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Driven tunneling dynamics: Bloch-Redfield theory versus path-integral approach
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In the regime of weak bath coupling and low temperature we demonstrate numerically for the spin-boson
dynamics the equivalence between two widely used but seemingly different roads of approximation, namely,
the path-integral approach and the Bloch-Redfield theory. The excellent agreement between these two methods
is corroborated by an efficient analytical high-frequency approach: it well approximates the decay of quantum
coherence via a series of damped coherent oscillations. Moreover, a suitably tuned control field can selectively
enhance or suppress quantum coherence.

PACS number~s!: 05.40.2a, 82.20.Mj, 03.65.Db
The dynamics of driven quantum systems which interact
with a large number of environmental degrees of freedom
@1–3# plays an increasingly prominent role: its vast applica-
bility ranges from tunneling phenomena in solid state phys-
ics, the study of electron and proton transfer in condensed
phases, to the gate operation in quantum computing devices
@4#, to name but a few. In particular, the use of properly
tailored external driving forces enables one to selectively
manipulate a quantum transport process. The various com-
munities typically rely on different methods of description.
The two most popular approaches for a portrayal of the time
evolution of the corresponding reduced density matrix
~RDM! are either based on the system-bath coupling expan-
sion obtained by use of a projector operator method ~com-
monly known as the Bloch-Redfield formalism!, or on the
expansion in the coupling matrix element D ~such as a tunnel
splitting! by use of ~real-time! path-integral methods. Nev-
ertheless, there exists practically little crosstalk between the
practitioners of the two approaches, and even more, not
much of detailed comparison between the two seemingly dif-
ferent roads of approximation needed for practical calcula-
tions.

For the archetype quantum system of a driven spin-boson
dynamics, namely, the driven dissipative two-state system
~TSS! dynamics ~TSS! @3#, the application of the so termed
noninteracting blip approximation ~NIBA!, i.e., the leading
order result in the tunnel coupling D2, produced many im-
pressive successes in entangling the complexity of driven
open quantum systems. This scheme works best in the re-
gime of strong friction and/or high thermal temperatures.
Much less is presently known, however, about the corre-
sponding complexity of the driven dynamics in the deep
quantum regime at low temperatures and weak system-bath
coupling, where the NIBA is failing and higher order terms
in the series in D must be accounted for @5,6#. In practice,
this latter regime is of relevance for many situations such as,
e.g., for the challenge of ‘‘battling decoherence’’ in quantum
computing schemes @4#.

Our main objective with this work is to enlight the advan-
tages and disadvantages of the two approaches. In doing so
we present three major findings: ~i! We numerically demon-
strate the equivalence for the driven tunneling dynamics be-
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tween the path-integral method beyond NIBA and the
coupled set of nonstationary, Markovian Bloch-Redfield
equations. ~ii! Starting from the generalized master equation
~GME! for the RDM, obtained within the path-integral ap-
proach, we arrive at an analytic high driving frequency ap-
proximation that compares well with comprehensive numeri-
cal findings. ~iii! With this analytical result one can
efficiently determine the optimal control of quantum coher-
ence.

Our starting point is the driven spin-boson Hamiltonian
@3# where the TSS is bilinearly coupled to an ensemble of
harmonic oscillators, i.e.,

Ĥ~ t !52\@Dŝx1e~ t !ŝz#/21(
i

\v i~ b̂ i
†b̂ i11/2!

1ŝz(
i

c i~ b̂ i1 b̂ i
†!/2, ~1!

with ŝ i being Pauli spin matrices. Here D describes the cou-
pling between the two states, and e(t) is the external, time-
dependent control field. The basis states are chosen such that
uR& ~right! and uL& ~left! are the localized eigenstates of the
‘‘position’’ operator ŝz . All effects of the Gaussian bath on
the TSS are captured by the force autocorrelation func-
tion @1–3# M(t)5(1/p)*0

`dvJ(v)@cosh(\v/2kBT2ivt)/
sinh(\v/2kBT)# , where the spectral density of the environ-
ment, J(v)5p\22( ic i

2d(v2v i)52pave2v/vc, is as-
sumed to be of Ohmic form with exponential cutoff and
dimensionless coupling strength a . The dynamical quantities
of interest are the expectation values s i(t)ªTr$r̂(t)ŝ i%
which, together with the unit matrix Î , comprise the com-
plete reduced density matrix r̂(t)5 Î/21( i5x ,y ,zs i(t)ŝ i/2.
In the following we assume that at time t50 the particle is
held at the right site sz511, with the bath being in thermal
equilibrium.

Path-integral approach. For a harmonic bath the exact
formal solution for the evolution of the s i(t) can be ex-
pressed in terms of real-time double path integrals @1–3#.
This procedure yields the formally exact set of equations
@3,5,6#
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ṡz~ t !5E
0

t
dt8@Kz

(2)~ t ,t8!2Kz
(1)~ t ,t8!sz~ t8!# ,

~2!

sx~ t !5E
0

t
dt8@Kx

(1)~ t ,t8!1Kx
(2)~ t ,t8!sz~ t8!# ,

and sy(t)52ṡz(t)/D . Here, the kernels K i
(6) , i5x ,z are

found in the form of a series expansion in D . Because the
exact series expression cannot be evaluated to all orders,
approximation schemes necessarily must be invoked. A fa-
miliar scheme is the noninteracting-blip approximation
~NIBA! @1–3#, which corresponds to a truncation of the se-
ries expansion to lowest order in D . The NIBA is approxi-
matively valid only for the dynamics of sz(t) if on average
^e(t)&50. However, in the presence of a static asymmetry
component, it breaks down for weak damping and low tem-
peratures @2,3#. A systematic weak damping approximation
for the kernels K i

(6) in Eq. ~2!, which circumvents the weak-
nesses of the NIBA has been discussed in @5,6#. By keeping
track of the bath-induced correlations to linear order in a ,
the whole series expansion in D can be summed analytically.
The kernels Kz

(6) read

Kz
(1)~ t ,t8!5D2 cos@z~ t ,t8!#@12Q8~ t2t8!#

1E
t8

t
dt2E

t8

t2
dt1D4 sin@z~ t ,t2!#

3P0~ t2 ,t1!sin@z~ t1 ,t8!#@Q8~ t2t8!

1Q8~ t22t1!2Q8~ t22t8!2Q8~ t2t1!# ,
~3!

Kz
(2)~ t ,t8!5D2 sin@z~ t ,t8!#Q9~ t2t8!

2E
t8

t
dt2E

t8

t2
dt1D4 sin@z~ t ,t2!#P0~ t2 ,t1!

3cos@z~ t1 ,t8!#@Q9~ t2t8!2Q9~ t22t8!# .

Here, the first term in Kz
(6) represents the weak-coupling

form of NIBA. In the remaining contribution the term
P0(t2 ,t1) accounts for all tunneling events during the time
interval @ t1 ,t2# that are not influenced by damping. Hence,
P0(t2 ,t1) solves the generalized master equation ~GME! for
sz(t) ~2! with the zero-damping kernels K (1)(t ,t8)
5D2 cos@z(t,t8)# and K (2)(t ,t8)50, where z(t ,t8)
5* t8

t dt9e(t9) captures the effects of the external force. The
bath-influence is encapsulated in the functions Q8(t) and
Q9(t) being the real and imaginary part, respectively, of the
twice integrated bath correlation function M(t).

Bloch-Redfield formalism. In the Nakajima-Zwanzig
theory @7# it is well known how to construct an exact gener-
alized master equation for the reduced density matrix with
the help of projection operators. For intermediate to high
temperatures and/or strong damping, but for arbitrary driv-
ing, a master equation for r̂(t) can be obtained within the
small polaron theory, yielding equations that are equivalent
to the NIBA @8,9#. For weak coupling to the bath the projec-
tion operator technique yields the GME in Born approxima-
tion that can be further simplified to the Markovian kinetic
equations without loss of accuracy to the leading order in
dissipative coupling. For strong harmonic driving this objec-
tive was first achieved in 1964 by Argyres and Kelley @10#.
Following the reasoning in @10# the kinetic equations for the
RDM of a stochastically driven TSS were found in @11~a!#
and in a different way in @11~b!#. Generalizing @10,11# to the
case of a spin-boson problem with an arbitrary control field
we find the coupled equations

ṡx~ t !5e~ t !sy2Gxx~ t !sx2Gxz~ t !sz2Ax~ t !,
~4!

ṡy~ t !52e~ t !sx1Dsz2Gyy~ t !sy2Gyz~ t !sz2Ay~ t !,

with Gyy(t)5Gxx(t) and ṡz52Dsy . Here the time-
dependent rates G i j(t)5*0

t dt8M8(t2t8)b i j(t ,t8), together
with the inhomo-
geneities Ax(t)5ImF(t), Ay(t)5ReF(t), with F(t)
52*0

t dt8M9(t2t8)URR(t ,t8)URL(t ,t8) determine the dissi-
pative action of the thermal bath on the TSS. The functions
M8 and M9 are the real part and imaginary part, respec-
tively, of the correlation function M. The quantities
URR(t ,t8)5^RuU(t ,t8)uR& and URL(t ,t8)5^RuU(t ,t8)uL&
are matrix elements of the time evolution operator
U(t ,t8) of the nondissipative driven TSS. The functions
b i j read bxx5uURRu22uURLu2, bxz52 ReURRURL , and
byz522 ImURRURL . This main result in Eq. ~4! yields a
consistent Bloch-Redfield-type description of the externally
driven spin-boson dynamics. Equations of the form ~4! were
derived by Bloch and Redfield in 1957 @12# to describe spin
relaxation in nuclear magnetic resonance, and in @13# for the
dynamics of the undriven spin-boson problem. Our set of
Eqs. ~4! generalizes @13# to general driving forces. Note that
these derived equations are valid in the parameter region
a ln(vc /D)!1, where the frequency corrections to the dy-
namics incurred due to the dissipation are small, and the
perturbative treatment is fair. One can show that for the un-
driven case, e(t)5e0, the analytic solution of Eq. ~4! in first
order in a reproduces the analytical path-integral weak-
damping results, cf. @2,6# and Eq. ~5! below with zero ac-
field.

Analytic high-frequency solution. Up to now no assump-
tions on the deterministic control field have been made.
Next, we focus our attention on a monochromatic field of the
form e(t)5e01s cosVt. Moreover, we restrict our investi-
gations on the sz(t)-dynamics, as this quantity is of prime
interest for describing tunneling properties. Because the
path-integral approach yields a closed integro-differential
equation for sz(t), we start from the generalized master
equation ~2!. In the high-frequency regime @V
@$D ,e0 ,GR%, with GR defined in Eq. ~6! below# a good ap-
proximation to the dynamics of sz(t) amounts to perform
the substitution R@z(t ,t8)#→^R@z(t ,t8)#&5J0(x)R@e0(t
2t8)# into the kernels Kz

(6)(t ,t8), where R5cos or sin and
x5(2s/V)sin@V(t2t8)/2# . Here ^ & denotes time-averaging,
and J0 is the zero order Bessel function. The resulting gen-
eralized master equation is in the form of a time-convolution.
A solution is conveniently obtained by use of Laplace trans-
formation techniques, upon generalizing a line of reasoning
proposed in Ref. @5#. By expanding the Bessel function
J0(x) in Fourier series, and upon introducing the field-
dressed tunneling splittings Dn5uJn(s/V)uD and the photon-
induced asymmetries en5e02nV , we end up with
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sz~ t !5P`1~P02P`!e2GRt1 (
n52`

`

Cn cos~ ũnt !e2Gnt.

~5!

Conservation of probability yields P01(nCn51, with P0
5)n(en /un)2, and Cn5)m(un

22em
2 )/@un

2)mÞn(un
22um

2 )# .
The damping rates and the averaged nonequilibrium value
P` read @14#

GR52(
n

Gn , Gn5
1
4Cn f n

2S~un!, ~6!

P`5
1

2GR
(
n

AP0 f nCnJ~un!(
m

Dm
2

un
22em

2 . ~7!

Here f n5AP0un(mDm
2 /@em(un

22em
2 )# , and S(u)

5J(u)coth(\u/2kBT). The infinite set of frequencies un is
determined by the pole equation for the undamped TSS

FIG. 1. Matching between path integral and Bloch-Redfield.
The comparison of the dynamical Eqs. ~2!, ~4!, and ~5! for unbiased
TSS-dynamics depicts excellent agreement. For this resonant con-
dition (e05n*V , n*50) the dynamics is well described by Eq.
~5! with the single-mode frequency ũ05D̃0. Here and in the fol-
lowing figures frequencies are expressed in units of D , times in
units of D21. The temperature is zero throughout.

FIG. 2. Driving induced quantum coherence phenomena. In the
presence of a quasiresonant high-frequency field away from the
zeros of Jn*(s/V), the population difference sz(t) exhibits a co-
herent oscillatory decay which is dominated by a single mode os-
cillation frequency ũn*. A comparison between the predictions of
the analytical solution ~5! with just the single-mode frequency ũ1,
for a near-resonant field ~i.e., n*51 with e15ue02Vu50.2D) with
the Bloch-Redfield result in Eq. ~4! is depicted. Note that in the
undriven situation (s50) the TSS dynamics is almost completely
localized.
)
n

~en
22u2!1(

n
Dn

2 )
m;mÞn

~em
2 2u2!50. ~8!

Finally, to approximately take into account bath-induced
frequency-shifts the tunneling frequencies ũn are evaluated
from Eq. ~8! upon substituting Dn→Dn@12a ln(vc /D)#
ªD̃n . Thus, in this high-frequency regime the system gener-
ally still exhibits damped coherent oscillations, as in the un-
driven case, although, an infinite set of oscillation frequen-
cies ũn with corresponding damping rates Gn enters this
driven dynamics. Superimposed to these coherent oscilla-
tions there occurs an incoherent decay with rate GR towards
P` .

In Figs. 1–3 we depict comparisons amongst the numeri-
cal predictions of the Born-Markov equations ~4!, the path-

FIG. 3. Controlling tunneling. In the presence of an off-
resonance no net separation of time scales occurs and the popula-
tion sz(t) shows a complex interference pattern ~a!. Note that the
numerical solutions of Bloch-Redfield and path-integral equations
coincide within linewidth. The TSS dynamics is dominated by an
incoherent decay towards its asymptotic limit ~b!, so that quantum
coherence is lost. The incoherent decay rate GR , however, can be
strongly diminished. This is demonstrated in the upper left inset
where the photon assisted decay rate GR is plotted vs the dc-bias
e0. It exhibits characteristic resonance peaks at multiple integers of
the driving frequency V . These peaks are shifted replicas of the
dc-driven (s50) rate with different weights. Thus, a suitable cho-
sen bias can enhance or suppress the decay of populations. Finally,
the lower right inset shows the averaged nonequilibrium population
difference P` . It exhibits a nonmonotonic dependence on the dc-
bias when combined with a high-frequency field. For appropriate
values of the dc-field a population inversion (P`,0 when e0.0,
and vice versa! can occur.
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integral GME ~2!, and the analytical solution ~5! for small
Ohmic friction and zero temperature. For the driven dynam-
ics the agreement is remarkable. It increases further with
increasing temperature ~not shown!. To achieve a conver-
gence of Eq. ~5! a truncation of the pole equation ~8! to five
~or less, cf. Figs. 1 and 2! modes, characterized by (Dn ,en),
turned out to be sufficient. In Fig. 1 the influence of an
unbiased (e050) control field is investigated. This corre-
sponds to a resonant (e05n*V) field with n*50. In Figs. 2
and 3 the case of a finite bias e0Þ0 is depicted. Figure 2
depicts the near-resonant situation ue02n*Vu5uen*u
!$D̃n*,ue0u% away from the zeros of Jn*(s/V): the coherent
dynamics is now already well captured by the single reso-
nant mode frequency ũn*5AD̃n*

2
1en*

2 . This finding gener-
alizes the small-dc-bias analysis in @15#. In addition, we de-
duce from the parameters chosen in Fig. 2 that our approach
can even work for intermediate driving frequencies (V
'e0). Due to the fact that D̃n*<D , and en*,e0, the field-
induced oscillation frequency ũn* can be much smaller than
in the undriven case. In the off-resonance situation
(uenu.Dn for all n) of Figs. 3~a! and 3~b!, sz(t) exhibits a
complex interference pattern with quantum coherence sup-
pressed. Moreover, the decay towards the nonstationary
equilibrium value occurs on a much longer time scale as
compared to the case with s50. This result, observed re-
cently in @16#, can be understood via close inspection of the
upper left inset in Fig. 3~b!, where the averaged decay rate
GR is plotted versus e0. For the chosen parameters the decay
rate is strongly diminished. Moreover, the lower right inset
depicts the averaged nonequilibrium value P` versus the dc-
bias e0. Here, photon assisted tunneling rules the possible
inversion of asymptotic population ~i.e., P`,0, for e0.0,
and vice versa!.

In conclusion we maintain that in the perturbative regime
@a ln(vc /D)!1# it is numerically advantageous to evaluate
the weak coupling tunneling dynamics by using the nonsta-
tionary Markovian Bloch-Redfield equations, as compared to
the non-Markovian path-integral GME. We find numerically
perfect agreement as depicted with Figs. 1–3. Within the
time scale of tunneling we find no observable non-
Markovian effects. On physical grounds, the same remarks
apply to the time evolution of the full density matrix. Note,
however, that for the scaling regime ~i.e., cutoff vc→`)
Bloch-Redfield theory increasingly fails; it then is necessary
to correct even the path-integral GME with an additional,
concocted renormalization scheme @6#. Finally, our analyti-
cal scheme may prove prominent in order to optimize quan-
tum coherence.
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