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Abstract. – Experimental results on amorphous ZrAlCu thin-film growth and the dynamics of
the surface morphology as predicted from a minimal nonlinear stochastic deposition equation
are analysed and compared. Key points of this study are: i) an estimation procedure for
coefficients entering into the growth equation and ii) a detailed analysis and interpretation of
the time evolution of the correlation length and the surface roughness. The results corroborate
the usefulness of the deposition equation as a tool for studying amorphous growth processes.

Introduction. – During the last decade the study of the kinetics of surface growth pro-
cesses has attracted considerable interest (cf. the reviews [1]). The dynamics of the surface
morphology, e.g. in amorphous thin-film growth is dominated by the interplay of roughen-
ing, smoothening, and pattern forming processes. On the microscopic level, these processes
are governed by the highly complex and only partly understood interaction of the depositing
particles with the already condensed surface atoms. Despite the complexity of the growth
processes on the atomic scale, experiments on the slightly coarser mesoscopic scale typically
reveal some sort of regularity of the surface morphology with some superimposed small-scale
stochastics [2,3]. This, in turn, indicates that the machinery of coarse-grained continuum mod-
els based on phenomenologically motivated stochastic growth equations [1] is a useful tool for
the understanding and interpretation of the growth dynamics. In particular, amorphous thin-
film growth represents an attractive testing ground for the validation of such phenomenological
models; this is mainly due to the spatially isotropic nature of the amorphous structure at this
scale and the lack of long-range ordering.

Our objective is a detailed comparison between a stochastic nonlinear evolution equation
for amorphous thin-film growth [4] and experimental results on the surface morphology of
ZrAlCu films prepared by physical vapor deposition that are analysed using scanning tunnel-
ing microscopy (STM). Using the aforementioned theoretical approach, we develop a method
to estimate the phenomenological parameters that is based on the evolution for short times.

(∗) Present address: I. Physikalisches Institut, Universität Göttingen - Bunsenstr. 9, D-37073 Göttingen,
Germany.
(∗∗) Present address: Research center caesar - Friedensplatz 16, D-53111 Bonn, Germany.

             



62                   

Fig. 1 – Sketch of a physical vapor deposition experiment at normal incidence for amorphous film
growth on a substrate.

We also investigate whether the finite apex angle of the cone-like STM tip used in the experi-
ment does affect the comparison between theory and experimental findings. In particular, we
demonstrate that the results for both the surface roughness w (i.e. the root-mean-square devi-
ation of the relative height fluctuations) and the correlation length Rc (i.e. the typical length
scale over which height fluctuations are correlated) of our full nonlinear growth equation yield
very good agreement with the presented experimental data, with only minor modifications due
to the finite apex angle. This clearly corroborates the usefulness of our modeling approach.

Experiments. – The glassy ZrAlCu films (composition Zr65Al7.5Cu27.5) are prepared in
ultra high vacuum by physical vapor deposition on oxidized Si wafers using a total deposition
rate of F = 0.79 nm/s (electron beam evaporation of the pure elements, each source inde-
pendently rate controlled). Due to the geometrical arrangements, the particle flux is almost
perpendicular to the substrate which is rotated during deposition (for a sketch of the exper-
iment setup cf. fig. 1). The surface profiles of the films (sample area (200 × 200)nm2) are
analysed in situ by scanning tunneling microscopy using a tungsten tip with an apex angle
of ca. 40◦ (for further details cf. ref. [2]). The film composition is verified by Auger electron
spectroscopy. Additionally performed X-ray diffraction and differential scanning calorimetry
(DSC) measurements ensure the amorphicity of the investigated films. From the STM data,
the correlation length Rc and the surface roughness w (for their definition, see below) are
determined for various layer thicknesses up to 480 nm. The experimental results correspond
to the diamond symbols depicted in figs. 2 and 3 below. At large layer thicknesses (≥ 100 nm)
each such symbol represents a measurement with a different sample.

Theoretical modeling. – To accomplish a theoretical description of the time evolution of
an initially flat surface H(�x, t), where H denotes the z-coordinate of the growing surface at
the position �x = (x, y) and time t (cf. also fig. 1), we take advantage of the well-established
phenomenological approach that is based on stochastic nonlinear partial differential equations
[1], i.e.

∂tH = G(H,∇H) + F + η. (1)

In eq. (1), G denotes a functional of the surface height and its local derivatives. The detailed
functional form of G depends crucially on the considered experimental setup and the kinetics of
the deposition process. F denotes the mean deposition rate and η(�x, t) is the related deposition
noise that determines the fluctuations of the deposition process around its mean F . These
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fluctuations are assumed to be Gaussian white,

〈η(�x, t)〉 = 0; 〈η(�x, t)η(�y, t′)〉 = 2Dδ2(�x − �y )δ(t − t′) , (2)

where the brackets denote ensemble averaging. It proves useful to introduce the height profile
h(�x, t) = H(�x, t) − Ft. If the deposition process has any excess velocity, there is a nonlinear
relation between the mean growth or layer thickness 〈H〉 and time, i.e. 〈H〉 (t) = Ft+ 〈h〉 (t)
with 〈h〉 (t) �= 0.

The simplest nonlinear amorphous thin-film growth equation of the functional form (1)
that incorporates i) the physical symmetries such as rotation and reflection invariance in the
plane perpendicular to the growth direction, cf. fig. 1, ii) no particle desorption, and iii) the
potentiality of local density variations in the amorphously grown material yields, in terms of
a low-order expansion of G in the gradients of the surface profile h(�x, t), the result

∂th = a1∇2h + a2∇4h + a3∇2(∇h)2 + a4(∇h)2 + a5 det

(
∂2

xh ∂y∂xh

∂x∂yh ∂2
yh

)
+ η , (3)

with ai(i = 1, . . . , 5) being scalar material-dependent coefficients. In eq. (3), the first and
the fifth term on the r.h.s. are directly related to the deflection of the initially perpendicular
incident particles due to the interatomic forces between the surface atoms and the incident
particles. For an indication of the relevance of this effect we refer to the recent experimental
study in [5]. The coefficients a1 and a5 are determined by the relations a1 = −Fb and
a5 = Fb2, where b is the difference between the typical range of the interatomic forces and the
equilibrium distance of the adatoms to the surface. Because b is small for the aforementioned
experimental setup (typically of the order 10−1 nm) the term proportional to a5 in eq. (3) can
safely be neglected. The second and the third term on the r.h.s. of eq. (3) are related to the
known microscopic mechanisms of i) the surface diffusion suggested by Mullins [6] and ii) the
equilibration of the inhomogeneous concentration of the diffusing particles on the surface,
as suggested in [7, 8]. Moreover, the coefficients a2 and a3 are negative. The coefficient a3

reads a3 = −Fl2/8, where l2 is the mean square of the diffusion length of the particles. This
characteristic dependence for amorphous growth is similar in nature to a term appearing for
crystalline growth [9]; it differs, however, due to the absence of an additional length scale, the
typical height of crystalline terraces. The fourth term on the r.h.s. of eq. (3) is of Kardar-
Parisi-Zhang (KPZ) form [10]. It is due to the potential dependence of the local density on the
surface slope∇h, i.e. [ρ(∇h)]−1 = ρ−1

0 [1+(a4/F )(∇h)2+O((∇h)4)], with a4 being necessarily
positive because of the additional volume increase caused by oblique particle incidence. Note
also that a finite a4 results in a finite excess velocity.

The experimentally detected correlation length Rc(t) and surface roughness w(t) are de-
termined by the height-height correlation function

C(r, t) =
〈

1
L2

∫
d2x

(
h(�x, t)− h

) (
h(�x + �r, t)− h

)〉∣∣∣∣
|�r|=r

, (4)

where h is the spatial average of the surface profile h = 1
L2

∫
d2yh(�y, t) and L2 the sample

area. Specifically, Rc(t) is given by the first maximum of C(r, t) occurring at nonzero r and the
square of the surface roughness results by taking the limit r = 0 in C(r, t), i.e. w2(t) = C(0, t).
To integrate numerically the growth equation, a forward-backward finite difference method on
a quadratic lattice combined with an Euler algorithm in time and periodic boundary conditions
on a quadratic area [0, L]2 have been invoked [11].
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Fig. 2 – Correlation length Rc and surface roughness w (dotted lines without consideration of the STM
tip), defined below eq. (4), vs. layer thickness 〈H〉, see below eq. (2), are calculated from the linear
growth equation (5) using the parameters given in eq. (7). In panel b we depict the influence of the
STM tip with an apex angle of 100◦ (solid line). The diamond symbols represent the corresponding
experimental results.

Linear model equation. – In order to make contact with the aforementioned experiment,
we first extrapolate the values of the parameters a1, a2, and D. The initial stages of the
deposition process (corresponding to layer thicknesses 〈H〉 ≤ 240 nm in the experiment),
which started from a flat substrate, are dominated by the temporal evolution of the linear
limit of eq. (3),

∂th = a1∇2h + a2∇4h + η. (5)

The growth of the Fourier modes of the surface profile is determined by ∂th̃(�k, t)=σ(k)h̃(�k, t)+
η̃(�k, t), where σ(k) = −a1k

2 + a2k
4 denotes the growth rate of the Fourier modes. There-

fore, the wave number kc belonging to the maximum of the growth coefficient σ(k) reads
kc =

√
a1/2a2. The correlation length Rc(t) of the surface profile h(�x, t) arising from the

linearized equation (5) follows initially a t1/4-law, whereas it saturates at later stages into
Rc(t) = 7.0156/kc = 7.0156

√
2a2/a1 when the critical mode with the wave number kc dom-

inates. Since a saturation of Rc(t) with increasing layer thickness is also observed in the
experiment for layer thicknesses larger than 200 nm (cf. the diamond symbols in fig. 2a), the
ratio a2/a1 can be roughly estimated. The surface roughness w(t) at later stages follows an
exp[σ(kc)t] = exp[−a2

1t/4a2]-behaviour when the critical mode dominates. By a comparison
with the experimentally observed increase of w(t) (cf. the diamond symbols in fig. 2b) during
the time interval when the layer thickness 〈H〉 is between 30 nm and 240 nm, the ratio a2

1/a2

can be estimated. From the ratios a2/a1 and a2
1/a2 the coefficients a1 and a2 can be deduced.

The height-height correlation function C(r, t) that arises from the linearized equation (5) is
determined by

C(r, t) =
D

(2π)2

∫
d2k exp[i�k · �r ] exp

[
2(−a1k

2 + a2k
4)t

] − 1
−a1k2 + a2k4

∣∣∣∣∣
|�r|=r

. (6)

From C(r, t) the surface roughness w(t) and the correlation length Rc(t) can be determined.
This makes it possible to determine more precisely the coefficients of eq. (5). The physical
dimensions of these coefficients are [a1] = l

2
/t, [a2] = l

4
/t, and [D] = h

2
l
2
/t, where l denotes
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Fig. 3 – Correlation length Rc and surface roughness w calculated from the nonlinear growth equation
(8) using the parameters a3 = −0.10 nm3/s and a4 = 0.055 nm/s with (solid lines) and without
(dotted lines) consideration of the STM tip (with an apex angle of 100◦). The parameters of the linear
parts of the equation, a1, a2, and D, are given in eq. (7). To demonstrate the physical relevance of
the nonlinear growth law ∝ ∇2(∇h)2, we depict for comparison the prediction that results by setting
a3 = 0 (dashed lines without consideration of the STM tip). The diamond symbols represent the
corresponding experimental results.

a length unit, t a time unit, and h a height unit, respectively. Therefore,
√

a2/a1 is a length
constant, |a2/a2

1| is a time constant, and
√

D/|a1| is a height constant. Changing
√

a2/a1 by
an arbitrary factor would change all lengths by the same factor. So we calculated w(t) and
Rc(t) by means of eq. (6) with the approximately determined coefficients a1 and a2 and an
arbitrary D. Then, we changed Rc, time t, and w by independent factors and

√
a2/a1, |a2/a2

1|,
and

√
D/|a1| by the same factors, respectively, until Rc(t) and w(t) were in accordance with

the experimental result. By means of
√

a2/a1, |a2/a2
1|, and

√
D/|a1| we evaluated a1, a2, and

D. The parameters that fit the experimental results best are found to read

a1 = −0.0826 nm2/s, a2 = −0.319 nm4/s, D = 0.0174nm 4/s. (7)

The dotted lines in fig. 2a and b depict the corresponding numerical simulations of eq. (5).
There is obviously good agreement with the experimental results for layer thicknesses 〈H〉 ≤
240 nm.

Next, we investigate possible effects caused by the STM tip. Although the detailed shape
of the STM tip is known only roughly, a reasonable model, which refers to the worst case
situation, consists of a combination of a taper shank with an apex angle of ca. 40◦ and a top
cone having a considerably wider apex angle of approximately α = 100◦. Only the latter part
is of relevance for the detection of the surface profile. The effect of the STM tip is that it
maps the height profile h(�x, t) from eq. (5) on the “scanned” height profile ĥ(�x, t). The solid
line in fig. 2b depicts the corresponding finding for this worst case of a STM tip with an apex
angle of 100◦. The major effect of the finite tip angle results in a slow down of the growth
of the surface roughness w(t). This is caused by the scanning procedure that cannot fully
resolve the grooves of the height profile h(�x, t). As can be deduced from fig. 2b, however, the
linear growth equation (5) (even including the tip angle) is not sufficient to describe the later
stages of amorphous thin-film growth.
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Nonlinear model equation. – We next investigate the physical relevance of the nonlinear
terms a3∇2(∇h)2 and a4(∇h)2 on the growth dynamics, i.e. we analyse the nonlinear growth
model

∂th = a1∇2h + a2∇4h + a3∇2(∇h)2 + a4(∇h)2 + η. (8)

The parameter choice that fits the experimental results best is found to read

a3 = −0.10 nm3/s and a4 = 0.055 nm/s, (9)

where the parameters given in eq. (7) were used. The corresponding results for the correlation
length Rc(t) and the surface roughness w(t) of eq. (8) are depicted in fig. 3 with (solid lines)
and without (dotted lines) the inclusion of the effect of the STM tip. We now obtain good
agreement with the experimental data also at larger layer thicknesses. Moreover, the finite
apex angle of the tip yields only a minor effect (up to the largest experimental layer thickness
≈ 480 nm), see the barely visible dotted line in fig. 3b. As a general consequence, the two
nonlinear terms result in a drastic slow down of the increase of the surface roughness w(t)
with time or layer thickness. The larger the absolute values of a3 and a4 are, the stronger
this slow down is. Nevertheless, the inclusion of both nonlinearities is necessary to obtain a
consistent agreement with the experimental data.

In particular, by setting a4 = 0 we need to decrease further a3 in order to fit reasonably well
the data. Nevertheless, the surface roughness w(t) is now either too large at large thickness
〈H〉 = 480 nm, or too small at 〈H〉 = 360 nm (not shown). The inclusion of the finite tip
geometry does not cure this finding. Omitting a3 we find an overshoot for the roughness
w(t) above 〈H〉 ≈ 240 nm. In addition, we note that the correlation length Rc(t) ceases to
exist above 〈H〉 ≈ 300 nm, because the first maximum of the height-height correlation C(r, t)
vanishes. These features are depicted by the dashed lines in fig. 3a and b. Figure 3b also shows
that the experimental data for w(t) are strongly scattered at largest layer thickness. Thus,
a precise estimation of the nonlinear coefficients is difficult. We estimate that the coefficient
a3 ranges at most between −0.13 nm3/s ≤ a3 ≤ −0.08 nm3/s and likewise 0.04nm /s ≤ a4 ≤
0.07 nm/s. Consistent with the fitting procedure in fig. 2a and b, we find that the crossover
from linear to nonlinear growth behaviour sets in at 〈H〉 ≈ 240 nm. An inclusion of the small
correction proportional to a5, see eq. (3), does not quantitatively impact our results: For the
largest layer thickness we find an improvement of maximal 1.0% for the roughness w(t) and
2.5% for the correlation length Rc(t).

Discussion. – The aforementioned extrapolation of the parameters a1, a2, a3, a4, and
D also allows for additional microscopic estimates. i) Since a1 = −Fb, the typical range b of
the interaction between the surface atoms and the particles to be deposited is about 0.1 nm,
i.e. it approximately equals the size of the radii (0.2 nm) of the surface atoms. ii) Since
a3 = −Fl2/8, the diffusion length l must be in the range of 1.0 nm. This substantiates that
the deposited particles experience a surface diffusion on a nanometer scale and do not just
stick at the places where they hit the surface. iii) If the particles arrive independently on the
surface, the deposition noise is related to the particle volume Ω and the mean deposition rate
F by 2D = FΩ, yielding (by use of eq. (7)) Ω = 0.04nm 3. This agrees within a factor of
two with the averaged particle volume of ZrAlCu. iv) The necessity of the inclusion of the
term proportional to a4 indicates that the local density of the growing film varies with the
surface slope: On an inclined surface area the local density is decreased by ρ(∇h) = ρ0/γ with
γ = 1 + (a4/F )(∇h)2, where a4/F is in the range of 0.07. Note that these predicted finite
density variations are physically compatible with the small diffusion length l of two to three
atom diameters. At largest layer thickness (≈ 480 nm) this local density reduction (averaged
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over the surface) possesses a mean γ = 1.021 and a standard deviation
(
(γ − γ)2

)1/2

= 0.017.
The maximum of γ on the same surface (at L = 200 nm) is typically of the order of 1.12. At
the same time, γ averaged over the whole film equals 〈H〉 /(Ft) = 1.01.

Conclusions. – Starting from experimental data for amorphous ZrAlCu thin-film growth,
the phenomenological growth equation in (3), and using a step-by-step parameter identification
procedure, we have shown that a quantitative agreement between theory and experiment
is achieved. Based on our comparison between theory and experiment, we conclude that
i) eq. (3) constitutes a valid theoretical model for amorphous thin-film growth (at least up
to the considered layer thicknesses) and ii) that an interpretation of the data necessarily
requires the inclusion of the two nonlinear terms ∇2(∇h)2 and (∇h)2 in the stochastic growth
equation (3). Several questions, however, remain open for future studies: a) From the available
experimental data it is not clear whether the correlation length Rc(t) and the surface roughness
w(t) saturate for larger layer thicknesses. b) The validity of the proposed approach needs to
be tested more thoroughly by direct comparison with experimental data for spatio-temporal
quantities such as the height-height correlation function. c) A further experimental challenge
presents the validation of the theoretically predicted local density variations.

∗ ∗ ∗
This work has been supported by the DFG-Sonderforschungsbereich 438 München/

Augsburg, TP A1. The authors are indebted to B. Reinker for providing some additional
experimental results. The authors like to thank Prof. D. E. Wolf for his most helpful and
constructive remarks.

REFERENCES

[1] Barabasi A. L. and Stanley H. E., Fractal Concepts in Surface Growth (Cambridge University
Press) 1995; Tong W. M. andWilliams R. S., Annu. Rev. Phys. Chem., 45 (1994) 401; Krug
J., Adv. Phys., 46 (1997) 139; Marsili M., Maritan A., Toigo F. and Banavar J. R., Rev.
Mod. Phys., 68 (1996) 963.

[2] Reinker B., Moske M. and Samwer K., Phys. Rev. B, 56 (1997) 9887; Mayr S. G., Moske

M. and Samwer K., Europhys. Lett., 44 (1998) 465; Mayr S. G., Moske M., and Samwer

K., Phys. Rev. B, 60 (1999) 16950; Mayr S. G., Oberflächenrauhigkeit von amorphen ZrAlCu-
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