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Inertia ratchets: A numerical study versus theory
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The colored ~Ornstein-Uhlenbeck! noise-driven nonequilibrium dynamics of massive damped Brownian
particles in a periodic but asymmetric potential ~ratchet! is investigated. Our special focus is on the influence
of inertia in the particle dynamics for the noise induced, directed current. By means of two approximation
schemes ~a unified colored noise approximation and a path-integral approach! and by numerical matrix-
continued-fraction evaluations of the inherent, three-dimensional Fokker-Planck dynamics as well as by direct
simulations of the stochastic differential equations we examine the dynamics at various inertial strengths. For
the case of a large mass we find current reversal with respect to both a variation of the mass and of the
noise-correlation time. Possibilities for efficient mass-sensitive scenarios for separation of particles are dis-
cussed. @S1063-651X~99!00802-8#

PACS number~s!: 05.40.Ca, 82.20.Mj, 87.10.1e
I. INTRODUCTION

The constructive role of nonequilibrium noise and inher-
ent equilibrium fluctuations, which—via the fluctuation-
dissipation theorem—cause dissipation, can produce novel
unexpected phenomena such as noise-induced directed cur-
rent in periodic structures that lack reflection symmetry
~ratchets!, e.g. see the reviews @1,2#, or anomalous amplifi-
cation features for weak signals in thresholdlike systems
~stochastic resonance! @3#.

In recent years, a large variety of classical nonequilibrium
ratchet models have been put forward that produce net trans-
port in the presence of unbiased nonequilibrium forces. The
interest in these models stems largely from their relevance
for the operation of molecular motors @1,2,4# that drive in-
tercellular transport processes. Likewise, recent active re-
search has been fueled due to potential applications for novel
technological devices that pump, trap or separate Brownian
particles on periodic structures with period-length scales ex-
tending from nanoscopic to mesoscopic, up to macroscopic
sizes @1#.

To obtain directed transport with unbiased nonthermal
fluctuations, the breaking of the reflection symmetry in peri-
odic structures is no necessary prerequisite: Directed current
occurs also with nonthermal, unbiased forces that exhibit
nonvanishing odd numbered cumulant averages of order n
>3 ~temporal asymmetry! @5#. A particular such realization
appears by considering the ~zero-frequency! harmonic mix-
ing signal of two ac fields of angular frequencies V and 2V
that drive overdamped classical transport in a ~reflection-
symmetric! cosine potential @6#. Noise-induced directed cur-
rent in these systems has implicitly been observed experi-
mentally ~via the occurrence of a finite stop voltage! in one-
dimensional organic conductors as early as in the late 1970s
@7#.

It should be noted, however, that the dynamics in ratchet
structures with its inherent spatial asymmetry generally ex-
hibits a richer complexity, such as the occurrence of a devil-
staircase-like current quantization, multiple current reversals,
and multipeaked current characteristics @1,2#.
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A particularly appealing feature of Brownian motors is
their ability to separate particles of differing friction strength
or mass @1#. It is this latter aspect of mass separation via
inertial correlation ratchets @1# that is the focus of the
present study. While the overwhelming part of ratchet dy-
namics has been studied in the overdamped limit, only a few
prior studies considered the influence of inertial effects
@8–11#. Reference @8# considered deterministically rocked
inertial ratchets which are able to exhibit both regular and
chaotic directed transport, as well as multiple current rever-
sals.

The effect of quantum tunneling in combination with fi-
nite inertia has been addressed in Refs. @9# for rocked ratch-
ets. Because inertial ratchets possess current reversals as a
function of the mass of the particle @8–11#, these ratchets are
ideally suited to separate particles of differing masses
@10,11#, and thus allow for the conceptual operation of mo-
lecular shuttles @11#, wherein an inertial Brownian carrier is
able to move massive cargo back and forth along preassigned
routes.

The operation of such an inertia ratchet was studied by
Marchesoni @11# in the limit of weakly colored, unbiased
nonthermal ~Ornstein-Uhlenbeck! noise. In contrast, the role
of moderate-to-large noise color—in the presence and in the
absence of an external bias—was the objective of our inves-
tigation in Ref. @10#. In the following, we present a more
detailed account of the phenomenon of mass separation in
colored noise-driven inertia ratchets. In doing so, we
present—apart from accurate numerical simulations of the
underlying colored noise Langevin equation—precise
matrix-continued-fraction results for the behavior of directed
current. Our numerical results are compared vs. various the-
oretical predictions such as a generalized unified colored
noise approximation scheme ~UCNA! and an inertia-driven,
colored noise path-integral approach that is valid at weak
thermal noise.

To start, we present the model for the inertia ratchet, to-
gether with an appropriately chosen scaling to yield dimen-
sionless variables with unit viscous friction strength.
1417 ©1999 The American Physical Society
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II. MODEL FOR INERTIAL RATCHET DYNAMICS

We consider the dynamics of a Brownian particle in a
periodic potential U(x)5U(x1x0) with broken spatial sym-
metry, known as the ratchet potential. Let x and v denote the
space coordinate and velocity of the particle of mass m with
h being the viscous friction strength. The stochastic ratchet
dynamics then reads

ẋ5v ,

m v̇52hv2U8~x !1F1y~ t !1A2Dj1~ t !,

ẏ52
y
t

1
A2Q

t
j2~ t !, ~1!

^j i~ t !j j~ t8!&5d i jd~ t2t8!,

^y~ t !y~ t8!&5
Q
t
expF2

ut2t8u
t G .

Here, the colored, unbiased noise y(t) models stochastic
nonequilibrium forces and the white noise j1(t) accounts for
thermal fluctuations of strength D (D5hkBT). Setting the
colored noise source y(t) equal to zero we recover an equi-
librium system which cannot support finite, directed current.
The perturbation y(t) which drives the system out of equi-
librium, is modeled here by the well-known Ornstein-
Uhlenbeck Process ~OUP! with an exponential correlation
function—t denotes its correlation time and Q the integrated
intensity, often expressed by the ratio R of external and in-
ternal noise strength Q5RD . Moreover, we can include in
our model an additional static bias F that is assumed to be
zero if not stated otherwise.

The use of a scaling of the form

t̃5t/t0 , x̃5x/x0 , ṽ5vt0 /x0 , ỹ5yV0 /x0 ,

V~ x̃ !5U~x !/V0 , F̃5x0F/V0

leads to a dimensionless formulation of the dynamics in a
potential V with V( x̃)5V( x̃11). We choose t05hx0

2/V0 to
obtain a dimensionless friction coefficient equal to one.
Then, the rescaled mass and noise parameters are given as

m5
mV0

x0
2h2 , D̃5

D
V0h

, Q̃5
Q
V0h

, t̃5
tV0

hx0
2 .

The new dimensionless dynamics reads

ẋ5v ,

m v̇52v2V8~x !1F1y~ t !1A2Dj1~ t !, ~2!

ẏ52
y
t

1
A2Q

t
j2~ t !,

where the tildes were omitted here and throughout later on.
The quantity of foremost interest is the mean velocity ^v&

or the steady state probability current of immersed Brownian
particles. We are interested in its dependences on the noise
parameters, but particularly on the particle mass.

In view of the validity of equilibrium statistical mechanics
the directed current assumes a zero value whenever

~1! t→0, i.e., the OUP becomes white, additive thermal
equilibrium noise; ~2! t→` or Q→0, implying a vanishing
strength of the external nonequilibrium noise; ~3! D→` , in
which limit the unbiased fluctuations dominate the potential
forces, yielding zero current; and ~4! m→` , so that finite
potential and fluctuating forces no longer are capable of
moving particles. Furthermore, we remark that for m→0 one
recovers the previously investigated overdamped situation in
Ref. @12#.

The Fokker-Planck-equation ~FPE! for the probability
density P(x ,v ,y ,t), corresponding to Eq. ~2!, i.e.,

] tP52v]xP1]vS 1m v1
V8~x !2y2F

m
1

D

m2 ]vD P
1]yS yt 1

Q

t2 ]yD P ~3!

cannot be solved analytically even for the stationary case
(] tP50) since detailed balance is broken and the probability
flow thus is not potential-like. Its dynamics ~2!, however, can
be studied by means of analytical approximation schemes
such as a unified colored noise approximation or a path-
integral approach. Numerically, it can be investigated either
by direct computer simulations of Eq. ~2! or by applying the
matrix-continued-fraction ~MCF! method to the FPE ~3!. For
our numerical evaluations we use throughout the specific
ratchet potential

V~x !52
1
2p

@sin~2px !10.25sin~4px !# . ~4!

In the following two sections we develop these two analytic
approximation schemes for the inertia ratchet dynamics
which will then be compared against precise numerical re-
sults.

III. UNIFIED COLORED NOISE APPROXIMATION

The unified colored noise approximation has originally
been developed for overdamped stochastic dynamics driven
by OUP @13#. Later refinements and generalizations have
been put forward with Refs. @14,15#. It has proved to provide
a good approximative description over wide parameter re-
gimes for different situations and was applied already to col-
ored noise-driven directed transport in Refs. @12,16#.

The objective in the UCNA is to find an approximate
Markovian description of a generally intractable non-
Markovian dynamics @15#. First the non-Markovian dynam-
ics is rewritten ~if possible! as a higher-dimensional Markov-
ian process introducing new variables for the noise. A
nonlinear coordinate transformation to ~approximately! de-
coupling stochastic variables is performed. In a second step,
a separation of time scales for those new variables is estab-
lished, thus admitting the adiabatic elimination of the ‘‘fast’’
ones. A Markovian description for the coordinate x only is
achieved if this approach yields a single Langevin equation,
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i.e., a first order differential equation with white noise
sources.

Adapting this general line to Eq. ~2! we find expressions
for small correlation times t and, simultaneously, for a
strongly overdamped dynamics m→0. Within these restric-
tions, the following approximate Langevin equation ~in Stra-
tonovich interpretation! as Markovian approximation of Eq.
~2! is derived @17#:

ẋ5
1

g~x !
@2V8~x !1F1A2D~11R !j~ t !# , ~5!

where the state- and mass-dependent function g(x) reads

g~x !511
d
dx

tR@V8~x !2F#

~11R !~11m/t !1tV9~x !
. ~6!

For this Markovian approximation ~5! the steady state
probability current J can be calculated analytically following
standard approaches @18#. With ^v&5^ ẋ&5J we find

^ ẋ&5
L~11R !D@12eF~1 !/D#

E
0

1
dxg~x !e2F~x !/DE

x

x11
dyg~y !eF~y !/D

. ~7!

In this expression the effective potential

F~x !5E
0

x g~y !

11R @V8~y !2F#dy ~8!

occurs. In the white noise limit t→0 it follows from Eq. ~6!
that g(x)→1. The current ^ ẋ&t50 thus vanishes according to
@6,7# if F50, independent of the mass m . Otherwise, that is,
for 0,t,` , the current is generically nonzero for nonsym-
metric potentials V(x), even for F50. The asymptotic be-
havior of Eq. ~7! for small t and zero load F50 is obtained
as

^ ẋ&52
t̂2R

A~0 !~11R !2
E
0

1
V8~y !V9~y !2dy , t̂5

t

11m/t
~9!

A~F !5E
0

1
dxE

x

x11
dye [V~y !2V~x !1~x2y !F]/D~11R !. ~10!

Thus a t2 decay for moderately small t is predicted, crossing
over to a t4 decay for extremely small t!m . The m depen-
dence of the UCNA result ~7! can be completely absorbed
into the renormalized correlation time t̂ . For this reason the
maximal value of ^ ẋ& with respect to t is independent of m .

IV. PATH-INTEGRAL APPROACH FOR
INERTIA RATCHETS

In this section we aim at the calculation of the steady state
current by use of path-integral methods.

As in quantum mechanics the corresponding reformula-
tion of stochastic dynamics yields a compact representation
@19,20#. In practice, however, the analytical evaluation of the
resulting formal expressions is possible for weak thermal
noise D , only. Nevertheless, for situations where the poten-
tial barriers between adjacent metastable states renormalized
by the colored noise are large compared to the strength of
thermal fluctuations this approach has shown its powerful
abilities.

Within the restriction of weak thermal noise the current of
the Brownian particles can be approximated by a rate de-
scription

^ ẋ&5k12k2 , ~11!

where k1(k2) are noise-activated hopping rates to the next
right ~left! neighboring wells, respectively. We remember
that L51.

For small thermal noise D these rates approach an
Arrhenius-like dependence k65z6 exp(2DF6 /D). Therein
DF6 are ‘‘effective’’ potential barriers independent of D
and z6 are rate prefactors.

In the case of small noise correlation time t @21# we de-
rive the explicit result

DF6~t !5DF6
~0 !1DF6

~1 !~t !

5
V~x#!2V~x6!1~x62x#!F

11R

1t2 R

~11R !2
E

2`

`

q̈6
2 ~ t !dt , ~12!

where x# is the position of a local maximum of V(x)2xF
and x1 and x25x121 the location of the corresponding
neighboring local minima to the right and left, respectively.
The functions q6(t) are trajectories found from m q̈6(t)5
2 q̇6(t)2V8„q6(t)…1F with initial conditions q6(t5
2`)5x# and q̇6(t52`)50 and ending in one of the pos-
sible minima as t→` . We label q6(t5`)5x6 .

In the prefactor z6 we restrict ourselves to the zeroth
order approximation z(t).z(t50) with the effective noise
D(11R). A closer inspection involving detailed-balance ar-
guments, as well as explicit perturbation calculations @22#,
has shown that the identity z1(t50)5z2(t50) should
hold true in the spatial diffusion regime whenever the con-
cept of an escape rate makes sense. We thus infer that

^ ẋ&5B@e2DF1
~1 !/D2e2$DF2

~1 !
1LF/~11R !%/D# , ~13!

where B5k1(t50). Next, we make use of an observation
that can be inferred from Eq. ~7!, namely, that the current for
vanishing t is essentially independent of m if FÞ0. This
independence of the mass is inherited by the factor B . By
setting m50 we obtain approximately

B5
~11R !D
A~F !

, ~14!

where A(F) is defined in Eq. ~10!. For zero load F50 and
expanding the exponential in Eq. ~13! one finds to leading
order in t
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^ ẋ&52
t2R

A~0 !~11R !
E

2`

`

@ q̈1~ t !22 q̈2~ t !2#dt . ~15!

We want to point out that DF1
(1)2DF2

(1) can change its
sign depending on m . In fact formula ~13! predicts a reversal
of the current direction in the underdamped case (m@1), as
is shown in Fig. 3. Note, however, that this prediction is
qualitative only: The reversal occurs in the energy-diffusion
limited regime, where our result ~13! fails quantitatively.
Here besides site-to-site hopping events long excursions over
multiple barriers appear that are not taken into account by
Eq. ~11!. Nevertheless, their occurrences are given in good
approximation by the rates k6 and, therefore, depend on the
asymmetry of the ratchet potential. Hence, the difference be-
tween forward and backward rates serves as a good indicator
for an actual reversal of current as is confirmed by the nu-
merical analysis, later on.

V. MATRIX-CONTINUED-FRACTION ANALYSIS

To cover a large range of parameters we solved Eq. ~3!
numerically by use of the method of matrix-continued frac-
tions. We developed the steady state density P(x ,v ,y) in a
~finite! set of proper eigenfunctions @23#. We used Hermitè
functions in v and y , and Fourier modes in the coordinate x .
The corresponding recursion relations between matrices has
been solved numerically by applying Risken’s method @24#.

The dependence on mass m and correlation time t of
noise-induced currents calculated for two different values of
Q are depicted in Figs. 1 and 2. We have chosen the intensity
of the colored noise Q smaller and larger than the thermal
noise D , see Fig. 1 and Fig. 2, respectively. As mentioned in
Sec. II the current disappears for large mass as well as for
vanishing and large t . For small m ~overdamped regime! the

FIG. 1. Mean velocity ^v& vs correlation time t and mass m .
Negative velocity appearing in the underdamped regime is indicated
only by contour lines, because its order of magnitude is much
smaller than in the damped case. The parameters chosen are D
50.1, Q50.05, here R,1.

FIG. 2. Mean velocity ^v& vs correlation time t and mass m .
The parameters chosen are Q50.12, here R.1, the absolute value
of negative velocity, is greater than in Fig. 1.
current converges to the results from @12#. Predictions of the
path-integral approach @Eq. ~13!# are presented in Fig. 3.

The finite inertia causes a complex behavior of the current
behavior as can be deduced from all the figures. Starting with
small values of m we observe for a certain range of t a novel
unexpected increase of the current with respect to m ~Figs. 1
and 2!. Thus a global maximum with respect to both m and t
appears for finite mass, and hence finite inertia may enhance
the value of the mean velocity of Brownian particles in
ratchets.

Further increasing inertia ~above m'0.1) yields a rapid
decrease of the current. Thereby for a given m , the maximum
with respect to t shifts toward larger values which agrees
with the predictions of the UCNA and of the path-integral
approximation. This drop of the current is expected since the
fluctuational and potential forces have a weaker effect on a
larger mass. Hence, the mean velocity decreases. The shift of
the maximum results from a slowing down of the particle
motion if increasing the mass. This can be compensated by a
larger correlation time t .

A second novelty is found in the strongly underdamped
case at arbitrary R , namely a negative velocity appears for
moderate t . The MCF analysis shows a rich behavior. First,
for moderate values of m we found a double reversal of the
velocity direction for increasing values of the correlation
time ~Fig. 4!. Negative currents are observed for moderate
correlation times only. For larger m the current exhibits a
single reversal. Now it is still positive for large t ~Fig. 5!.

FIG. 3. Mean velocity ^v& vs correlation time t and mass m .
Path-integral approximation ~13! for D50.1 and Q50.12.

FIG. 4. Mean velocity ^v& vs correlation time t for the param-
eters D50.1, Q50.05, m520.0.
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We underline that the absolute values of the reversed cur-
rents are rather small compared to the maximal current for
small masses.

Let us compare our numerical results with the predictions
of the path-integral approach. Generally, as depicted in the
figures, this method overestimates the current by one order
of magnitude, but it captures qualitatively the interesting ef-
fects found in the MCF calculations. The global maximum
with growing mass does not appear in Fig. 3. This is appar-
ently due to the approximation of small t we made. In the
region of moderate mass the path-integral analysis correctly
predicts the shift and the decrease of the current maximum.
Most interestingly, the path-integral approach predicts a cur-
rent reversal as a function of the mass m; but it predicts a
negative current for all t values above a certain value m .

The increase of Q in the examples considered, i.e., a
change from R,1 to R.1, leads in general to an amplifi-
cation of the positive and even of the negative current. We
want to stress that our observed reversal is different from the
one predicted in Ref. @11#. In Figs. 1 and 2 current reversals
occur for sufficiently large m without a restriction on the
ratio R5Q/D . Conditions for the current reversal in @11#
would imply m,1 and R,1.

The value of R can also be changed via varying D while
keeping Q fixed. This influence of the thermal fluctuation is
illustrated in Figs. 6 and 7. In the case of positive velocities
we obtain a nonmonotonous behavior, the ratchet current

FIG. 5. Mean velocity ^v& vs correlation time t for the param-
eters D50.1, Q50.05, m560.0.

FIG. 6. Mean velocity ^v& vs noise intensity D. Parameters: t
50.5, Q50.1, m55.0.
reaches a maximum at finite temperature. White noise can
enhance the induced transport which has already been dem-
onstrated in the overdamped case @12#. In the underdamped
case, for occurring negative currents, this could not be veri-
fied. The absolute value of the current decreases monotoni-
cally with increasing diffusion D ~cf. Fig. 7!. Moreover,
white noise seems rather to destroy the induced reversal of
current than to amplify it.

VI. COMPARISON WITH LANGEVIN SIMULATIONS

The dynamics of Brownian particles in ratchet potentials
can be investigated also via a second numerical approach.
Simulations of the Langevin equations ~1! allow the investi-
gation of trajectories and will later provide insight into the
mechanism of the current reversal. Here we should mention
the nearly exact agreement of the mean values as obtained
from the simulations with the results of the MCF calcula-
tions.

We have implemented the Fox algorithm @17,25#, which
is a rather fast method for simulating processes driven by the
OUP. For each set of parameter values the stochastic dynam-
ics was integrated over 107 time steps Dt51022 and the
time-averaged velocity was determined from @x(T)
2x(0)#/T . This time averaging was repeated 20 times to
obtain the mean current in sufficiently high accuracy ~less
than 5% for t.0.1). The relative numerical error increases
both with increasing m in Eq. ~1! and decreasing t and we

FIG. 7. Mean velocity ^v& vs noise intensity D. Parameters: t
53.5, Q50.035, m512.5.

FIG. 8. Mean velocity ^v& vs correlation time t . Numerical
simulations ~solid! compared to UCNA. The parameters used are
D50.05, Q5RD50.25, F50. The inertia values used are m
50.125, m50.25, and m50.375.
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could not reach the deep asymptotic regime t→0.
The comparison for moderate-to-small m and moderate-

to-small t of the UCNA with the simulations is depicted in
Fig. 8 for different m values. The maximum of the UCNA
shifts towards larger t with increasing mass, in agreement
with the simulations and the MCF results. The simultaneous
decrease of the maximal value of the current is not predicted
by the UCNA.

A comparison between the path-integral prediction ~13!,
~14! and the numerical simulations is shown in Fig. 9. The
agreement is satisfactory up to about t50.5, apart from its
absolute value which is better estimated by the UCNA. The
shift with respect to t and the decrease of the maximum with
increasing inertia m—as already mentioned above—are well
described. In particular, the asymptotics in Eq. ~15! seems to
agree better with the numerics than that from the UCNA
approach ~10!.

The MCF curves and the results of the simulations ~Fig.
10! nearly converge. Both dependences, i.e., the shift of the
maximal current to larger values of t as well as the decrease
of the current with increasing m , are correctly rendered by
the MCF. Apart from the different computing time of the
simulation and the MCF data ~the simulations require two
orders of magnitude larger CPU times!, the MCF results
even achieve a higher accuracy for small t than the simula-
tions.

Also the current reversal in the underdamped case was

FIG. 9. Mean velocity ^v& vs correlation time t . Numerical
simulations ~solid! compared to path integrals. The parameters used
are D50.05, Q5RD50.25, F50. The inertia values used are m
50.125, m50.25, and m50.375.

FIG. 10. Mean velocity ^v& vs correlation time t . Numerical
simulations ~solid! compared to MCF. The parameters used are D
50.05, Q5RD50.25, F50. The inertia values used are m
50.125, m50.25, and m50.375.
verified by simulations ~Fig. 11!. Apart from superimposed
stochastic deviations the averaged position of 20 particles vs.
time exhibits the directed motion predicted by the MCF
~dashed line!. A time span of two individual trajectories
demonstrates the effect of strong inertia ~Fig. 12!: For suffi-
ciently large correlation times t the accelerated particles may
achieve a large amount of kinetic energy, allowing them to
pass over a number of intermediate barriers ~notice here that
L51) before they stop again in a well. In the underdamped
regime one can generally distinguish between ‘‘running
states’’ and ‘‘locking states.’’ In the second state the par-
ticles are bound in one of the minima, whereas in the first
they cover distances over several periods in both directions.
But the reversed motion results neither from a relevant dif-
ference of the velocities to the right and to the left, nor from
a difference of the back transition rates into the ‘‘locked
solution.’’ In the simulations we found a distinct difference
of rates for transitions from the locked state into the left-, or
right-running state, which originates from the asymmetry of
the potential. This is the reason why the path-integral ap-
proach, which is based on jump rates k1 and k2 , does in-
deed exhibit the current reversal.

FIG. 11. The averaged motion of 20 particles moving in oppo-
site direction ~regime of current reversal!. The dashed line depicts
the MCF result for the average motion. The chosen parameters are
D50.1,Q50.1,m551.2,t53.58.

FIG. 12. Two individual trajectories x(t) are shown. The param-
eters chosen are D50.1,Q50.1,m551.2,t53.58.



PRE 59 1423INERTIA RATCHETS: A NUMERICAL STUDY VERSUS . . .
VII. MASS SEPARATION

Besides a size-dependent separation due to different fric-
tion constants of the particles, a separation due to mass dif-
ference constitutes a new and independent mechanism @11#.
We next discuss what possibilities for this kind of particle
separation result from our study.

The first situation would be that the particles move in
different regimes, overdamped and underdamped, which as-
sumes situations with large differences in m . Then—as dis-
cussed above—there exists a certain set of noise parameters
leading to different directions of the particles, as illustrated
in Fig. 13.

Next, let us consider massive particles with non-
negligible inertia ~moderate m). As shown before, we ob-
tained a displacement of the maximal current for increasing
values of the mass m . This shift can be used in effect for the
purpose of separating mesoscopic particles with different
masses. Adding a constant force against the preferred direc-
tion of the ratchet, a current reversal will emerge in a finite
region of t . Beginning from a first value t1 until a second
value t2 the noise-induced current overcompensates the ac-

FIG. 13. Velocity reversal in the underdamped case with respect
to mass m , evaluated with the MCF method. The parameters are
D50.1, Q50.1, t55.0.

FIG. 14. The results for the UCNA ~dashed! compared against
simulations ~solid lines!. Parameters: D50.05, Q50.125, F
520.01, for m50.125 ~curve, that reaches maximal current for
smaller t), and m50.375, respectively. The arrow indicates an op-
timal t value allowing for effective mass separation.
tion of the ~small! load force. Both values, t1 and t2, depend
on the mass of the particle. Hence for two different values of
the mass nonoverlapping regions of current reversals are pos-
sible. This in turn yields the desired separation of the two
species of particles.

Results of simulations and of the estimations from the
UCNA and the path integral approach are depicted in Figs.
14 and 15. For a specific range of t the particles have dif-
ferent signs of velocity, and hence exhibit flow on the aver-
age in different directions. An increase of the differences of
the masses would strengthen the speed of separation and en-
large the region of allowed correlation times.

VIII. CONCLUSIONS

We have presented analytical and exact numerical results
as well as computer simulations for the dynamics of a mas-
sive Brownian particle in a ratchet potential subjected to ex-
ternal colored and internal white fluctuations. We could dem-
onstrate that finite inertia can enhance the noise-induced
transport and that for this transport there exists an optimal
temperature of the embedding bath. In the underdamped case
we could detect a current reversal, which has been predicted
by the path-integral approach. The possibility of separating
particles with respect to their masses in the regimes of mod-
erate and strong inertia was demonstrated. It is conceivable
that this novel separation mechanism could be of use in tech-
nical applications, working at a mesoscopic level.
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FIG. 15. The results for the path-integral approximation
~dashed! compared against simulations ~solid lines!. Parameters:
D50.05, Q50.125, F520.01, for m50.125 ~curve, that reaches
maximal current for smaller t), and m50.375, respectively.
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