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Abstract. – We introduce a model of interacting Brownian particles in a symmetric, periodic
potential that undergoes a noise-induced non-equilibrium phase transition. The associated
spontaneous symmetry breaking entails a ratchet-like transport mechanism. In response to an
external force we identify several novel features; among the most prominent being a zero-bias
negative conductance and a prima facie counterintuitive, anomalous hysteresis.

The subject of this letter lies at the borderline of three topics of current interest. The first
—Brownian motors— deals with converting unbiased non-equilibrium fluctuations into useful
work, mostly by exploiting the asymmetry of some underlying “ratchet” potential [1]. Proposed
as a new paradigm for directed transport in cellular structures and technological applications,
their collective behavior, which is our focus here, is clearly of paramount importance [2].
Second, coupled phase oscillators are presently under intense discussion as simple models for
the ubiquituous synchronization phenomena in complex biological [3] and physico-chemical
systems [4-6]. We will demonstrate here the possibility of spontaneous rotations due to the
mere presence of noise and concomitant, quite unexpected response to external forces. Finally,
noise-induced phase transitions have been introduced as a spontaneous symmetry breaking
caused by non-equilibrium fluctuations in otherwise completely symmetric and monostable
systems [7]. This mechanism presents another key ingredient of the present investigation.

Model. – Our starting point is a set of N coupled stochastic equations of motion

ẋi = −U ′i(xi, t) +
√
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potential, implying K(−x) = −K(x) (actio=reactio). The potentials Ui(x, t) consist of a static
part V (x), a fluctuating part W (x), driven by non-thermal noise ηi(t) with strength Q, and
possibly an additional bias or “load force” F :

Ui(x, t) = V (x) +W (x)
√
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Fig. 1. – (a) Time evolution of µ(t) from (13) and of 〈x(t)〉 :=
∫
x ρ(x, t) dx for the model (1)-(3)

with T = 2, Q = 4, F = 0, K0 = 10, A = 0.15, and initial condition ρ(x,0) = δ(x − 0.1). Solid
line: N → ∞ by solving (4). Crosses: N = 1024 by simulating (1), averaged over 10 realizations.
Dots: simulations with nearest neighbor instead of global coupling in (1) for a 64× 64 square lattice
with periodic boundary conditions, averaged over 10 realizations, and modified parameters Q = 10,
K0 = 20. (b) Phase diagram for (1)-(3) with T = 2, F = 0, A = 0.15, and N → ∞. 〈ẋ〉 is the
particle current and µ the order parameter (13) in the steady state t→∞. Arrow: asymptotic phase
boundary (12) for K0 →∞.

Note that φ(L) is decisive for the sign of 〈ẋ〉. Exploiting the fact that V (x) and W (x) are

symmetric periodic potentials, and with the definition Î :=
∫ L/2
−L/2 dx/g(x)2 we obtain

φ(L) = −Î F −

∫ L/2

−L/2
dxP (x)

∫ L/2

−L/2
dy K(x− y)/g(y)2 . (9)

When F = 0, we conclude that φ(L) = 0 and thus 〈ẋ〉 = 0 if i) Q = 0 (thermal equilibrium), or
ii) K(x) ≡ 0, or iii) P (−x) = P (x) (no spontaneously broken symmetry), or iv) K(x+L/2) =
−K(x) and W ′(x + L/2)2 = W ′(x)2 (accidentally so for (3) if A = 0). In any other generic
case, 〈ẋ〉 6= 0 is expected.

Next we discuss the behavior of P (x, t) in (4) for asymptotically strong interactions K(x).
To keep things simple, we further assume that multiples of L are the only minima of V (x)
and the only zeros of K(x) with K ′(x) > 0, cf. (3). As a consequence, all particles in (1) are
forced to occupy the same position µ(t) modulo L and P (x, t) takes the form

P (x, t) =
∑∞

n=−∞
δ(µ(t) + nL− x) . (10)

The equation of motion for µ(t) follows from (4) as

µ̇(t) = −Ū ′(µ(t)) . (11)

We first focus on the case F = 0. For small Q, the extrema of Ū(x) in (6) are identical to
those of V (x). So, µ(t) in (11) moves (modulo L) to the minimum x = 0 of V (x), and P (x, t)
approaches a stationary, symmetric limit P (x) = P (−x) for t → ∞. However, this solution
µ(t) ≡ 0 of (11) looses stability and two new stable fixed points appear when Q in (6) exceeds

Qc := V ′′(0)/W ′′(0)2 . (12)

One thus observes a noise-induced phase transition [7] with a spontaneously broken symmetry
of P (x), see fig. 1. Similarly, for a finite (but not too large) bias F 6= 0 a stationary P (x)
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Fig. 2. – (a) Steady-state current vs. force for (1)-(3) with T = 2, Q = 2, K0 = 8, A = 0.15 (global
coupling). Solid line: N → ∞. Crosses: N = 1024, averaged over 10 realizations. Interconnected
dots: 64 × 64 square lattice with nearest-neighbor coupling (cf. fig. 1a) and modified parameters
Q = 6, K0 = 15, averaged over 10 realizations. (b) Same as in (a) but for Q = 4, K0 = 10 (global
coupling) and Q = 10, K0 = 20 (nearest-neighbor coupling).

arises that inherits the broken symmetry of the system and possibly exhibits phase transitions
as well. Note that all these asymptotic solutions P (x) are stable (since µ(t) approaches a local
minimum of Ū(x)) and further coexisting long-time solutions can be ruled out.

Clearly, many of the above qualitative predictions for P (x, t) will remain valid even for not
so strong interactions K(x), see fig. 1. Especially, a stationary, stable long time limit P (x) is
expected for not too large tilts F , and a suitable generalized definition of µ(t) is then

µ(t) =

∫ L/2

−L/2
xP (x, t) dx . (13)

For zero bias F , a unique, stable, symmetric solution P (−x) = P (x) can be inferred pertur-
batively from (7) for weak interactions K(x). The very same follows for any finite K(x) and
asymptotically large Q. Thus for F = 0 and sufficiently strong interactions, such that at some
critical Q-value a spontaneous breaking of symmetry does occur, upon further increasing Q,
the symmetry of P (x) will finally be re-established (re-entrant phase transition [7]). These
predictions are confirmed by, and essentially explain the numerical phase diagram in fig. 1b.

Equipped with these findings for P (x, t), we now turn to their implications for the particle
current 〈ẋ〉. As mentioned below (9), for F = 0 a spontaneous symmetry breaking is necessary
—and generically also sufficient— for a corresponding “spontaneous current” 〈ẋ〉 6= 0, see also
fig. 1. Roughly speaking, the broken symmetry creates via (5) a periodic but asymmetric
effective potential which, out of equilibrium, gives rise to a ratchet-effect [10]. Similarly,
for F 6= 0 a non-zero current is expected always, apart from certain exceptional parameter
combinations, cf. fig. 2. To gain further insight, we focus again on strong interactions K(x).
The current (8) is then finite (though small), unless φ(L) = 0, and its sign is given by that of
−φ(L). A particularly appealing simplification of (9) is obtained with (3):

φ(L) = −ÎF − K̂ sinµ , K̂ :=

∫ L/2

−L/2
dxK ′(x)/g(x)2 , (14)

where µ := µ(t → ∞) follows from (11). Here, a remarkable feature arises, entailing even
more striking consequences later on. Namely, if F = 0, Q > Qc, and K̂ < 0, which is the case
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whenever A > 0 in (3), then the sign of µ(t) from (13) will, in the long time limit, be opposite
to that of 〈ẋ〉, see fig. 1a. In other words, for a symmetry broken P (x) with a peak to one
side of x = 0, the flux of particles will move just in the opposite direction!

Anomalous response. – We now come to the response of the steady-state current 〈ẋ〉 to
parametric (adiabatically slow) changes of the external force F . For F = 0 and Q < Qc we
have 〈ẋ〉 = 0, and for strong interactions we can infer from (8), (11), (12), (14) that

〈ẋ〉 = F LZ−1
(
Î +

K̂ W ′′(0)−2
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typically also sufficient for the appearance of a spontaneous current, and this, in turn, is a
precondition for zero-bias negative conductance and anomalous hysteresis. For d = 1 neither
spontaneous symmetry breaking nor anomalous response has been found.

Further generalizations which we verified numerically are: i) The bare potential V (x) in (2)
plays a very minor role: even for V ≡ 0 all results remain qualitatively unchanged. Similarly,
the thermal noise strength T is arbitrary, except that it must not vanish. ii) In the example
(3) with A = 0, a spontaneous symmetry breaking is possible, but no spontaneous current
(see iv) below (9)). This somewhat annoying “accidental symmetry” immediately disappears
if in (2) colored noise ηi(t) is used. iii) A strictly periodic interaction K(x) is not necessary.
For instance, one may add on top of the periodic a (not too strong) attractive interaction
to keep the “cloud” of particles xi in (1) always well clustered. As long as the symmetric
interaction potential, from which K(x) derives, exhibits besides the minimum at x = 0 at
least one appreciable additional pair of (local) minima at x ≈ ±L, the same qualitative
features as for a strictly periodic K(x) are recovered numerically. A cute application follows by
replacing the constant bias −F x in (2) by a slowly varying extra potential term, for instance
−B x2 with a small B > 0. In the parameter regime of zero-bias negative conductance,
the “cloud” of particles will then spontaneously move towards the maximum at x = 0 of
this potential. Similarly as in i) above, we may even choose V ≡ 0 in (2). In this way,
deterministically unstable states can thus be stabilized by noise! In the parameter regime of
anomalous hysteresis, the “cloud” will permanently oscillate about the potential maximum and
so enables one to extract mechanical work solely out of white-noise sources. iv) For asymmetric
potentials V (x) = W (x), a similar phase diagram as in fig. 1b arises for F = 0, but now with
both phases exhibiting (the system intrinsic) broken symmetry 〈µ〉 6= 0 and a finite particle
current 〈ẋ〉 6= 0. The phase boundary thus separates a region with a unique current-carrying
stable long-time solution from a region with two coexisting stable long-time solutions. The
basic change in the response behavior is a shift of the origin accompanied by an asymmetric
deformation of the curves in fig. 2.

In summary, we have investigated the dynamics of collective Brownian motors where,
however, the role of the usually built-in spatial asymmetry of the system is taken over by a
spontaneous symmetry breaking due to a noise-induced non-equilibrium phase transition. We
note that coupled Brownian motors have been discussed before in the literature [2]. Especially,
Jülicher and Prost demonstrated in a somewhat different model of spatially symmetric, globally
coupled Brownian motors the generation of a directed current by way of spontaneous symmetry
breaking and the closely related features of coexisting phases, first-order transitions, and
normal hysteresis. The physics of the class of coupled Brownian motors that we introduced
here, however, displays amazing features when exposed to an externally applied force: The
reverse hysteresis cycle behavior and the emergence of zero-bias negative conductance are,
to our knowledge, completely new collective phenomena. Essentially, they are the result of
a competition between the effect of the external bias, favoring current in its direction, and
a coupling-induced ratchet potential that arises as a collective property and which pumps
particles in the opposite direction.
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