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In the regime of weak bath coupling and low temperature we demonstrate numerically for the spin-boson
dynamics the equivalence between two widely used but seemingly different roads of approximation, namely,
the path-integral approach and the Bloch-Redfield theory. The excellent agreement between these two methods
is corroborated by an efficient analytical high-frequency approach: it well approximates the decay of quantum
coherence via a series of damped coherent oscillations. Moreover, a suitably tuned control field can selectively

enhance or suppress quantum coherence.
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The dynamics of driven quantum systems which interact
with a large number of environmental degrees of freedom
[1-3] plays an increasingly prominent role: its vast applica-
bility ranges from tunneling phenomena in solid state phys-
ics, the study of electron and proton transfer in condensed
phases, to the gate operation in quantum computing devices
[4], to name but a few. In particular, the use of properly
tailored external driving forces enables one to selectively
manipulate a quantum transport process. The various com-
munities typically rely on different methods of description.
The two most popular approaches for a portrayal of the time
evolution of the corresponding reduced density matrix
(RDM) are either based on the system-bath coupling expan-
sion obtained by use of a projector operator method (com-
monly known as the Bloch-Redfield formalism), or on the
expansion in the coupling matrix element A (such as a tunnel
splitting) by use of (real-time) path-integral methods. Nev-
ertheless, there exists practically little crosstalk between the
practitioners of the two approaches, and even more, not
much of detailed comparison between the two seemingly dif-
ferent roads of approximation needed for practical calcula-
tions.

For the archetype quantum system of a driven spin-boson
dynamics, namely, the driven dissipative two-state system
(TSS) dynamics (TSS) [3], the application of the so termed
noninteracting blip approximation (NIBA), i.e., the leading
order result in the tunnel coupling A2, produced many im-
pressive successes in entangling the complexity of driven
open quantum systems. This scheme works best in the re-
gime of strong friction and/or high thermal temperatures.
Much less is presently known, however, about the corre-
sponding complexity of the driven dynamics in the deep
quantum regime at low temperatures and weak system-bath
coupling, where the NIBA is failing and higher order terms
in the series in A must be accounted for [5,6]. In practice,
this latter regime is of relevance for many situations such as,
e.g., for the challenge of ‘‘battling decoherence’’ in quantum
computing schemes [4].

Our main objective with this work is to enlight the advan-
tages and disadvantages of the two approaches. In doing so
we present three major findings: (i) We numerically demon-
strate the equivalence for the driven tunneling dynamics be-
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tween the path-integral method beyond NIBA and the
coupled set of nonstationary, Markovian Bloch-Redfield
equations. (ii) Starting from the generalized master equation
(GME) for the RDM, obtained within the path-integral ap-
proach, we arrive at an analytic high driving frequency ap-
proximation that compares well with comprehensive numeri-
cal findings. (iii) With this analytical result one can
efficiently determine the optimal control of quantum coher-
ence.

Our starting point is the driven spin-boson Hamiltonian
[3] where the TSS is bilinearly coupled to an ensemble of
harmonic oscillators, i.e.,

A(t)=—h[Ag, +e(t)o.12+ X thw(b]b,+1/2)
+0.> ci(b+5))2, (1)

with o, being Pauli spin matrices. Here A describes the cou-
pling between the two states, and €(¢) is the external, time-
dependent control field. The basis states are chosen such that
R) (right) and |L) (left) are the localized eigenstates of the
““position”> operator o, . All effects of the Gaussian bath on
the TSS are captured by the force autocorrelation func-
tion [1-3] M($)=(1/m)[jdwJ(w)[cosh(fiw/2kzT—iwt)/
sinh(fiw/2kzT)], where the spectral density of the environ-
ment, J(w)= wﬁ722,—cf Sw—w)=2mawe %, is as-
sumed to be of Ohmic form with exponential cutoff and
dimensionless coupling strength «. The dynamical quantities

of interest are the expectation values o;(¢):=Tr{p(t)o;}
which, together with the unit matrix 1 , comprise the com-
plete reduced density matrix p(7)=17/2+ Ei=x’y,zai(t)c}[/2.
In the following we assume that at time =0 the particle is
held at the right site o,= + 1, with the bath being in thermal
equilibrium.

Path-integral approach. For a harmonic bath the exact
formal solution for the evolution of the o;(¢#) can be ex-
pressed in terms of real-time double path integrals [1-3].
This procedure yields the formally exact set of equations
[3.5,6]
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c'rz<r>=fotdz'[&ﬂ(r,r')—Ki“(z,r')az(r')],

t (2)
o'x(t)=f dt'TK D (6,e")+ K (1, ) o, (1],

0

and o, (1) = —0,(t)/A. Here, the kernels K§i> , I=Xx,z are
found in the form of a series expansion in A. Because the
exact series expression cannot be evaluated to all orders,
approximation schemes necessarily must be invoked. A fa-
miliar scheme is the noninteracting-blip approximation
(NIBA) [1-3], which corresponds to a truncation of the se-
ries expansion to lowest order in A. The NIBA is approxi-
matively valid only for the dynamics of o.(¢) if on average
(e(1))=0. However, in the presence of a static asymmetry
component, it breaks down for weak damping and low tem-
peratures [2,3]. A systematic weak damping approximation
for the kernels K ﬁi) in Eq. (2), which circumvents the weak-
nesses of the NIBA has been discussed in [5,6]. By keeping
track of the bath-induced correlations to /inear order in «,
the whole series expansion in A can be summed analytically.
The kernels Kﬁi) read

Kty =A% cos[ £(1,t)[1 =0 (1—1")]

t t
+f dtzf 2altlA“ sin[ £(2,25)]
t t

X Po(ty,ty)sin[ {(ty,t")][Q"(t—1")

+0'(t,—t))=0'(t,—t")— Q' (t—1t))],
3)
K (1,0 )=A%sin[£(2,¢')]Q"(t—1")

- Jtt’dfzj;t’zdtlA4 Sin[g(t,tz)]Po(tz,tl)
xXcos[{(t,,t")][Q"(1=1") = Q"(t,—1")].

Here, the first term in Kf) represents the weak-coupling
form of NIBA. In the remaining contribution the term
Py(t,,t;) accounts for all tunneling events during the time
interval [¢;,7,] that are not influenced by damping. Hence,
Py(t,,t) solves the generalized master equation (GME) for
o.(t) (2) with the zero-damping kernels K(7)(z,¢")
=A%cos[{(tt)] and K (t,t')=0, where {(t,1")
= ;,dt"e(t") captures the effects of the external force. The
bath-influence is encapsulated in the functions Q'(¢) and
Q"(t) being the real and imaginary part, respectively, of the
twice integrated bath correlation function M(¢).
Bloch-Redfield formalism. In the Nakajima-Zwanzig
theory [7] it is well known how to construct an exact gener-
alized master equation for the reduced density matrix with
the help of projection operators. For intermediate to high
temperatures and/or strong damping, but for arbitrary driv-

ing, a master equation for p(¢) can be obtained within the
small polaron theory, yielding equations that are equivalent
to the NIBA [8,9]. For weak coupling to the bath the projec-
tion operator technique yields the GME in Born approxima-
tion that can be further simplified to the Markovian kinetic
equations without loss of accuracy to the leading order in
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dissipative coupling. For strong harmonic driving this objec-
tive was first achieved in 1964 by Argyres and Kelley [10].
Following the reasoning in [10] the kinetic equations for the
RDM of a stochastically driven TSS were found in [11(a)]
and in a different way in [11(b)]. Generalizing [10,11] to the
case of a spin-boson problem with an arbitrary control field
we find the coupled equations

d-x(t): 6(t)o-y_rxx(t)o-x_sz(t)o'z_Ax(t),
“4)
o,(t)=—et)o,+Ao,~T, ()o,~T,.(t)o.—A4,(1),

with T’ ()=, (¢) and o,= —Ao,. Here the time-
dependent rates F,—_/-(t)=ff)dt’M’(t—t’)b[/(t,t’), together
with the inhomo-
geneities A, (1)=ImF (1), 4,(1)=ReF(¢), with F(r)
=2[4dt' M"(t—1t")Ugg(t,t")Ug.(t,t") determine the dissi-
pative action of the thermal bath on the TSS. The functions
M' and M" are the real part and imaginary part, respec-
tively, of the correlation function M. The quantities
Ural(t.t)=(R|U(1,t")|R) and Upy(1,t")=(R|U(1,1")|L)
are matrix elements of the time evolution operator
U(t,t") of the nondissipative driven TSS. The functions
b;; read bxx=|URR|2_|URL|29 b,.=2Re UgpUg,, and
b,.=—2Im UggUpg; . This main result in Eq. (4) yields a
consistent Bloch-Redfield-type description of the externally
driven spin-boson dynamics. Equations of the form (4) were
derived by Bloch and Redfield in 1957 [12] to describe spin
relaxation in nuclear magnetic resonance, and in [13] for the
dynamics of the undriven spin-boson problem. Our set of
Egs. (4) generalizes [13] to general driving forces. Note that
these derived equations are valid in the parameter region
a In(w,./A)<<1, where the frequency corrections to the dy-
namics incurred due to the dissipation are small, and the
perturbative treatment is fair. One can show that for the un-
driven case, €(¢) = €, the analytic solution of Eq. (4) in first
order in a reproduces the analytical path-integral weak-
damping results, cf. [2,6] and Eq. (5) below with zero ac-
field.

Analytic high-frequency solution. Up to now no assump-
tions on the deterministic control field have been made.
Next, we focus our attention on a monochromatic field of the
form e(7)=€,+s cos (). Moreover, we restrict our investi-
gations on the o.(¢)-dynamics, as this quantity is of prime
interest for describing tunneling properties. Because the
path-integral approach yields a closed integro-differential
equation for o.(¢), we start from the generalized master
equation (2). In the high-frequency regime [Q
>{A,€y,I"z}, with I'; defined in Eq. (6) below] a good ap-
proximation to the dynamics of o.(f) amounts to perform
the substitution R[{(z,2")]—=(R[L(¢,t")]y=Jo(x)R[ €o(t
—t")] into the kernels K;t)(t,t’), where R = cos or sin and
x=(25/Q)sin[Q(¢t—1")/2]. Here () denotes time-averaging,
and J, is the zero order Bessel function. The resulting gen-
eralized master equation is in the form of a time-convolution.
A solution is conveniently obtained by use of Laplace trans-
formation techniques, upon generalizing a line of reasoning
proposed in Ref. [5]. By expanding the Bessel function
Jo(x) in Fourier series, and upon introducing the field-
dressed tunneling splittings A, =|J,,(s/{)|A and the photon-
induced asymmetries €,= €,—n{), we end up with
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FIG. 1. Matching between path integral and Bloch-Redfield.
The comparison of the dynamical Egs. (2), (4), and (5) for unbiased
TSS-dynamics depicts excellent agreement. For this resonant con-
dition (ep=n*Q, n*=0) the dynamics is well described by Eq.
(5) with the single-mode frequency 6,=A,. Here and in the fol-
lowing figures frequencies are expressed in units of A, times in
units of A™!. The temperature is zero throughout.

0,(1)=P,+(Py—P,)e Tr'+ 2 C, cos(B,t)e Fnt,
(5)

Conservation of probability yields Py+2,C,=1, with P,
=11,(€,/6,)*, and C,=I1,(6;—&,)/[6;11,,-,(6;,— 6,)].
The damping rates and the averaged nonequilibrium value
P read [14]

1
Fe=22T,, T,=;C./35(6,). (6)
LS Bpeao)S 2
PW?E ~ Pﬁfncm](an) -~ Hi— 31- (7)
Here  f,=\Po0,2,0,/[€.(0;—€)], and  S(6)

=J(0)coth(h0/2kzT). The infinite set of frequencies 6, is
determined by the pole equation for the undamped TSS
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FIG. 2. Driving induced quantum coherence phenomena. In the
presence of a quasiresonant high-frequency field away from the
zeros of J,x(s/)), the population difference o.(¢) exhibits a co-
herent oscillatory decay which is dominated by a single mode os-
cillation frequency @,+. A comparison between the predictions of
the analytical solution (5) with just the single-mode frequency 6,
for a near-resonant field (i.e., n* =1 with €, =|€,— Q| =0.2A) with
the Bloch-Redfield result in Eq. (4) is depicted. Note that in the
undriven situation (s=0) the TSS dynamics is almost completely
localized.
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FIG. 3. Controlling tunneling. In the presence of an off
resonance no net separation of time scales occurs and the popula-
tion o,(¢) shows a complex interference pattern (a). Note that the
numerical solutions of Bloch-Redfield and path-integral equations
coincide within linewidth. The TSS dynamics is dominated by an
incoherent decay towards its asymptotic limit (b), so that quantum
coherence is lost. The incoherent decay rate I",, however, can be
strongly diminished. This is demonstrated in the upper left inset
where the photon assisted decay rate 1"y is plotted vs the dc-bias
€. It exhibits characteristic resonance peaks at multiple integers of
the driving frequency (). These peaks are shifted replicas of the
dc-driven (s=0) rate with different weights. Thus, a suitable cho-
sen bias can enhance or suppress the decay of populations. Finally,
the lower right inset shows the averaged nonequilibrium population
difference P, . It exhibits a nonmonotonic dependence on the dc-
bias when combined with a high-frequency field. For appropriate
values of the dc-field a population inversion (P, <0 when €,>0,
and vice versa) can occur.

IT (e-»H+> a2 Il (&-6)=o. ®)

n m,m+n

Finally, to approximately take into account bath-induced

frequency-shifts the tunneling frequencies 6, are evaluated
from Eq. (8) upon substituting A,—A,[1—aln(w,/A)]
:=A, . Thus, in this high-frequency regime the system gener-
ally still exhibits damped coherent oscillations, as in the un-
driven case, although, an infinite set of oscillation frequen-

cies 6, with corresponding damping rates I', enters this
driven dynamics. Superimposed to these coherent oscilla-
tions there occurs an incoherent decay with rate I', towards
P..

In Figs. 1-3 we depict comparisons amongst the numeri-
cal predictions of the Born-Markov equations (4), the path-
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integral GME (2), and the analytical solution (5) for small
Ohmic friction and zero temperature. For the driven dynam-
ics the agreement is remarkable. It increases further with
increasing temperature (not shown). To achieve a conver-
gence of Eq. (5) a truncation of the pole equation (8) to five
(or less, cf. Figs. 1 and 2) modes, characterized by (A, ,€,),
turned out to be sufficient. In Fig. 1 the influence of an
unbiased (€,=0) control field is investigated. This corre-
sponds to a resonant (e,=n*()) field with n*=0. In Figs. 2
and 3 the case of a finite bias €,#0 is depicted. Figure 2
depicts the near-resonant situation |ey—n*Q|=|¢,x|
<{A& ,«,| €|} away from the zeros of J,«(s/€): the coherent
dynamics is now already well captured by the single reso-

nant mode frequency 6, = \/Ei* + ei*. This finding gener-
alizes the small-dc-bias analysis in [15]. In addition, we de-
duce from the parameters chosen in Fig. 2 that our approach
can even work for intermediate driving frequencies ({)

~¢,). Due to the fact that A <A, and €,+<e¢,, the field-

induced oscillation frequency 6,+ can be much smaller than
in the undriven case. In the off-resonance situation
(le,|>A, for all n) of Figs. 3(a) and 3(b), o,(¢) exhibits a
complex interference pattern with quantum coherence sup-
pressed. Moreover, the decay towards the nonstationary
equilibrium value occurs on a much longer time scale as
compared to the case with s=0. This result, observed re-
cently in [16], can be understood via close inspection of the
upper left inset in Fig. 3(b), where the averaged decay rate
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I' is plotted versus €. For the chosen parameters the decay
rate is strongly diminished. Moreover, the lower right inset
depicts the averaged nonequilibrium value P.. versus the dc-
bias €,. Here, photon assisted tunneling rules the possible
inversion of asymptotic population (i.e., P,,<0, for €,>0,
and vice versa).

In conclusion we maintain that in the perturbative regime
[aIn(w,/A)<1] it is numerically advantageous to evaluate
the weak coupling tunneling dynamics by using the nonsta-
tionary Markovian Bloch-Redfield equations, as compared to
the non-Markovian path-integral GME. We find numerically
perfect agreement as depicted with Figs. 1-3. Within the
time scale of tunneling we find no observable non-
Markovian effects. On physical grounds, the same remarks
apply to the time evolution of the full density matrix. Note,
however, that for the scaling regime (i.e., cutoff w,— )
Bloch-Redfield theory increasingly fails; it then is necessary
to correct even the path-integral GME with an additional,
concocted renormalization scheme [6]. Finally, our analyti-
cal scheme may prove prominent in order to optimize quan-
tum coherence.
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