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We introduce an open-loop control scheme for stochastic resonators; the scheme permits the
enhancement or suppression of the spectral response to threshold-crossing events triggered by a time-
periodic signal in background noise. The control is demonstrated in experiments using a Schmitt
trigger. A generic two-state theory captures the essential features observed in our experiments and in
numerical simulations; this suggests the generality of the effect. [S0031-9007(99)09258-3]

PACS numbers: 05.40.Ca, 02.50.Ey, 47.20.Ky, 85.25.Dq
Stochastic resonance (SR) is a nonlinear noise-mediated
cooperative phenomenon wherein the coherent response
to a deterministic signal can be enhanced in the presence
of an optimal amount of noise. Since its inception in
1981 [1], SR [2] has been demonstrated in diverse sys-
tems including sensory neurons, mammalian neuronal tis-
sue, lasers, SQUIDs, tunnel diodes, and communications
devices. Variations and extensions of the classical defi-
nition of SR to include aperiodic (e.g., dc or wideband)
signals, with the detector response quantified by various
information-theoretic [3] or spectral cross-correlation [4]
measures, have also appeared in the literature.

In this Letter, we introduce a control scheme which
allows us, at will, to either enhance or suppress the spec-
tral response in the basic SR effect. Our control strat-
egy is applicable when input information is transmitted
via the crossing of either a threshold or potential energy
barrier. This raises the intriguing possibility that in situa-
tions where external signals might be potentially deleteri-
ous, e.g., electromagnetic field interactions with neuronal
tissue [5], their effects could be substantially reduced or
even eliminated via (externally applied) control signals.

The experiments were carried out in a modified Schmitt
trigger (ST) electronic circuit. The Schmitt trigger is
one of the simplest threshold systems [6,7], possessing a
static hysteretic nonlinearity. We denote the lower and
upper threshold voltages in the Schmitt trigger by VL

and VU , respectively, with 2b being the (static) thresh-
old separation. A subthreshold 64 Hz time-sinusoidal sig-
nal Sstd ­ AS sinvSt sAS , bd and Gaussian noise [8]
are applied to the input. For fixed, equal and oppo-
site VL and VU , standard SR curves can be obtained by
measuring the output signal power (SP) at the funda-
mental frequency vS as a function of input noise power
[9]. To realize the control scheme we modulate the
upper and lower thresholds sinusoidally, VUstd ­ b 1

AM sinsvMt 1 fd, VLstd ­ 2VUstd, which results in a
0031-9007y99y82(23)y4574(4)$15.00
“breathing” oscillation (Figs. 1 and 2) of the barriers with
frequency vM . We keep the signal and threshold modu-
lating amplitudes fixed such that AM 1 AS , b (no deter-
ministic switching) and investigate the system’s response
as a function of the phase offset f and the input noise
power. Note that in this work we only consider integer
frequency ratios n ­ vMyvSs­ 1, 2d.

Our experimental results are shown in the gray-scale
plots of Fig. 3, where signal output power (SP) is gray-
scale encoded as a function of the phase and input noise
power. Analogous results are obtained if the output
signal-to-noise ratio (SNR) is taken as the measure of
the response. Figure 3(a) is simply the classic SR case
[2] with no control sAM ­ 0d: The signal output power
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FIG. 1. The input signal Sstd (middle trace) relative to the
modulated upper and lower thresholds for four different phases.
The two frequencies are identical: vM ­ vS . Black and gray
distinguish the first and second halves of the drive cycle. The
arrows indicate the most likely times of switching events.
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FIG. 2. Same as Fig. 1, but with vM ­ 2vS .

passes through a maximum at an optimal noise intensity,
with the location of the maximum depending strongly
on the internal parameters, as well as the input signal
amplitude AS , but relatively weakly on the signal fre-
quency vS , provided this frequency lies well within the
device bandwidth. For this case, the output power spec-
tral density (PSD) is known to consist of peaks at the
odd multiples of the signal frequency, superimposed on
a Lorentzian-like noise background. Dips (correspond-
ing to power absorption) can also occur (last reference in
[2]) in the PSD at high input SNRs. In the modulated-
threshold case the output PSD displays a more complex
sequence of interrelated peaks and dips, occurring at fre-
quencies jmvM 6 nvSj (m, n integers), with properties
that depend on the input SNR, the symmetry of the de-
vice, the noise statistics, and the threshold separation and
modulation amplitude. Note that, if the signal is weak and
the barrier modulation strong, dips appear in the PSD at
the harmonics of the barrier frequency vM .

Figures 3(b) and 3(c) pertain to two different
modulated-threshold cases, with vM ­ vS and vM ­
2vS , respectively. The most striking feature of Fig. 3(b)
is a significant suppression of the output signal power
below its value in the nonmodulated case [Fig. 3(a)], at
values 0 and p of the control phase f. As we will show
below, to lowest order in the modulation amplitudes, no
enhancement of the signal output power is to be expected.
Note also that the plot appears symmetric with respect
to a phase translation of p . A suppression behavior is
also present in the case where vM ­ 2vS for f ­ 3py2
[Fig. 3(c)]; however, in this case, a significant enhance-
ment of the output SP (compared to the nonmodulated
case) is also evident at phase f ­ py2.

We can get a qualitative understanding of the ob-
served effects by plotting VUstd, VLstd, and Sstd on the
same graph. Maximum enhancement (suppression) of the
switching process will take place when the extrema of
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FIG. 3. Linear gray-scale plot of output signal power[9] at
vS vs phase and noise for (a) no modulation, (b) vM ­ vS ,
and (c) vM ­ 2vS . Parameters: vS ­ 64 Hz, b ­ 300 mV,
AM ­ 200 mV, and AS ­ 30 mV. The output voltage of
the Schmitt trigger is 69 V. In (b), the maximum signal
enhancement occurs near f ­ py2 and f ­ 3py2, and the
maximum suppression occurs near phases f ­ 0 and f ­ p.
In (c), the maximum signal enhancement occurs near f ­
py2, and the maximum suppression occurs near f ­ 3py2.
Note the differing signal output power gray scales shown in
(a)–(c).

the modulation signal are exactly out of (in) phase with
the extrema of the input signal Sstd. The relevant parame-
ter is the distance between the signal and the thresholds:
The transition probability in the presence of noise depends
(inversely) exponentially on this distance. Figures 1 and 2
depict the cases vM ­ vS and vM ­ 2vS , respectively.
The positions of the arrows indicate the points of clos-
est approach, i.e., the points in a cycle at which transi-
tions (direction symbolized by the arrow orientation) are
4575
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most likely. (Note that AS . AM in Figs. 1 and 2, while
AS , AM in Fig. 3. For AS , AM , the points of closest
approach to the upper and lower thresholds would shift to
the opposite halves of the drive cycles in the f ­ 0 and
f ­ p panels, respectively, of Fig. 1.)

In one full switching cycle, both an upper threshold
crossing and a lower threshold crossing must occur. If
the distance of closest approach to either the lower or up-
per threshold is large, the cycling rate will be severely
depressed; thus, to facilitate cycling, the maximum dis-
tance of closest approach must be minimized. In Fig. 1,
this minimization occurs for phases f ­ py2 and f ­
3py2, yielding an optimal coherence between the output
and input of the device (albeit, with a phase shift). For
these phases, the effective threshold is identical for both
extrema of the drive cycle, while for f ­ 0 and f ­ p ,
transitions at one extremum are favored at the cost of the
other. In fact, denoting the signal separations from the
upper and lower thresholds by the quantities f1st, fd ;
VUstd 2 Sstd and f2st, fd ; Sstd 2 VLstd, one can sepa-
rately plot the values of the minima of the distances f1,2std
vs the phase offset f, in the absence of noise and assum-
ing suprathreshold signals. For the vM ­ vS scenario,
the two curves intersect at f ­ py2, 3py2 in the interval
0 # f # 2p; these points correspond precisely to the lo-
cations of the maxima in the output signal power, within
this simple phenomenological picture.

While the vM ­ vS case does not yield (at least for
the parameters of Fig. 3) an enhancement in the output
SP over the nonmodulated case, the SP enhancement in
the case of vM ­ 2vS (Fig. 2) is significant. This is
because, for the unique phase difference f ­ py2, the
effective threshold is significantly reduced at both ex-
trema of the input signal (the p symmetry is absent
in this case). Note that the maximum value of the SP
from Fig. 3(c) is a sizeable 4.2V 2 s6.15 dBd compared
to 0.7V 2 s21.24 dBd in Fig. 3(b). A geometric construc-
tion, similar to that outlined in the preceding paragraph,
yields the values of the minima of the distances f1,2st, fd
4576
having only one intersection, at f ­ py2, in the inter-
val 0 # f # 2p.

The choice of optimal phase is less apparent if the con-
trol goal is to suppress the SP rather than enhance the basic
SR effect. For the vM ­ vS case, maximum suppression
occurs for phases f ­ 0 and f ­ p . Unlike the symmet-
ric mechanism that leads to enhancement, Fig. 1 demon-
strates that the effective threshold for the upward transition
is different from the corresponding downward one. Since
the transition rates vary inverse exponentially with bar-
rier height, switching events corresponding to the larger
effective threshold are significantly reduced leading to a
net suppression of the signal output power. Figure 3(b)
demonstrates that for phases f ­ 0 and f ­ p the on-
set of detectable signal output power can be substantially
shifted towards higher noise powers. For the vM ­ 2vS

case, the symmetry of transitions within one cycle is recov-
ered for all of the phases exhibited in Fig. 2. In particular,
for f ­ 3py2 the closest approach to the threshold is seen
to be significantly widened in the presence of the modula-
tion signal. This explains the observed suppression in the
experiment at that phase as shown in Fig. 3(c).

We now briefly outline the main results of a non-
linear response perturbation theory, which captures many
of the observed experimental features. Denote the two
states of the Schmitt trigger as 6c, respectively. Fol-
lowing Ref. [7], we write the Schmitt trigger dynamics
in two-state form in terms of evolution equations for the
state probabilities p6 (the overdot denotes time differen-
tiation): Ùp1 ­ W2stdp2 2 W1stdp1 ­ 2 Ùp2, where we
assume that, in the adiabatic limit (vS,M well below the
trigger and noise bandwidths and the transition rates W6),
the transition rates out of the 6 state are given by W6std ­
ffm 6 hS sinvSt 1 hM sinsvMt 1 fdg [10]. The (di-
mensionless) parameters m and hS,M correspond to the
threshold b and signal/modulation amplitudes scaled by
the input noise power. For small signal and threshold
modulation hS,M ø 1, we can expand the rates W6std in
hS,M and solve the two-state dynamics to find the output
power at the signal frequency vS:
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for vM ­ 2vS . Here, the an are the expansion coeffi-
cients an ­

2s21dn

n!
dnfsmd

dmn . For any specific system these
coefficients are found via a formal expansion of the tran-
sition rates W6. For the ST, these rates can be cast as
the inverses of the mean first passage times of a Brown-
ian particle to an absorbing barrier at the switching thresh-
old [7], provided the noise bandwidth is within that of the
device.



VOLUME 82, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 JUNE 1999
The location of the extrema of P1,2 depends on the
ratio a0

vS
, which itself is noise dependent. This explains

the apparent “drift” of the maximum SP towards higher
values for the phase with increasing noise in Figs. 3(b)
and 3(c). Note that P1 is invariant with respect to phase
shifts of p (equivalent to a sign change in hM), which is
also apparent in Fig. 3(b). Conversely, changing the sign
of hM alters P2.

Direct simulations of the rate equations have yielded
convincing agreement with Eqs. (1) and (2).

In summary, we have demonstrated a general nonfeed-
back control scheme, which can both enhance the “classi-
cal” SR effect and also suppress the response to a weak
signal, in experiments carried out on a generic stochas-
tic resonator (a modified Schmitt trigger). Our experi-
mental results are confirmed in computer simulations of
the Schmitt trigger as well as in a potential double-well
system. Our scheme relies on controlling the phase of
the externally applied barrier modulation, which leads to
a nonlinear frequency mixing effect. The control is ex-
pected to be realizable in a large class of nonlinear dy-
namic systems in which internal parameters are externally
accessible. This stands in contrast to the case of mul-
tiple time-periodic signals applied additively at the in-
put of a nonlinear device. In the latter case the output
contains “combination resonances” of the input frequen-
cies, with selection rules that depend on the symmetry
of the device; these were discussed as early as the late
19th century by von Helmholtz [11]. With noise, one ex-
pects an SR effect at every combination tone; this has
been demonstrated recently [12] in a very simple bistable
system. The response to an input signal can be annulled
trivially by adding an inverted copy of the signal at the
input; however, the amplitudes must be identical. In con-
trast, the threshold or barrier modulation discussed in this
Letter does not require amplitude matching. We believe
that controlled SR may be useful in applications as di-
verse as the cancellation of power-line frequencies in very
sensitive magnetic field sensing applications with super-
conducting quantum interference devices and vibration
control in nonlinear mechanical devices, as well as in the
context of electromagnetic field interactions with neuronal
tissue [5], where control of internal thresholds is possible
[13] and the selective suppression of specific frequencies
could potentially be beneficial.
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