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Experiments in drums or cylinders partly filled with a granular system and rotated constantly about
their horizontally aligned axis of symmetry show a hysteretic transition from discrete avalanches to
continuous flow if the rotation rate is adiabatically changed. Herein, we show that this hysteresis can
be explained by the impact of global Langevin-type fluctuations in a recently proposed minimal
model for surface flow along granular piles. For too large magnitudes of the fluctuations
corresponding to almost elastic grains, the hysteresis vanishes. This might explain why molecular
dynamical simulations were not yet able to detect the hysteretic transition. © 1999 American

Institute of Physics. [S1054-1500(99)01203-3]

Granular surface flow along granular piles in rotated
drums shows, for small rotation rates, an interesting hys-
teretic transition between stick—slip dynamics and con-
tinuous flow. Experimentally, this transition is generi-
cally hysteretic. In molecular dynamical simulations of
the microdynamics of these large assemblies of grains,
however, this type of transition has not been seen so far.
We present a simple stochastic dynamical model that
combines the basic macromechanical mechanisms of
granular surface flow and detect the experimentally ob-
served type of hysteretic transition for small, but nonzero
fluctuation strength. For larger fluctuation strength, the
hysteretic behavior disappears. This might resolve the
aforementioned discrepancy between experimental and
molecular dynamical findings.

I. BASICS

Since the late 1980s, there has been a steadily increasing
fascination with particulate or granular systems observable in
the physics community.! It stems from the poor understand-
ing of the dissipative dynamics of these large assemblies of
extended massive particles of complicated shape which in-
teract only repulsively through inelastic collisions and fric-
tion. The interplay between the complexity of the microme-
chanics of this classical many-particle system and its
comparably simple (although often surprising) dynamics on
a macroscopic level is the major challenge in this field. Lack-
ing yet any theoretically manageable ab initio theory for the
dynamics of granular systems, physicists are mainly discuss-
ing specific paradigmatic setups that (i) can be investigated
experimentally and numerically, e.g., by using molecular dy-
namical simulations, (ii) allow theoretical modeling and
therefore, (iii) lead to insights in the governing physical
mechanisms. Among others,' the dynamics of avalanches
and surface flow in rotated drums or cylinders plays a very
prominent role in detecting generic features of granular dy-
namics.

The piling of granular systems in partly filled drums
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shows most clearly the non-Newtonian fluid behavior of par-
ticulate matter. Up to an inclination angle ¢, of the surface
of the granular pile, the system stays at rest; increasing the
inclination angle ¢ beyond the maximum angle of repose ¢, ,
the upper grain layers of the pile start to slip, and the incli-
nation angle decreases until the avalanche stops at the mini-
mum angle of repose ¢, . As pioneered by Jaeger et al. and
Rajchenbach,® rotation of the drum about its horizontally

aligned axis of symmetry with a constant rotation rate w
leads to two very distinct types of dynamics of the surface

flow. For small , one observes almost periodic stick—slip
dynamics (SSD) alternating between avalanches and rigid
pile rotations. For larger , the pile exhibits a continuous
surface flow dynamics (CFD) with an almost constant incli-
nation angle ¢cpp being proportional to w’.

A specific, but nevertheless important problem in this
context is the nature of the transition from SSD to CFD. As
found in the experiment of Rajchenbach,’ this transition is
hysterestic: The transition from SSD to CFD while adiabati-

cally increasing w occurs at a threshold value JT” , whereas
the transition value from CFD to SSD while adiabatically

decreasing o happens at JTz), being nonzero and consider-

ably smaller than JT” . The hysterestic character of the tran-
sition between SSD and CFD has also been confirmed in
other experiments, e.g., Ref. 4, but interestingly, it has not
yet been reported in molecular dynamical simulations of ro-
tated granular materials. In particular, Buchholtz ef al.’ ex-
plicitly state that they were not able to reproduce the hyster-
etic character of the transition between SSD and CFD in
their simulations; within their numerical resolution, the tran-
sition seems to be nonhysterestic. Also the simulations of
Dury et al.® seem to suggest that the transition from SSD to
CFD and vice versa is nonhysteretic for their particular
choice of parameter values.

The aim of our paper is to try to resolve this apparent
discrepancy by investigating the transition from SSD to CFD
in a stochastic extension of a recently proposed deterministic
minimal model”® which explains phenomenologically many
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basic properties of the ensemble-averaged avalanche dynam-
ics. Using extensive stochastic simulations, we find that
small velocity fluctations as they occur naturally in particu-
late systems, can lead to the hysteretic transition as seen in
the experiments®* as well as to a nonhysteretic transition
depending on the size of the fluctuations. Our investigation
also sheds light on the fundamental interplay between deter-
ministic macroscopic frictional dynamics of granular sys-
tems and its superimposed small micromechanically gener-
ated stochastics.

Il. MACROMECHANICAL MODEL

The basis of our investigation is a model for granular
surface flow that extends the previously reported determinis-
tic minimal model (DMM)’~? for surface flow along granular
piles by the incorporation of small stochastic forces. This
stochastically extended minimal model recently has been
successfully used”'® to understand and explain the spectral
statistics of avalanches as seen in the seminal experiments by
Jaeger et al’> Within this macromechanical modeling ap-
proach, the dynamics of the global inclination angle ¢(z) of
the granular pile and the characteristic velocity v(¢) of the
surface flow (being proportional to the square root of the
total kinetic energy of the flow or the moving grains) is
represented by the stochastic dynamical system

v=g[sin ¢—(bo+byv?)cos o+ L(1)1x(¢,v), (1)
¢=—av+o, 2)
with the indicator function for surface flow given by

X(@,v)=0(V)+0(e—¢,) =0 (V)O(p—¢,). (3)

Here, O (y) denotes Heaviside’s step function [@(y)=0 (1)
ify<0 (y>0)], a, by, and b, are positive constants, g is the
gravitational acceleration, and w the external rotation rate of
the drum.

Equations (1) and (2) combine Coulomb’s theory of fric-
tional motion on an inclined plane with viscoplastic argu-
ments and the dynamical nature of the surface motion granu-
lar systems: (i) a nonlinear dynamic friction coefficient
k (v)=by+b,v? with by>0 and 5,>0 in (1) which inter-
polates between solid and Bagnold friction”® and is mono-
tonically increasing with v and, therefore, velocity strength-
ening, (ii) the fact that a granular pile is statically stable until
the inclination angle ¢, exceeds the maximum angle of re-
pose, (iii) the fact that a surface flow v(7) is always directed
down the pile, v(¢#)>0, and stops if v(¢) reaches zero, and
(iv) the fact that a surface flow v(¢)# 0 also excites dynami-
cal changes of the inclination angle ¢ which counteract the
acceleration of the surface flow. Facts (ii) and (iii) are mim-
icked by the indicator function for flow, y, given in Eq. (3).

Stochasticity that reflects micromechanically generated,
but also macromechanically observable, fluctuations of the
inclination angle ¢ and the global velocity v(z),* enters in
the model (1) and (2) through the simplest possible stochas-
tic process, namely by a macromechanical Langevin ‘force”’
(1) being Gaussian white noise with zero mean and a cor-
relation or fluctuation strength given by
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(LZ(t)=A%5(1—1"). (4)
Two remarks are important. (i) The fluctuating ‘‘force” is
only present when there is flow, v+# 0. It does not act during
the rigid pile rotation. (ii) Due to the cross coupling of Egs.
(1) and (2), small ““force”” fluctuations excite velocity fluc-
tuations as well as fluctuations of the inclination angle of the
pile. Both facts are also in accordance with the experiments
by Caponeri et al.*

Although a micromechanical derivation of the Langevin
term in Eq. (1) is far beyond the scope of the paper, a mi-
cromechanical argument for its presence goes as follows.
Inelastic and in general noncentral collisions of grains lead to
scattering of the grains, the inhomogeneous bulk network to
spontaneous trapping of individual grains and locking of lo-
cal, small scale avalanches, and the external increase of the
inclination angle of the pile to reexcitation of grain motion.
Altogether, this creates on the microdynamical scale perma-
nent jerky-like variations of the local kinetic energy. Al-
though these fluctuations are local, also global kinetic energy
and, with it, the characteristic velocity v(t) of the surface
flow considered as spatial average over the grains in motion,
also fluctuates due to the finite extension of the pile. The
magnitude of the fluctuations should be directly related to the
degree of inelasticity of the grains. Almost inelastic (almost
elastic) grains lead to small (large) fluctuations. The exis-
tence of small erratic global variations that superimpose the
global surface flow dynamics, also have been nicely demon-
strated in the experiments by Caponeri e al.* and can also be
seen in molecular dynamical simulations, see, e.g., Refs. 6
and 11.

Further simplification can be obtained by taking advan-
tage of the experimental observation’* that the angular
variations during avalanching are typically small in compari-
son to the inclination angle of the pile. Basically, the angular
dynamics of the avalanches of Egs. (1) and (2) is centered
about the angle ¢,=tanb,.” Introducing the deviation from
this angle,

D(1)=(1) = ¢y, Q)
nondimensionalizing time by t—¢/\ga and velocity by v
—Vvyg/a, setting w= w/+/ga, and performing a small angle
approximation in & (since the difference ¢, — ¢, is only a

few angular degrees), we obtain the following simplified
macromechanical model;

v=[— v+ Q5P+ {(1)]x(P,v), (6)

d=—v+o, (7)

where the indicator function for flow is given by
X(0,0)=0(—D+w)+0(d—b))

—O(—D+w)O(D—D,), (8)

and @ =@, — @ , 6=(gh,/a)cos ¢;>0, and Q= 1/cos ¢,
>0. After nondimensionalization, the fluctuation strength of
the stochastic variable {(¢) reads A=A/g.

In the deterministic limit, A=0, and for small rotation
rates w, the model shows periodic global avalanches which
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FIG. 1. Representative examples of the effect of the
500 Langevin ‘“forces’” on (a) SSD (w=4X10"2) and (b)
' CFD (w=10"") in the (v,®) phase space. Parameter
values are ®,=0.0194, 6=0.1, Q,=1.1, and A
=107".
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start from ®,=¢,— ¢, with v=0 and decay to ®,=¢,
—¢s~=—®; when v=0 has been reached again. They are
separated by rigid pile rotations until @, is reached again by
virtue of the external rotation w. The duration of the rigid
pile rotation is determined by (®,—®,)/w. For larger rota-
tion rates, however, there is a transition to a continuous sur-
face flow with a constant velocity vcpp=w and a constant
inclination angle ® cpp= dw?/Q%. Note that (i) the existence
of this fixed point of Egs. (6) and (7) is a direct consequence
of the dependence of the dynamic friction coefficient on the
square of the velocity and (ii) that this result agrees with
Rajchenbach’s experimental findings of the dependence of
the averaged inclination angle on the rotation rate.

For small enough fluctuation strengths A, this basic
mechanism is still present in the stochastically extended
model, Egs. (6) and (7), however, with superimposed small
stochastic variations of the velocity of the surface flow and
the inclination angle of the pile.

lll. RESULTS

In this section, we present the results of extensive nu-
merical simulations of the macromechanical model, Egs. (6)
and (7), that show the drastic impact of Langevin forces on
the transition between SSD and CFD for the granular surface
flow. The parameter values, ®,=0.0194, 6=0.1, and (),
= 1.1, we use in these simulations of the model, Egs. (6) and
(7), are extrapolations from experimental data in Refs. 3 and
4. For further details we refer to Refs. 7, 8, and 10.

A. Perturbed SSD and CFD states

For small correlation strength A, the main effects of the
stochastic forces on the dynamics are as follows. (a) In the
stick—slip regime corresponding to small w, the duration of
the avalanches is no longer constant, but is distributed about
the average avalanche duration (7,,), which is practically
given by its deterministic limit. As our numerical calcula-
tions show, this distribution is roughly Gaussian. Another
effect is that the duration of the rigid-pile-rotation 7'y, is also
a stochastically distributed quantity, even though the next
avalanche again starts sharply at the maximum angle of re-
pose ¢, . (b) In the continuous flow range corresponding to
larger w, the velocity of the continuous surface flow and the
inclination angle of the pile do not reach a steady state, but
fluctuate about their mean values. For the small fluctuation
strengths considered here, the mean values are basically
equal to the deterministic fixed point mentioned above. To
substantiate that stochastically perturbed SSD and CFD dy-
namics can still be distinguished, we show as representative

examples in Fig. 1 the dynamics of the perturbed SSD and
CFD states in the phase space spanned by v and ®. Note that
in the presence of external rotation the maximum and mini-
mum angles of inclination of the pile for SSD occur during
the avalanching process in the form of an inertia-related
over- and undershooting effect. This effect has also been
reported in the experiments in Ref. 4.

B. Definition of SSD and CFD and order parameters

For nonzero fluctuation strength A and very close to the
transition point from SSD to CFD and vice versa, one finds
numerically that the dynamics of the surface flow in the
model (6) switches erratically between avalanching and con-
tinuous flow. In order to distinguish between SSD and CFD
states in our simulations of the surface flow dynamics, one
has to define more precisely a SSD and CFD state. As a
convenient criterion for our simulations, a large fixed num-
ber N of successive avalanches without any jump to CFD has
been used to characterize a SSD state. If during the simula-
tions such long sequences of avalanches could not be ob-
served, it has been identified as a CFD state. In our simula-
tions, we used N=200.

To analyze and quantify the transitions from discrete
avalanches to continuous flow and vice versa, it is necessary
to introduce the appropriate order parameters which (i) allow
a clear distinction between both dynamics and (ii) are acces-
sible from the experimental point of view. At first sight, one
might expect that the time average of the reduced inclination
angle, (), already presents such a quantity that is sensitive
enough for such a distinction. As our simulations showed,
however, there are hardly any changes in (®) observable if
the dynamics of the surface flow switches from SSD to CFD.
For demonstration purposes, we use in the SSD range the
time average of the maximum and minimum angle of incli-
nation (®,..) and (P ;) occurring during avalanching,
whereas in the CFD range the averaged inclination angle
(D cpp) is used.

C. Adiabatic increase and decrease of the rotation
rate

In this section, we show that the incorporation of sto-
chastity can lead to the type of hysteretic transition as seen in
the experiments.>* We consider two cases: the deterministic
case, A=0, and the stochastic case with a fluctuation strength
A=8X10"* 1In both cases, we investigate the transition
from SSD to CFD and back to SSD again in the model, Egs.
(6) and (7), by (i) adiabatically increasing the rotation rate w
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FIG. 2. Hysteretic transition between SSD and CFD for (a) A=0 and (b)
A=8X10"*. In the SSD state, the maximum (minimum) angles during flow
are (@ ) ((P ). At ) the transition from SSD to CFD occurs, and at
) the transition from CFD to SSD.

until a CFD state has been reached and then (ii) subsequently
decreasing the rotation rate w in an adiabatic way again. By
doing that, we are able to detect the two transition points
') from SSD to CFD and w” from CFD back to SSD. The
result for the zero and the representative nonzero fluctuation
strength A is shown in Fig. 2.

In Fig. 2(a), the deterministic limit of model (6) and (7)
(A=0) is depicted. Increasing w from zero, the broadening of
the SSD limit cycle in the phase space spanned by v and ®
can be seen. This is reflected by the increase of the modulus
of maximum and minimum angle of inclination ®,, and
D in» Tespectively, that occur during avalanching due to the
aforementioned over- and undershooting effect. The sudden
transition from SSD to CFD at w(Tl):O.074 occurs if ®=0
and v=0 are reached simultaneously. Decreasing w again,
the surface flow dynamics is caught in the CFD fixed point
which is linearly stable against small perturbations as they
occur when the rotation rate is lowered. Due to the lack of a
destabilization mechanism for the continuous flow, however,
the system remains in the CFD solution until w?’=0, when
w is adiabatically decreased. As a consequence, the deter-
ministic limit of the granular surface flow model exhibits
hysteresis. It is, however, too large in comparison to the
experimental findings>* where w(Tz) is nonzero.

In Fig. 2(b), the dynamics of the stochastically extended
model (6) and (7) is depicted. For small enough rotation rates
the averaged broadening of the perturbed SSD limit cycle in
the phase space spanned by v and ® is quantitatively the
same as in the deterministic limit. However, the transition
from SSD to CFD represented by the jumps from (& ..} and
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FIG. 3. The dependence of the transition points '’ and w{? on the fluc-
tuation strength A. The model parameters are ®;=0.0194, 6=0.1, and Q,,
=1.1.

(® i) to (Pepp) is largely reduced and happens at !
=(.045. Above that value, the surface flow is in the CFD
state. Lowering the rotation rate again leads to the major
effect of the Langevin term in Eq. (6). The transition from
CFD to SSD at w{? represented by the jumps from (D ¢pp)
to (P, and (P ;) oceurs at a nonzero value of w. The
value of the fluctuation strength A=8X10* has be chosen
such that there is a striking agreement with the experimental
findings of Rajchenbach.? There, the transition from CFD to
SSD, w(Tz), occurs at a rotation rate that is slightly smaller
than half of the rotation rate for the transition from SSD to
CFD, !

D. Fluctuation strength dependence of the hysteresis

In this section, we numerically investigate the location
of the transition points from SSD to CFD, w(Tl) , and from
CFD to SSD, w(Tz) , as a function of the fluctuation strength
A. The results are shown in Fig. 3. The crosses in Fig. 3
denote the numerically obtained data of the stochastic simu-
lations. The solid and the dotted lines represent smooth in-
terpolations of the data for w(Tl) and w(Tz), respectively. For
the deterministic case, A=0, one recovers the analytically
known result that w(Tl)=0.074 and w(TZ)ZO. Increasing A
from zero has three major effects.

First, the transition points w(Tl) from SSD to CFD (the
upper curve in Fig. 3) decrease with increasing, but still
small enough A until a minimum of !’ at about A=0.002
is reached. The decrease w(Tl) with A results from the fact
that for nonzero A the minimum angle of repose @, is dis-
tributed about its mean (®,). The latter is basically deter-
mined by its deterministic value. Since the width of this dis-
tribution increases with A, the dynamics can escape to the
CFD dynamics for smaller rotation rates than in the deter-
ministic case. For larger A, w(Tl) slightly increases again.

Second, the transition points ' from CFD to SSD (the
lower curve in Fig. 3) are nonzero as soon as A is nonzero
and they increase, at least for larger A, weaker than linear
with increasing fluctuation strength. At least for very small A
this can be explained as follows. Since the velocity v(¢) of
CFD fluctuates about its mean, it can reach v=0 for nonzero
w. After reaching v=0, the system is trapped in the SSD
state. Since the width of the v distribution is proportional to
A, one must expect a linear increase of w(Tz) for small A.
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Third, the curves for ') and 0 approach each other
and apparently merge above A=0.002. Within our numerical
resolution, the difference between both curves cannot be dis-
tinguished above A=0.0021.

What are the consequences for the dynamics in a rotated
drum experiment? Below w{?) only SSD exists, whereas
above w(Tl), only CFD can exist. The wedge-shaped area
enclosed by w(Tl) and w(Tz) in Fig. 3 represents the combina-
tions of rotation rates w and fluctuation strengths A, where
hysteresis, i.e., a coexistence of SSD and CFD states, occurs.
The hysteretic range bounded by !’ and w{? shrinks with
increasing fluctuation strength A until merging occurs. More-
over, for larger fluctuation strengths A beyond the merging,
the transition from SSD to CFD is nonhysteretic and in-
creases with increasing A.

We note that the transition curves w!') and ' have
some dependence on the definition of the stochastically per-
turbed SSD and CFD states. As mentioned above, we used
N=200 successive avalanches for a SSD state. For a smaller
number of avalanches entering in the criterion, the merging
point of w(Tl) and w(Tz) is shifted to slightly larger A. The
scenario depicted in Fig. 3, however, remains qualitatively
unchanged under a modification of N.

So far, the fluctuation strength A is a parameter in the
model. As we have argued above, the degree of inelasticity
of the grains might be the key to understanding the magni-
tude of the fluctuations entering in the stochastic model. It is
likely that the fluctuation strength for systems with compa-
rably weak inelastic or, equivalently, almost elastic grains as
used in the micromechanical simulations is so large that the
corresponding fluctuation strength A lies outside the hyster-
etic area in Fig.3. On the other hand, more inelastic grains as
they are used in the experiments®* seem to correspond to a
fluctuation strength A that lies inside the hysteretic area in
Fig. 3. If our scenario is correct it implies that there is no real
discrepancy between experimental results and molecular dy-
namical simulations. It is just the question of the strength of
the macromechanical fluctuations and, therefore, the micro-
structure of the grains that matters.

IV. SUMMARY AND DISCUSSION

We have shown that the hysteretic transition from dis-
crete avalanches to continuous flow in rotated drums as
found in experiments 3 and 4 can be understood as a transi-
tion being induced by the impact of small Langevin
“forces’” in the deterministic minimal model for granular
surface flow.”® This stochastically entended minimal model
also offers a possible explanation why this hysteretic transi-
tion has not yet been seen in molecular dynamical simula-
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tions of granular drum flow. Hysteresis can only occur as
long as the fluctuation strength A is below some limit. For
larger fluctuation strength, the transition from SSD to CFD is
nonhysteretic. The magnitude of the fluctuations is clearly
related to micromechanical properties of the granular system
such as, e.g., the degree of inelasticity of the grains. The
reason why the hysteretic transition has not yet been ob-
served in molecular dynamical simulations might be caused
by too weak inelasticity of the grains in comparison to the
experiments.>*

We also note that our approach seems to be distinct from
previous proposals*!'>!* that explained the hysteretic transi-
tion on a deterministic level by introducing a negative dif-
ferential minimum in the dynamical friction coefficient. In
our approach, it is the stochasticity of the surface flow dy-
namics that is responsible for the transition of CFD to SSD
occurring at a nonzero rotation rate w(Tz) . It remains an open
problem for future investigations which of the two macrome-
chanical explanations is the most adequate one for granular
surface flow. We hope that our investigation stimulates sen-
sitive experiments and ab initio micromechanical simula-
tions in order to test our predictions.
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