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Drift ratchet
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We consider a silicon wafer, pierced by millions of identical pores with periodically varying diameters but
without spatial inversion symmetry ~ratchet profile!. When a liquid is periodically pumped back and forth
through the pores, our theory predicts a net transport of suspended micrometer-sized particles ~drift ratchet!.
The direction of this particle current depends very sensitively on the size of the particles. For typical parameter
values of the experiment, two different types of particles at an initially homogeneous 1:1 mixture are spatially
separated with a purity beyond 1:1000 on a time scale of a few hours in comparably large quantities. This
result is due to the highly parallel architecture of the device. The experimental realization of the setup,
presently under construction, thus appears to be a promising new particle separation device, possibly superior
to existing methods for particles sizes on the micrometer scale.

PACS number~s!: 05.40.2a, 07.10.Cm, 87.80.2y
I. INTRODUCTION

Is it possible, and how is it possible, to convert unbiased
random fluctuations into directed motion if all acting forces
and temperature gradients average out to zero? A systematic
exploration of this provocative question @1# was initiated al-
most simultaneously by three independent groups @2# and has
been attracting a lot of excitement under the label of ‘‘mo-
lecular motor,’’ ‘‘Brownian motor,’’ or ‘‘ratchet’’ ever since
@3#. Besides the intriguing fundamental aspects of such far
from equilibrium systems, e.g., with respect to the second
law of thermodynamics and Maxwell’s demon, their poten-
tial relevance with respect to intracellular transport mecha-
nisms @4#, transport in noncentrosymmetric materials @5#, and
technological applications as particle pumps and separation
devices @6# have been major driving forces of those investi-
gations right from the beginning @2,3#. It is the latter objec-
tive which is the focus of our present paper in that the theo-
retical framework of a novel ratchet-type particle separation
device, presently under construction in the laboratories of the
Max-Planck-Institut in Halle ~Germany!, is outlined.
The practical realizability of particle transport in man-

made devices has been demonstrated experimentally for sev-
eral variants of the ratchet concept @7#. The experimental
setup we have in mind goes one step further in that millions
of identical ratchets are operating simultaneously in parallel
with the perspective of pumping and separating for the first
time relatively large quantities of micrometer-sized particles
on a reasonable time scale. In particular, in comparison to
the widespread electrophoretic separation techniques @8#, our
present device works appreciably faster and can be reused.
The particles are furthermore dispersed in a liquid, e.g., wa-
ter, in contrast to the inconvenient gel and polymer solutions
required in electrophoresis. Compared with methods based
on the field-flow fractionation scheme @9#, which appears to
have a rather limited separating power for particles in the
range of 0.5–1 mm, our present theory predicts a fairly high
resolution in this range of particle sizes, indicating that the
real device may indeed become a separation method of broad
practical interest.
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The outline of our paper is as follows: In Sec. II, the
experimental setup is described and in Sec. III a theoretical
model for the particle dynamics in a single infinitely long
ratchet-shaped pore is introduced. In Sec. IV, numerical so-
lutions of this model dynamics—the so-called drift ratchet—
are presented and discussed. The complication that the real
pores are of finite length and connected at both ends with
finite reservoirs is taken into account in Sec. V. For this case,
a coarse-grained description of the drift ratchet dynamics is
put forward and solved by numerical and analytical means.
A summary and outlook is presented in Sec. VI.

II. SETUP

The experimental situation which we wish to theoretically
describe in this paper is depicted in Figs. 1–3. The main
component of the setup is a piece of silicon—a so-called
silicon wafer—pierced by a huge number of practically iden-
tical and parallel pores, each of a few micrometers in diam-
eter ~Fig. 1!. ~For convenience, we will take the pore axis as
the z axis of our coordinate frame.! The art of fabricating
such a macroporous silicon wafer is described in detail in
@10#. Especially, by means of very sophisticated techniques it
is possible to periodically vary the diameter of the pores
along their axis in a controlled manner @10#. Having in mind
a ratchetlike pumping device for microparticles, the periodic
variations of the pore profile are furthermore chosen asym-
metric under spatial inversion ~Fig. 2!. In order to practically
eliminate gravitational effects and the tendency of the par-
ticles to stick to the pore walls and to each other, the par-
ticles are suspended in a liquid ~e.g., water!. @Moreover, due
to its compressibility, the dynamics of a gas instead of a
liquid inside the pores would be theoretically much more
difficult to solve; see Sec. III C.# Finally, the silicon wafer is
connected at both ends to basins of the liquid-plus-particle
suspension ~Fig. 3!.
To establish contact with previously studied ratchet mod-

els @2,3#, the first idea that comes to mind is to bring into
play some time-dependent electrical fields. However, since
silicon already has a noticeable conductivity at room tem-
312 ©2000 The American Physical Society
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perature, all electrical fields will be almost completely
shielded inside the silicon wafer. Moreover, the electrical
charge of the microparticles is strongly dependent on the
fluid in which they are suspended and may vary too much to
allow for a satisfactory separation. For these reasons, we
have abandoned the use of electrical fields and instead cre-
ated the far-from-equilibrium situation—necessary for the
functioning of any ratchet mechanism @3#—by periodically
pumping the liquid back and forth through the pores. Ratchet
models in the presence of a time-periodic external force have
been studied in @11#, while a ratcheting mechanism based on
the hydrodynamic effect of the so-called Stokes drift ~par-
ticles are ‘‘surfing’’ on traveling waves! has been addressed
in @12#. Though these models share some aspects with our

FIG. 1. Scanning-electron-microscope picture of silicon, pierced
by a huge number of practically identical pores with pore distances
of 1.5 mm and pore diameters of 1 mm.

FIG. 2. Scanning-electron-microscope picture of a single pore
with a ratchet-shaped ~periodic but asymmetric! variation of the
diameter along the pore axis (z axis!.
present system, they are of no direct use for the following
reasons: ~i! Unlike in almost all previous models @2,3#, no
‘‘ratchet potential ’’ is involved in our case. ~ii! The dynam-
ics within a single pore is still a complicated three-
dimensional problem that cannot be reduced a priori to an
effective one-dimensional description.

III. INFINITE PORE MODEL

In this section we introduce a theoretical description of
the particle motion in a single infinitely long pore under the
idealizing assumptions that the suspension is sufficiently di-
luted such that particle interaction effects are negligible and
that the interaction with the pore walls can be captured by
perfectly reflecting boundary conditions. We furthermore as-
sume strict periodicity of the pore profile, a perfectly rigid,
spherical shape of the particles, and incompressibility of the
liquid. In order to solve this idealized model, we shall pro-
ceed in two steps: In Sec. III A we assume that a certain
time-dependent velocity field vW (xW ,t) inside the pores is
given, on the basis of which we then establish the stochastic
model dynamics of a suspended particle under the action of
the thermal noise. In an intermitting Sec. III B we give an
intuitive argument of why a ‘‘ratchet effect,’’ i.e., the emer-
gence of a net particle current in some preferential direction,
may be expected for such a stochastic dynamics. Section
III C complements the model by addressing the problem of
how to determine the deterministic velocity field vW (xW ,t) for a
sinusoidal pumping of the liquid-plus-particle suspension
through the pore. The quantitative numerical solution of this
quite involved combination of hydrodynamic and stochastic
problems is postponed to Sec. IV.

A. Stochastic dynamics

We consider a single spherical particle in a fluid that is
periodically pumped back and forth through an infinitely

FIG. 3. Schematic cross section through the x-z plane of the
experimental setup. The macroporous silicon wafer, extending from
2zP to zP , is connected at both ends to basins. The pores with their
ratchet-shaped profile along the z axis ~see Fig. 2! are schematically
indicated in dark grey. The basins and the pores are filled with
liquid and micrometer-sized particles ~two different species are in-
dicated!, pumped back and forth by a pumping device ~indicated by
the piston on the left hand side; omitted is a similar piston or a
membrane at the right basin boundary, required to keep the liquid-
volume constant!. In the real experiment, the length 2zP of the
wafer along the z axis ~and thus of the single pores! is 100–200 mm
and the length zB2zP of each basin is 20–200 mm. The extension
of the device along the x axis is about 1–2 cm and similarly along
the y direction. The corresponding number of pores is about 1.5
3106–63106.
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long pore. For the typical parameter values of the real ex-
periment one readily finds that buoyancy effects due to the
influence of gravitation as well as inertia effects of the par-
ticle are negligibly small; i.e., the particle dynamics in the
viscous liquid is strongly overdamped. Assuming that the
three-dimensional time-dependent velocity field vW (xW ,t) of
the liquid is given, the particle with coordinate xW (t)
5„x(t),y(t),z(t)… is governed by the deterministic dynamics
xẆ (t)5vW „xW (t),t…. To be precise, vW (xW ,t) is here in fact not the
velocity field of the fluid alone but rather the speed with
which a spherical particle with center at xW (t) and a small but
finite radius is carried along by the surrounding liquid ~see
Sec. III C!. This dynamics induced by the streaming liquid
has to be complemented by proper boundary conditions at
the pore walls, which we model as perfectly reflecting
boundary conditions, and by the diffusion of the micrometer-
sized particle due to random thermal fluctuations jW (t). These
random forces, stemming from the impacts of the surround-
ing liquid molecules, can be described in the common way
by Gaussian white noise. We thus end up with the following
Langevin model equation for the trajectory xW (t) of a micro-
sphere inside a single pore:

xẆ~ t !5vW „xW~ t !,t…1A2D thjW~ t !. ~1!

Here, D thªkT/h is the thermal diffusion coefficient, with
the temperature T ~kept constant at room temperature!, the
Boltzmann constant k, and Stokes’ friction coefficient h . The
latter is given by 6pRn in leading order in the Reynolds
number Re , with the sphere’s radius R and the viscosity of
the liquid n . The vector components j i(t), i51,2,3, of the
noise jW (t) are independent Gaussian stochastic processes
with ^j i(t)&50 and ^j i(t)j j(t8)&5d(t2t8)d i j .
The time and space dependence of the velocity field

vW „xW (t),t… arises from the periodical pumping of the carrier
liquid through a pore with periodically but asymmetrically
changing diameter. As a concrete working model for the
ratchet-shaped profile of the pores we assume a variation of
the pore radius rp(z) along the pore axis (z axis! of the form
~see Fig. 4!

FIG. 4. Cross-section (x-z plane! through a single pore with
z-dependent radius according to Eq. ~2!.
rp~z !5
1
2.1 F2.91sin@f~z !#1

1
2 sin@2f~z !#G mm,

f~z !ª2pz/L2p/3, L56 mm. ~2!

The reflecting boundary condition in particular encompasses
the requirement that the entire spherical particle with center
xW (t) and some finite radius never exceed the pore boundaries
from Eqs. ~2!.

B. Ratchet effect

Clearly, after one period of driving, the liquid in the pore
returns ~after averaging over thermal fluctuations! to the
same position from where it started out. Why should we not
expect the same null effect for the suspended particles? Un-
der various comparable conditions, the emergence of such a
systematic particle transport has indeed been documented in
detail, e.g., in @2,3,7,11,12# and further references therein,
with the main conclusion that under far-from-equilibrium
conditions, periodicity in combination with spatial asymme-
try is generically sufficient for the manifestation of this so-
called ‘‘ratchet effect.’’ These preconditions are all given in
our setup as well; especially the far-from-equilibrium situa-
tion is created by the periodical pumping of the liquid
through the pore. The crucial difference between a particle
and the liquid is its finite extension. First, the speed of the
particle in general does not exactly agree with that of the
liquid at the center of the particle if this particle were not
present. Due to spatial asymmetry, there is no reason why
the net displacement of the particle by diffusing randomly
between liquid layers of different speeds ~similarly as in the
so-called Taylor dispersion @13#! should after one driving
period average out exactly to zero like for the liquid. Second,
the finite radius implies collisions with the pore walls, which
again alter the dynamical behavior of the particles in com-
parison with that of the liquid.
While for finite particle sizes we thus expect generically a

finite net particle current, in the limit of a vanishing radius
the particles behave like the liquid and the current disap-
pears. On the other hand, too large particles will no longer be
able to pass through the bottlenecks of the ratchet-shaped
pores, giving rise again to a zero current.

C. Computation of the velocity field

The first step towards a quantitative solution of the sto-
chastic dynamics ~1! consists in calculating the velocity field
vW (xW ,t) caused by the liquid flow through the pores. For this
purpose, we start with the Navier–Stokes equation in the
following dimensionless form @14#:

ReF1S ]vW 8

]t8
1~vW 8•¹W 8!•vW 8G52¹W 8p81D8vW 8, ~3!

supplemented by the continuity equation for the incompress-
ible liquid ¹W •vW 850 and the boundary conditions vW 850W at
the pore walls. Here, the primed dimensionless quantities are
related to the original dimensionful ones by vW 85vW /vc , t8
5tv/2p , xW85xW /rmin , ¹85rmin¹ , and p85prmin /(nvc).
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Furthermore, the arguments xW8 and t8 of the functions vW 8 and
p8 have been omitted. The velocity scale vc is given by the
maximal velocity of the liquid ~typically 2–9 mm/s for
v/2p540–100 Hz, A5L23L , see below!, rmin is the
minimal pore radius @0.76 mm for the example ~2!#, and
v/2p is the pumping frequency ~typically 40–100 Hz!.
The coefficients Re and S in Eq. ~3! denote the dimension-

less so-called Reynolds and Strouhal numbers, respectively,
defined as Reªvcr lrmin /n and Sª2pvc /vrmin , with the
liquid density r l . Under typical experimental conditions the
Reynolds number Re is found to be in the range of 1023–
1022 and the Strouhal number S is about 102. Due to Re
!1 and Re /S!1, the left hand side in Eq. ~3! can be ne-
glected, which leaves us with the so-called ‘‘creeping flow
equations’’ @14#

DvW ~xW ,t !5¹W p~xW ,t !. ~4!

Here and in the following paragraphs we have dropped the
primes but continue to work in dimensionless units. The
physical picture behind the above approximation is that the
friction terms are dominant over the inertia terms and that
the flow is able to adapt instantaneously to the time varia-
tions of the pressure field p(xW ,t). In the presence of a sinu-
soidal pumping with frequency v/2p , this pressure field
takes the form

p~xW ,t !5p0~xW !sin~2pt !. ~5!

Note that within the creeping flow approximation ~4!, the
resulting time dependence of the velocity field is merely
parametric. In other words, once a solution vW 0(xW ) has been
determined for the steady pressure field p0(xW ), i.e.,

DvW 0~xW !5¹W p0~xW !, ~6!

the solution vW (xW ,t) at any time t is simply given by

vW ~xW ,t !5vW 0~xW ! sin~2pt !. ~7!

A convenient strategy to solve the time-independent
creeping flow equations ~6! is by means of the so-called vec-
tor potential AW (xW ), implicitly defined via vW 0(xW )5¹W 3AW (xW ).
The continuity equation for the incompressible liquid ¹W

•vW 0(xW )50 on the one hand guarantees the existence of such
a vector potential AW (xW ) and on the other hand is automati-
cally fulfilled in this way. Eliminating vW (xW ) in favor of AW (xW )
in Eq. ~6! and then taking the rotation on both sides leads us
to the linear homogeneous equation

D2AW ~xW !50W . ~8!

Next we go over the cylinder coordinates
(x ,y ,z)°(r ,z ,f) and corresponding velocity components
(vr , vz , vf), defined through

vW 05vr eW r1vz eW z1vf eW f . ~9!

Note that vr5@vx21vy2#1/2 and that we have dropped the in-
dex ‘‘0’’ in (vr , vz , vf). We assume that the solution
vW 0(r ,z ,f) respects both the cylinder symmetry and the dis-
crete translational symmetry of the system, i.e., vW 0(r ,z ,f)
5vW 0(r ,z), independent of f , vf(r ,z)[0, vW 0(r ,z1L)
5vW 0(r ,z), and ]vz(r50,z)/]r50. The assumption that the
solution does not spontaneously break the symmetry of the
system is quite plausible and is further corroborated by the
fact that we will indeed find such a solution in the following;
if the solution were unique, this in fact would rigorously
justify the above assumptions. The linearity of Eqs. ~6! and
~8! reflects the fact that we are in the deep laminar ~nontur-
bulent! regime and thus indeed suggests a unique solution of
the liquid flow for a given pressure drop per spatial period L.
Note that, much like in classical electrodynamics, v0(xW )

fixes the vector potential AW (xW ) only up to a gauge freedom.
Exploiting this freedom and the f independence of the vec-
tor potential one can prove @14# the existence of a scalar field
C(r ,z) with the properties that AW (r ,z)5C(r ,z) eWf /r and
that lines of constant C are everywhere tangent to the veloc-
ity field ~hence C is also named the ‘‘streamline function’’!.
In terms of C , the velocity field is now given by

vW 0~r ,z !5¹W 3@C~r ,z !eWf /r# . ~10!

Substituting AW (r ,z)5C(r ,z) eWf /r in Eq. ~8! one arrives at
the following linear homogeneous fourth order equation for
the streamline function:

L̂C~r ,z !50, L̂ªF r ]

]r
1
r

]

]r 1
]2

]z2G
2

. ~11!

From the boundary and symmetry conditions for vW (r ,z) the
following boundary conditions for the streamline function
can be derived:

C~r50,z !5c , ~12!

]2n11

]r2n11C~r50,z !50, n50,1, ~13!

¹W C„r5rp~z !,z…50W , ~14!

C~r ,z1L !5C~r ,z !. ~15!

Once a solution of Eqs. ~11!–~15! with an arbitrary constant
c in Eq. ~12! has been found, the velocity field vW 0(xW ) is
determined by Eq. ~10! up to a multiplicative factor. Due to
the linearity of Eqs. ~6!, ~10!, and ~11!, this factor together
with the pressure field p0(xW ) can finally be obtained as fol-
lows: We define the pressure drop dp0 over one spatial pe-
riod by

dp0ªp0~r ,z !2p0~r ,z1L !. ~16!

Note that the sign convention in Eq. ~16! is chosen such that
a positive dp0 will cause a liquid flow to the right ~in the
positive z direction!. Further, dp0 is indeed independent of r
and z due to Eq. ~6! and vW 0(r ,z1L)5vW 0(r ,z) and can be
rewritten as
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dp0522E
0

L ]2

]r2
vz~r50,z !dz . ~17!

Given dp0, the multiplicative factor of the velocity field is
now fixed by Eq. ~17!.
We remark that in the infinite pore limit the pressure drop

dp0 over one period is the only free parameter in the prob-
lem ~6!. In contrast, for a finite pore, the pressure field needs
in general no longer agree with the infinite pore solution
p0(r ,z) near the ends of the pore @15#, but will quickly con-
verge towards p0(r ,z) as the distance from the pore ends
increases.
Instead of the pressure drop dp0 we will later use the

equivalent parameter, A5 E 0
Tp/2Vz@r50,z(t),t#dt , with Tp

being the period of driving, defined as the amplitude ~maxi-
mal elongation! of the liquid around the reference position
r5z50.
By closer inspection of Eqs. ~11!–~15! the following ana-

lytical approximation, valid for small variations of rp(z), can
be derived:

C~r ,z !5c2
1
2 S r

rp~z ! D
2

1
1
4 S r

rp~z ! D
4

. ~18!

This approximation, which becomes exact for a constant
rp(z), can be used to roughly estimate the pressure drop dp0
for a given amplitude A. However, for the purpose of nu-
merical simulations in Eq. ~1! with Eq. ~2! the accuracy of
the approximation ~18! is not sufficient, and a numerical so-
lution of Eqs. ~11!–~15! becomes necessary. To this end, we
have adopted a modified relaxation scheme according to the
following recursion relation:

C (n11)~r ,z !5C (n)~r ,z !2a•L̂C (n)~r ,z !. ~19!

Note that on a discretized r-z lattice, the corresponding dis-
cretized operator ~11! is no longer uniquely fixed at the bor-
ders r50 and r5rp(z) of the lattice. This ambiguity is re-
moved by taking into account the boundary conditions ~12!–
~14!. The boundary condition ~15! is automatically fulfilled if
it is satisfied by the initial function C (0)(r ,z). The constant
a in Eq. ~19! must be chosen positive but sufficiently small;
otherwise the iteration scheme diverges. On our standard r-z
lattice of 2503750 sites, a value of a<0.09 has proved to
work well. Since the convergence is not very fast, it is ad-
vantageous to start with a coarse grid and then steadily pro-
ceed to finer and finer grids.
Figures 5 and 6 give an impression of the solution vW 0(r ,z)

in cylinder coordinates @cf. Eq. ~9!# and dimensionful units,
which has been obtained numerically in the way described
above: While vf(r ,z) is identically zero, the velocity com-
ponents vr(r ,z) and vz(r ,z) exhibit the typical ratchet form
when drawn as a function of z ~Fig. 5.! Note, however, that
in contrast to most previously studied ratchet systems @2,3#,
these functions characterize here a velocity field, not a
‘‘ratchet potential.’’ As a function of r, the component
vz(r ,z) takes its maximum in the center of the pore ~Fig. 6!,
while the radial velocity vr(r ,z) is maximal at about half the
local pore radius.
Thus far we have restricted ourselves to the velocity field
of the liquid through a pore in the absence of any therein
suspended particles. However, what actually counts in the
overdamped stochastic dynamics ~1! is the velocity with
which a particle is carried along by the surrounding liquid.
For a finite particle radius, this velocity field can strictly
speaking only be obtained by solving the hydrodynamics of
the compound liquid-plus-particle system. Practically, this
problem is beyond what can be done numerically or analyti-
cally. Moreover, by including thermal fluctuation effects as
in Eq. ~1!, a truly rigorous approach is possible only on the
basis of a kinetic description like the Boltzmann equation,
which even more so is way beyond practicability. Hence we
keep staying with our phenomenological combined
stochastic-hydrodynamical description, well established
@12,13# since Einstein’s Brownian motion theory, with the
following approximations for the relevant velocity field in
Eq. ~1!: First, we neglect back reactions of the particle on the
flow of the liquid. Second, we approximate the relevant ve-
locity field in Eq. ~1! by that of the unperturbed flow, aver-
aged over the particle volume. Clearly, this approximation

FIG. 5. The components vr(r ,z) and vz(r ,z) of the liquid ve-
locity field ~9! inside an infinitely long pore ~2! ~see also Fig. 4! as
a function of z at a fixed r value of 3 rmin/4. The viscosity n is
0.5 nwater and the pressure drop dp0 per period L from Eqs. ~16!
and ~17! is about 7.6 Pa. The corresponding pumping amplitude A
~see main text for the exact definition! is A52L512 mm and
v/2p540 Hz.

FIG. 6. Same velocity field as in Fig. 5 but depicted as a func-
tion of r at a fixed z value of L/6.
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for the velocity field in Eq. ~1! is in general not identical but
of comparable quality to the approximation by the velocity
field of the unperturbed flow, evaluated at the center of the
spherical particle. Comparing the results when using either
of these two approximations in Eq. ~1! thus seems also a
reasonable indicator for the deviations from the exact solu-
tion. Our simulations, as described in more detail in the next
section, lead to practically indistinguishable results for both
above-mentioned approximations for the velocity field in Eq.
~1!. We finally remark that in the limit of vanishing particle
radius the diffusion coefficient in Eq. ~1! diverges. The fact
that our simulations still seem to approach a vanishing aver-
age particle current in this limit, in agreement with our pre-
diction from Sec. III B, is another very strong indication of
the self-consistency of our approach.

FIG. 7. Numerical simulation of the stochastic dynamics ~1!
with pore shape ~2!, T5293 K ~room temperature!, viscosity n
50.5nwater , and particle diameter 2R50.7 mm. The velocity field
in Eq. ~1! has been obtained numerically as described in Sec. III C
~unperturbed velocity field, averaged over spherical particle vol-
ume! with a sinusoidal pumping of the liquid at a frequency v/2p
of 40 Hz. The pumping amplitude A ~see main text for the exact
definition! is chosen equal to the period L56 mm of the ratchet-
shaped pore. Depicted is the z component ~along the pore axis! of
the trajectory xW (t) with initial condition xW (0)'0W for eight realiza-
tions of the stochastic dynamics ~1!.

FIG. 8. Same as Fig. 7 but for a doubled pumping amplitude of
A52L .
IV. NUMERICAL SIMULATIONS

An analytical treatment of a driven three-dimensional sto-
chastic dynamics far from equilibrium like in Eq. ~1! is im-
possible. In this section we present and discuss results of a
few representative numerical simulations with parameters
that provide a reasonable description of the real experiment.
While we will confine ourselves to numerical simulations of
the stochastic dynamics ~1!, it should be mentioned that we
have also cross-checked the results by numerical solutions of
the associated Fokker-Planck-equation @16#. Unlike in the
preceding subsection, Sec. III C, we will exclusively use di-
mensionful units throughout the rest of the paper.

A. Average directed particle transport

Figures 7–10 illustrate the particle motion inside a pore
shaped like in Fig. 4. As pumping frequency v/2p of the
sinusoidal driving our standard values are v/2p 5 40 Hz
and v/2p5100 Hz. Further, the viscosity n of the carrier
liquid is expressed in units of water viscosity, i.e., by means
of the relative viscosity

nRªn/nwater , nwater51.02531033
Ns

m2
, ~20!

FIG. 9. Average particle current ve from Eq. ~21! versus particle
diameter for various driving frequencies v/2p and viscosities @cf.
Eq. ~20!#. Further details are as in Fig. 7.

FIG. 10. Same as Fig. 9, but for a doubled pumping amplitude
of A52L .
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with nR50.5 and nR51 as standard choices. A further pa-
rameter is the pumping amplitude A, i.e., the amplitude
~maximal elongation! of the liquid around the reference po-
sition r5z50.
With the numerically determined velocity field along the

lines of Sec. III C as input, the Langevin equation ~1! is
integrated numerically in small discrete time steps, with the
correspondingly discretized thermal noise supplied by a ran-
dom number generator. The reflecting boundary conditions
are approximately taken into account by the prescription that
any step in the discretized dynamics that would lead out of
the pore is replaced by a null step.
Figures 7 and 8 display results of such a numerical simu-

lation of the stochastic dynamics ~1!. A systematic displace-
ment of the particles along the pore axis in the course of time
~ratchet effect! is clearly visible. Superimposed to this di-
rected transport is a considerable diffusion-type spreading-
out of the different realizations. For small driving amplitudes
~Fig. 7! the particles remain within the same period of the
ratchet-shaped pore for some time before they cross over to
an adjacent period. For larger driving ~Fig. 8! this underlying
periodicity of the pores is almost completely washed out and
the net particle motion is just in the opposite direction than in
Fig. 7.
In the remainder of this section we discuss results that are

obtained by averaging ~indicated by ^•••&) over ca. 100 re-
alizations of the stochastic dynamics ~1!, each evolved from
t50 up to the same ‘‘running time’’ t5trun ~typically trun
5250 s!. From the spread of the numerically simulated re-
sults the standard deviation can be calculated in the usual
way, indicated as error bars in the plots.
Figure 9 shows the average velocity

veª^z~ trun!&/trun ~21!

of particles in the pore for a pumping amplitude of A5L . As
anticipated in Sec. III B, the particle velocity exhibits a dis-
tinct maximum as a function of the particle size and ap-
proaches zero for both very large and very small diameters.
All particles move to the left with respect to the ratchet pro-
file from Fig. 4. With increasing viscosity, the velocities de-
crease, especially for the larger particles, whereas increasing
the pumping frequency v/2p from 40 Hz to 100 Hz only
seems to affect the smaller particles. Note that the average
systematic drift per driving period of about 1/100–1/40 secs
is rather small in comparison with the typical displacement
of a few mm during such a period. This makes reliable nu-
merical simulations rather time consuming.
The striking implication of the current inversion as a

function of the pumping amplitude seen in Figs. 7 and 8 for
the case of a variable particle diameter is depicted with Fig.
10. As compared to Fig. 9 with A5L , in Fig. 10 with A
52L , the transport direction is reversed for the larger par-
ticles; i.e., they now move through the same pore just in
opposite direction than the smaller particles. Since in this
direction ~to the right in Fig. 4! the pore looks like a series of
funnels, we suggest that the transport mechanism in this case
may be comparable to that of an ‘‘entropic ratchet’’ @17#:
The bigger particles experience many collisions with the
pore walls, whose asymmetric shape apparently makes it
easier for them to proceed into the funnel direction. An in-
tuitive explanation of the transport direction for the small
particles does not seem possible.
The occurrence of current reversals in ratchet models

when certain parameters are varied has been observed and
discussed before under various circumstances @3#. In our
case, the current reversal is characterized by the following
features: ~i! It is accompanied by a rather strong variation of
the current as a function of the particle diameter, ~ii! the
location of the reversal is very weakly dependent on the driv-
ing frequency ~Fig. 10! and the relative viscosity ~Fig. 11!,
and ~iii! the maximal currents in both directions are of com-
parable size.
For a few shapes of the pore other than in Eq. ~2! we have

obtained very similar qualitative features. Furthermore, the
specific particle size at which the inversion of the transport
direction occurs is a function of the pumping amplitude A, as
Fig. 11 shows. In principle, one still might have doubts
whether the current inversion in Fig. 10 is not an artifact of
our approximations for the velocity field vW (xW ,t) form Sec.
III C. Since these approximations become better and better
with decreasing particle size, while in Fig. 11 the inversion
point can be made to occur even for very small sizes, there
remains little doubt that the current inversion is not an arti-
fact of our approximations.
Altogether, the effective transport velocities exhibit ex-

tremely nonlinear behavior as a function of the particle size,
which qualifies this ratchet type as an attractive candidate for
a separation device.

B. Effective particle diffusion

As Figs. 7 and 8 already suggest, and as we will see in
detail in the next section, besides the time- and space-
averaged transport velocity ve from Eq. ~21!, a further cru-
cial quantity for the particle separation mechanism is the
effective diffusion constant, i.e.,

Deª@^z2~ trun!&2^z~ trun!&2#/2trun . ~22!

Numerical calculations show that this definition makes
sense; i.e., De seems to approach a well-defined, finite limit
for trun@2p/v .

FIG. 11. The pumping amplitude A at which the particle current
changes sign as a function of the particle diameter for different
relative viscosities nR5n/nwater . Further details are as in Fig. 7.
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However, the ratio D e /D th is not independent of the par-
ticle size; cf. Fig. 12: For smaller particles the effective dif-
fusion is increased since they frequently change between liq-
uid ‘‘layers’’ of different speeds. Larger particles develop a
tendency to get trapped inside the pore cavities, yielding a
reduced effective diffusion. For similar reasons, D e /D th also
increases strongly as a function of the pumping amplitude A,
as Fig. 13 shows.

V. MODELING FINITE PORES WITH BASINS

In this section we abandon the idealization of infinitely
long pores and return to the real experimental setup with a
finite pore length and adjacent liquid-plus-particle basins as
indicated in Fig. 3.

A. Coarse-grained description

Assuming an initial homogeneous distribution of the par-
ticles in the liquid, how long does it take to achieve a con-
siderable gradient in the particle density under the action of

FIG. 12. The effective diffusion coefficient D e from Eq. ~22! in
units of the thermal diffusion coefficient D th versus particle diam-
eter for the same parameter values as in Fig. 9.

FIG. 13. The effective diffusion coefficient D e from Eq. ~22! in
units of the thermal diffusion coefficient D th versus pumping am-
plitude for a fixed particle diameter of 0.6 mm. Other parameter
values are as in Fig. 9. ~For the dashed lines only two data points
have been computed.!
the pumping mechanism in the pore domain as described in
Sec. III? The time scale of this separation process is clearly
much longer than any other relevant time scale of the sto-
chastic dynamics. On the one hand, this ‘‘separation of time
scales’’ makes a direct simulation of the process practically
unfeasible; on the other hand, it may be exploited as a major
ingredient for deriving a much simpler approximate effective
description on a coarse-grained level. The second ingredient
for doing so is based on the observation that the variation of
the particle density within one pore period is not of interest
for our question. Neither is the density variation in the x and
y directions: Inside the pores, it cannot be observed, and
outside we may assume a homogeneous distribution, since
there are about 1.53106 pores per square centimeter of the
silicon wafer.
Our starting point is the time-dependent particle density

P (x ,y ,z ,t). Note that this density is defined on the entire
three-dimensional space, being zero outside the region which
is accessible to the liquid-plus-particle suspension. Next we
define a coarse-grained one-dimensional probability density
P̄ (n ,t) according to

P̄~n ,t !ª
v

2p LEt2p/v

t1p/v
dt8E

n L2L /2

n L1L /2
dzE dxdyP~x ,y ,z ,t8!.

~23!

Thus, P̄ (n ,t) represents the one-dimensional probability
density along the z axis of finding a particle in the n th ‘‘unit
cell’’ of length L ~summed over all the parallel pores!. Inside
the pores, i.e., for 2zP<z<zP in Fig. 3, n52nP , . . . ,nP
numbers the pore periods. The total pore length is thus given
by (2nP11) L . In total, n runs from 2nB to nB to cover the
whole relevant z range @2zB ,zB# in Fig. 3. Note that for
reasons of particle conservation, the average over time in Eq.
~23! has typically only a very small effect but is included
here for the sake of convenience.
In order to predict the further evolution in time of the

coarse-grained density ~23!, knowledge of its present state
P̄ (n ,t) is obviously not sufficient; one needs also a detailed
distribution of particles inside each ‘‘unit cell’’ or, alterna-
tively, knowledge of the coarse-grained density over the en-
tire past ~non-Markovian dynamics!. The above-mentioned
separation of time scales, however, suggests that a very ac-
curate effective Markovian dynamics @further evolution only
in terms of the present-coarse grained state P̄ (n ,t)] should
be possible. The situation is much like in the context of
random walk theory @18#, deterministic diffusion @19#, Tay-
lor dispersion @13#, or nucleation @20#. For physical reasons,
only transitions between neighboring cells can play a role for
infinitesimal time increments; i.e., the coarse-grained dynam-
ics has the general form of a Markovian chain model

] P̄~n ,t !
]t 5k1~n21 ! P̄~n21,t !

1k2~n11 ! P̄~n11,t !2 P̄~n ,t !@k1~n !1k2~n !# .

~24!
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So far, all the rates k6(n) are still undetermined model pa-
rameters. However, all but two of them are immediately
fixed by the requirement that the known coarse-grained be-
havior inside the basins and inside the pores be correctly
reproduced. Namely, we require that the average drift veloc-
ity in the pore region, i.e., un u<nP , be ve and the effective
diffusion coefficient be D e . In the basin regions, i.e., un u
.nP , we have pure thermal diffusion D th and no drift in a
preferential direction. @The quantitative values of ve and D e
follow from the simulations in Sec. IV, while D th is given by
kT /h; see below Eq. ~1!.# In order to correctly reproduce
these transport properties in the coarse-grained model ~24!,
the rates are bound to take on the following values:

k6~n !5
D~n !

L2
6
v~n !

2L , ~25!

v~n !ªveQ~nP2un u!, ~26!

D~n !ªD th1~D e2D th!Q~nP2un u!, ~27!

where the step function Q(x) is 1 for x>0 and 0 otherwise.
This formula ~25! applies to all rates with the exception of
those two rates k2(nP11) and k1(2nP21) which describe
the transitions from the left and right basins into the pores,
respectively. Strictly speaking, the dynamics of the liquid
and thus of the particles at the matching points of the pore
and the basin regions is very complicated and thus the deri-
vation of these two rates is difficult, with the exception of the
fact that they are equal. Since also k2(nP12) is equal to
k1(2nP22), we thus may write

k2~nP11 !

k2~nP12 !
5

k1~2nP21 !

k1~2nP22 !
5:k . ~28!

A reasonable approximation for this single remaining model
parameter k can be obtained as follows: neglecting the par-
ticle dynamics in the x and y directions, a particle attempting
to enter the pore region will hit a pore and thus be successful
with a probability that is given as the ratio of areas of all the
pore cross sections and of the cross section of the basin. Thus
k2(nP11) is simply reduced by this factor in comparison
with the ‘‘normal case’’ k2(nP12), and similarly for k1

(2nP21). In other words, we can approximately identify k
with the ratio of areas of all the pore cross sections and of the
cross section of the basin. A typical value of this ratio of
areas for the real experiment is

k51/9. ~29!

This one-dimensional Markovian chain model ~24!–~29!
has also been checked by comparison to an improved three-
dimensional Markovian model, which naturally is able to
describe the change of accessible volume at the basin-pore
transitions without a modification of the hopping rates like in
Eqs. ~28! and ~29!. The numerical results from the one-
dimensional approach have been found to agree excellently
with those of the three-dimensional model.
Note that the terms on the right hand side of Eq. ~24! with

Eqs. ~25!–~28! can be rearranged into the form of a dis-
cretized Fokker-Planck equation in Ito interpretation. After
taking the limit L→0 with (2nP11)L52zP and (2nB
11)L52zB kept fixed, and zªnL , a continuous Fokker-
Planck equation of the following form can be derived @16#:

] P̄~z ,t !
]t 5

]

]z H 2v~z !1g~z !
]

]z
D~z !

g~z ! J P̄~z ,t !, ~30!

where we introduced

g~z !ª12~12k !Q~zP2uz u! ~31!

and where v(z),D(z) are defined analogously to Eqs. ~26!
and ~27!. Note that ~up to a normalization factor! g(z) is
nothing else than the area in the x-y plane that is accessible
to the liquid-plus-particle suspension as a function of z. In
other words, the ratio

r~z ,t !ª P̄~z ,t !/g~z ! ~32!

characterizes the averaged particle concentration, i.e., the
number of particles per volume of the surrounding liquid ~up
to an overall normalization factor and within the approxima-
tions of our coarse grained description!. By closer inspection
of Eq. ~30! one can infer that D(z) r(z ,t) is continuous at
the transition from the basins into the pore, whereas all other
quantities like D(z), g(z), P̄(z ,t), and r(z ,t) are discon-
tinuous.

B. Particle separation

The one-dimensional model ~24! can be readily solved in
the steady state, i.e., in the long time limit t→` ~superscript
‘‘`’’!:

P̄`~n !5N
)
2nB

n21

k1~m !

)
2nB11

n

k2~m !

, ~33!

where N is a normalization constant. Taking into account
Eqs. ~25!–~28! we find that P̄`(n) is constant and equal to
P̄`(nB) within the entire right basin, i.e., for n.nP , and
similarly for the left basin, and that the ratio of these time-
asymptotic particle concentrations is

P̄`~nB!

P̄`~2nB!
5S 11

ve L
2D e

12
ve L
2D e

D 2np11

, ~34!
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independent of the factor k from Eq. ~28!. In the limit L
→0, with (2nP11)L52zP and (2nB11)L52zB kept
fixed, we find from Eq. ~33! or, equivalently from Eq. ~30!
that

P̄`~z !

5N 5
1, 2zB< z ,2zP ,

k
Dth

De
expS ~z1zP!ve

D e
D , 2zP< z <zP ,

expS 2 zPve
D e

D , zP, z <zB .

~35!

The continuous expression P̄`(zB)/ P̄`(2zB)5exp(2zPve /
De) following from Eq. ~35! underestimates the ratio from
Eq. ~34! by an amount depending on the length scale L and
the exponent 2zPve /D e . The deviation stays below 10% for
L56 mm and exponents between 28 and 8. For the model
parameters as used in Figs. 9 and 10, this exponent
2zPve /D e takes values from 223 to 0 and 28 to 7, respec-
tively. Generally speaking, the continuous approximation
~35! is useful in the parameter region where transport inver-
sion occurs. However, for small driving amplitudes like in
Fig. 9, where high transport velocities in combination with
low effective diffusion may occur, the expression ~33! is
preferable.

C. Numerical results

For practical applications, not only are the steady state
concentrations important, but also the time needed to achieve
reasonably large concentration differences between the two
basins. An analytical solution of Eq. ~30! is still possible in

FIG. 14. Time evolution of the averaged particle density r(z ,t)
from Eq. ~32! by numerically solving Eqs. ~24!–~29! with particle
diameter 0.36 mm, L56 mm, zP563 mm, zB587 mm ~cf. Fig.
3!. For t50, the initial distribution is chosen homogeneous @r(z ,t
50)51# . The input parameters for the Langevin equation ~1! are
v/2p5100 Hz, nR50.5, and A5L , resulting in an effective trans-
port velocity of ve520.69 mm/s and an effective diffusion of
D e /D th53.8 ~compare Figs. 9 and 12!.
the time-dependent case but involves tedious definite inte-
grals over Gaussians. We therefore restrict ourselves to nu-
merical solutions of the Markovian chain model ~24!–~29!.
@Again, the agreement with solutions of Eq. ~30! has been
found to be very good.# Figure 14 shows how the drift
ratchet works as a micropump: The averaged particle density
r(z ,t) of microspheres with 0.36 mm diameter is plotted as a
function of z, for different pumping times t. For t50, the
particles are equally distributed over the whole accessible
volume in basins and pores, corresponding to r(z ,t50)51.
For t55 s, two peaks appear right outside the pores. They
originate from the facts that the diffusion inside the pores is
stronger than outside, and that the diffusive process is domi-
nant at small time scales. After 1 min, the pumping has
caused a clear bias in the particle distribution, which be-
comes even more pronounced after 10 min. One hour later, a
considerable concentration gradient has been built up which
is already quite close to the asymptotic long-time limit.
For this calculation, the extension of the basins in the z

direction was kept at a relatively small value of 24 mm. For
larger basins, more time is needed to achieve similar results,
because the particles have to diffusively cover a longer dis-
tance in the basins and because a larger quantity of particles
has to be transported from one basin into the other until the
concentration difference takes appreciable values. A certain
acceleration can be achieved by stirring in the basins. How-
ever, if larger basin volumes are desirable, it is better to
extend the geometry in x and y direction, thereby also in-
creasing the number of macropores.
Figure 15 shows the separating power of our model de-

vice: Here, we started with a homogeneous suspension of an
equal number of two different types of particles in the carrier
liquid: The microspheres of type 1 have a diameter of 0.36
mm and those of type 2 of 0.7 mm. The input parameters are
the same as before, except for the pumping amplitude of A
52L . The corresponding effective velocities are ve(1)

FIG. 15. Ratio P̄2(zB ,t)/ P̄1(zB ,t)5r2(zB ,t)/r1(zB ,t) of the
densities for two types of particles at the border z5zB of the right
basin, as a function of the pumping time, calculated from Eq. ~24!.
Solid line: for homogeneous initial densities r1,2(z ,t50) over ba-
sins and pores. Dashed line: for homogeneous initial distribution in
the pore region and vanishing densities in the basin regions. Param-
eters: microsphere diameters 0.36 mm and 0.7 mm, nR50.5, A
52L , v/2p5100 Hz, ve521.6 and 0.54 mm/s, and D e /D th
510.8 and 10.5, respectively.
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521.6 mm/s and ve
(2)50.54 mm/s, respectively ~compare

Fig. 10!, and the effective diffusion constants are D e
(1)

510.8D th and D e
(2)510.5D th , respectively.

Since the smaller particles travel to the left basin and the
bigger ones to the right basin, the ratio of the particle densi-
ties at the end of the right basin, P̄ 2(zB , t)/ P̄ 1(zB , t), in-
creases with time. Note that the ratio of densities,
r2(zB , t)/r1(zB , t), from Eq. ~32! coincides with
P̄ 2(zB , t)/ P̄ 1(zB , t). The solid line shows the case of an ho-
mogeneous initial distribution of all particles throughout ba-
sins and pores @r1,2(z , t50)[1# . The dashed line corre-
sponds to homogeneous initial distribution only within the
pores, and no particles in the basins. Due to the larger diffu-
sion of the smaller particles, the ratio P̄ 2(zB , t)/ P̄ 1(zB , t) is
smaller than one in the beginning, but then the separation is
somewhat faster than in the first scenario.
The steady-state ratio ~long time limit! P̄ 2

`(zB)/ P̄ 1
`(zB)

for an equal number of type 1 and type 2 particles can be
calculated from Eq. ~35!. With the abbreviation E 1,2
ªexp(2zPve

(1,2)/D e
(1,2)), the ratio is given by

P̄ 2
`~zB !

P̄ 1
`~zB !

5
E 2
E 1
,

~36!

~zB2z P !~11E 1!1k
D th
(1)

ve
(1) ~E 121 !

~zB2z P !~11E 2!1k
D th
(2)

ve
(2) ~E 221 !

.

For the parameters of Fig. 15, this theoretical ratio reaches
the value P̄ 2

`(zB)/ P̄ 1
`(zB)52958, which somewhat underes-

timates the value of 3272 found as the large time end in Fig.
15.
Note that these results were achieved without fine-tuning

any parameters or optimizing the shape of the pores. For
instance, for higher pumping frequencies, the transport ve-
locities can be considerably increased, with the effective dif-
fusion almost staying constant. This should allow an even
better separation of different types of particles.
Obviously, the ability of our drift ratchet to transport par-

ticles in different directions is very useful for separation pur-
poses. As already mentioned at the end of Sec. IVA, the
particle size at which the current inversion occurs will
change when the geometry of the pores, e.g., their diameter,
is changed. Therefore, each macroporous silicon wafer with
a certain geometry of the pores can be used as a highly
accurate filter for a certain spectrum of particle sizes.

VI. SUMMARY AND OUTLOOK

In this paper we have theoretically analyzed a silicon wa-
fer, pierced by a huge number of practically identical parallel
pores with a ratchet-shaped, i.e., periodic but asymmetric,
variation of the diameter along the pore axis ~Figs. 1–3!. The
pores are filled with a liquid ~e.g., water! and connected at
both ends to basins and some pumping device that produces
a time-periodic current of liquid back and forth through the
pores. Suspended in the liquid are particles of micrometer
size and the objective is to separate them according to their
size into the two basins.
We have put forward a stochastic model for an idealized

infinitely long and exactly periodic pore under the assump-
tion of negligible particle inertia, gravitation effects, interac-
tions with other particles, and interactions with the pore
walls other than via the perfect reflecting boundary condi-
tions. In the calculation of the liquid velocity field that car-
ries the particles we have used the Navier-Stokes equation
for an incompressible viscous liquid with negligible inertia
terms ~so-called creeping-flow approximation!, justified by
the small Reynolds and big Strouhal numbers arising under
realistic experimental conditions. The impact of the finite
particle size on the liquid velocity field has been neglected,
but the effective velocity experienced by the extended par-
ticle in the inhomogeneous velocity field has been taken into
account approximately.
The ratchet-shaped pore profile in conjunction with the

far-from-equilibrium situation created by the periodically al-
ternating velocity field of the liquid gives rise to a ratchet
effect, i.e., a net particle transport along the pore axis, al-
though both the external force of the streaming liquid and the
thermal noise average out to zero. The basic physical mecha-
nism for the emergence of such a nonvanishing net particle
current is the thermal diffusion between ‘‘liquid layers’’ of
different speed—similar to Taylor dispersion @13#—and the
collisions with the pore walls. Through the asymmetry of the
pore profile an asymmetry between pumping forth and back
arises for both the thermal interlayer diffusion and the colli-
sions with the pore walls, resulting in a nonvanishing particle
displacement on average after one driving period. The fact
that the excursions of the particles during one driving period
are typically much larger than the net displacement after one
period motivates the name ‘‘drift ratchet.’’ It may also be
worth noting that in biological systems where substances are
transported in determined directions along so-called micro-
tubuli, the achieved velocities of about 1 mm/s are of the
same order of magnitude as those predicted for our setup.
The dependence of the magnitude and even the direction

of the net particle current upon the particle size is difficult to
predict intuitively. The numerically observed sensitive de-
pendence of the current direction on the particle size ~Fig.
10! appears to be a quite robust feature of this class of dif-
fusion ratchets. In particular, an exact spherical shape of the
particles does not seem necessary.
For a real silicon wafer with pores of finite length, con-

nected at both ends with liquid-plus-particle reservoirs, we
have introduced a coarse-grained description, based on an
approximate but apparently fairly faithful Markovian as-
sumption, with the result of an effective one-dimensional
Markovian chain model, quite similar to the coarse-grained
models employed in various other contexts @13,18–20#. The
model parameters in this effective description can be deter-
mined either through the ‘‘first principles’’ Langevin ap-
proach from Secs. III and IV or by fitting with the real ex-
periment. For a realistic choice of parameters our numerical
and analytical calculations predict a surprisingly high sepa-
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rating power of the device with a remarkable resolution with
respect to particle size ~Figs. 14 and 15!.
As a generalization of the original setup from Fig. 3 one

may also consider an alternating sequence of several basins
and silicon wafers with different pore characteristics. In this
way, more than two types of particles could be separated
within a single run by accumulating them in a controlled way
inside the different basins.
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U. Grüning, Thin Solid Films 297, 13 ~1997!; S. Ottow, V.
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and P. Hänggi, Phys. Lett. A 215, 26 ~1996!; I. Zapata, R.
Bartussek, F. Sols, and P. Hänggi, Phys. Rev. Lett. 77, 2292
~1996!; J. Plata, Phys. Rev. E 57, 5154 ~1998!.

@12# K.M. Jansons and G.D. Lythe, Phys. Rev. Lett. 81, 3136
~1998!; D.E. Postnov, A.P. Nikitin, and V.S. Anishchenko,
Phys. Rev. E 58, 1662 ~1998!; M. Borromeo and F.
Marchesoni, Phys. Lett. A 249, 199 ~1998!; C. Van den Bro-
eck, Europhys. Lett. 46, 1 ~1999!.

@13# G.I. Taylor, Proc. R. Soc. London, Ser. A 219, 186 ~1953!; I.
Claes and C. Van den Broeck, J. Stat. Phys. 70, 1215 ~1993!,
and further references therein.

@14# L.G. Leal, Laminar Flow and Convective Transport
~Butterworth-Heinmann, Boston, 1992!; Z.U.A. Warsi, Fluid
Dynamics ~CRC Press, Boca Raton, FL, 1992!.

@15# For instance, in the real experimental setup with finite pore
length from Fig. 3, the pressure at the pore ends is expected to
be more or less constant over the entire pore cross section.

@16# H. Risken, The Fokker-Planck Equation ~Springer, Berlin,
1984!.

@17# G.W. Slater, H.L. Guo, and G.I. Nixon, Phys. Rev. Lett. 78,
1170 ~1997!.

@18# G.H. Weiss, Aspects and Applications of the Random Walk
~North-Holland, Amsterdam, 1994!.

@19# H. Fujisaka and S. Grossmann, Z. Phys. B: Condens. Matter
48, 261 ~1982!; T. Geisel and J. Nierwetberg, Phys. Rev. Lett.
48, 7 ~1982!; M. Schell, S. Fraser, and R. Kapral, Phys. Rev. A
26, 504 ~1982!.

@20# V.A. Shneidman and P. Hänggi, Phys. Rev. E 49, 894 ~1994!.


