Qf1 2

efs2pdg f
R2p

0 dx e2fsxd
Rx12p

x dy efsydg21, where fsxd ­
Q21s1 2 Fx 2 cos xd. The semiclassical behavior of a
Josephson junction in the presence of thermal noise has
been studied in [2], where it was shown that the main
effect of temperature is that of bending the dc curves to-
ward the linear resistor limit, V0 ­ RI0. Inspection of
Fig. 3 reveals that, close to this fast limit, a high degree
of asymmetry is needed to obtain significant rectification.
The pronounced discontinuities in the differential resis-
tance can be explained in the same physical terms as given
above for the general case. An important point is that the
magnitude of the voltage at zero current bias depends non-
monotonically on the asymmetry IbyIa and the fluctuation
intensity Q, exhibiting a bell-shaped behavior. With fixed
asymmetry, there is an optimum value of the intensity (and

FIG. 4. dc V -I curves for t0 ; s2eRIcyh̄dt0 ­ 1, asymmetry
IbyIa ­ 10, and for several values of the dichotomic noise
intensity: Q ; abt0 ­ 0.2 (dashed), 1 (dotted), 3 (solid),
10 (dash-dotted), and 50 (dash–double-dotted). The thick
lines correspond to an Ohmic resistor sV0 ­ RIod and to
deterministic RSJ behavior sV0 ­ R

q
I2

0 2 I2
c d.
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vice versa) maximizing the voltage (see Figs. 4 and 3,
respectively).

Figure 4, with t0 ­ 1, depicts the behavior when
intense noise drives the system towards the Ohmic limit.
There are remarkable differences with Ref. [2], where the
crossover from zero to strong thermal noise was studied.
While equilibrium noise induces a smooth transition to
a linear I-V characteristic, asymmetric dichotomic noise
drives the system to the same limit but through a rich,
nondifferential intermediate structure.

The expression for J0sQ, Fd that has been derived in
the fast limit reappears in the adiabatic limit st0 ¿ 1d in
the presence of finite thermal noise with DT fi 0. The
leading effect of the dichotomic force in this limit is that
of weighting the two possible values of the voltage, so that

Jad ­
1

ta 1 tb
staJa 1 tbJbd , (10)

where Ja ­ J0sDT , F 2 ad and Jb ­ J0sDT , F 1 bd.
The maximum value of Jad at zero current bias is 1y2p ,
and it is achieved when a ­ 1 and b ! `. The effect of
temperature has been analyzed in Fig. 2. As expected, it
rounds off singularities while maintaining the rectification
of voltage. Higher temperatures drive the system towards
the Ohmic limit. Actually, for DT * 1 (not shown),
the junction already behaves essentially like an Ohmic
resistor.

The unit of inverse time is t21 ­ 2eRIcyh̄, so that
t21sMHzd , 3RsmVdIcs mAd. To work in the over-
damped limit at low effective temperatures and not very
high frequencies, sufficiently small shunt resistances are
needed. For example, if R , 1 mV and Ic , mA, the
maximum zero bias voltages obtained will be of the order
of 1 nV, which is experimentally accessible. Compared
with the voltage rectifier detailed in [5], the device pro-
posed here seems simpler to build, because no fine ad-
justment of several Josephson junctions is needed. The
magnitude of the rectified voltages in the two cases are
comparable. The device described here can be used to
test the tunneling process occurring at the point contact.
For instance, by measuring the positions of the four sharp
transitions in the differential resistance (which theoreti-
cally occur at F ­ 61 1 a and F ­ 61 2 b), one can
determine the values of a and b, and, in particular, the
asymmetry of the double well, taytb ­ bya. The value
of t0 can be determined with greatest accuracy when the
system is away from both the adiabatic and the fast lim-
its. The real times ta and tb can be obtained from the
knowledge of the critical voltage RIc of the junction. A
potential major advantage of this device is that it could be
used to test the properties of a fluctuating two-level sys-
tem whose dynamics is too fast to be resolved in real time.
In this context we note that t0 ! 0 should not necessar-
ily be identified with nonresolvable fast fluctuations of
rstd. Actually, by adjusting the junction relaxation time
h̄y2eRIc such a “fast dynamics” can be made to corre-
spond to a correlation time t0 , 1.
832
In summary, we have proposed a novel mechanism to
induce voltage rectification in a Josephson junction based
on the coupling to a quantum point with a fluctuating two-
level system in its vicinity (see Fig. 1). Such a device
provides a very adjustable system where the influence of
asymmetric nonequilibrium noise on biased I-V charac-
teristics can be experimentally studied. We have identi-
fied conditions for maximum voltage rectification. A rich
structure in the differential resistance is shown to appear
due to the existence of various transport regimes. This
structure is absent in systems subject to thermal noise
only. The characteristic jumplike structure of the differ-
ential resistance may lead to the devising of novel control
elements. The system analyzed could be used to measure
the dynamics of a tunneling center close to a point contact
in situations where observation of the conductance in real
time is impractical.
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