
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Quantum stochastic resonance in symmetric systems
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We investigate the low-temperature quantum stochastic resonance ~QSR! phenomenon in a two-level system
~TLS! which is coupled to an Ohmic heat bath. In contrast to common belief we find that QSR occurs also for
symmetric ~i.e., unbiased! TLS’s if the viscous friction parameter a exceeds a critical value: We demonstrate
that with respect to the spectral power amplification measure QSR always occurs for a.1; in contrast, the
output signal-to-noise ratio exhibits an amplification only for a.3/2. @S1063-651X~99!12305-5#

PACS number~s!: 05.30.2d, 05.40.2a
I. INTRODUCTION

The discovery of the phenomenon of stochastic resonance
~SR! @1# in nonlinear systems, whereby an ambient noise
source can optimally enhance the detection of a weak infor-
mation carrying signal, has triggered a large body of research
to this—at first glance—paradoxical effect. By now, stochas-
tic resonance, which is utterly a nonlinear phenomenon, is
well understood and it seems to be even more common than
originally suspected; see Ref. @2# for a comprehensive review
and further references, or Refs. @3,4# for introductory surveys
into this exciting field. In this context, we note that most of
the research thus far, which mainly addressed physical,
chemical and biological systems, has predominantly been
based on classical stochastic dynamics. The SR phenomenon
has only recently been taken into the quantum world with a
few contributions @5–10#. As such, QSR is still in its infancy,
but attracts increasing attention @2,4#. Some prominent quan-
tum results are the established increase of quasiclassical SR
by several orders of magnitude. This boost emerges due to
finite temperature tunneling contributions @8#. Another point
raised in the literature refers to the very low-temperature
behavior of QSR @2,4#. It is commonly assumed that QSR in
the deep cold can only emerge in biased systems @5–7#.
Then, the degradation of the response with increasing ~quan-
tum! noise intensity can be offset by a noise intensity in-
creasing Arrhenius factor ~provided by the detailed balance
factor of the bias!. In contrast, in a symmetric TLS this help-
ing role of an exponential Arrhenius factor is missing. It has
thus been tacitly, but incorrectly suspected that the weak
algebraic dependence on temperature of the corresponding
low-temperature quantum rate is generically not sufficient to
counterbalance the degradation of the response caused by
increasing the temperature. Recently, it has been shown by
use of numerical path integral calculations, however, that
QSR at moderately low temperatures does indeed occur in
unbiased, i.e., symmetric quantum double-well systems @10#.
Our purpose with this work is to resolve such an apparent
contradiction, and to obtain decisive and clear analytical in-
sight into the conventional QSR phenomenon at very low
temperatures.
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II. MODEL

Let us consider a two-level system ~TLS!, being bilinearly
coupled to the heat bath, and which is subjected to a weak
periodic driving force

f ~ t !5A0 cos~Vt !. ~1!

The total Hamiltonian of the considered driven system reads

Ĥ~ t !52
1
2 @e12x0 f ~ t !#ŝz1

1
2 \Dŝx

2x0ŝz(
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kl~bl
11bl!1(

l
\vlS bl
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1
2 D .

~2!

This driven spin-boson Hamiltonian describes the reduced
quantum tunneling dynamics in an asymmetric double-well
potential with minima located at xmin56x0, and with the
energy bias e @12–14#. The boson operators bl

1 ,bl corre-
spond to heat bath oscillators with frequencies vl , and ŝz ,x
are the usual Pauli matrices. The tunneling dynamics can be
characterized by the time-dependent position operator x̂(t)
5x0ŝz(t). Furthermore, \D in Eq. ~2! is the tunneling cou-
pling energy between the two lowest energy levels. The bath
influence on the TLS dynamics is captured by an operator
random force ĵ(t)5(lkl(bl

1e ivlt1ble2ivlt). Due to the
inherent Gaussian statistics of the bath, its statistical proper-
ties are defined by the autocorrelation function @12–14#

^ ĵ~ t !ĵ~0 !&b5
\

pE0

`

J~v !@coth~b\v/2!cos~vt !

2i sin~vt !#dv . ~3!

Here, the bath spectral density J(v)5(p/\)(lkl
2d(v

2vl) has been introduced, ^•••&b denotes the thermal av-
erage, and b51/kBT is the inverse temperature. We assume
that J(v) acquires the Ohmic form J(v)
5(2p\/4x0

2)ave2v/vc. Here, a quantifies the dimension-
less viscous friction strength and vc is the cutoff frequency
of the bath spectrum. As customary used @2#, the driving
force f (t) plays the role of an input signal, and the thermal
noise averaged asymptotic, time-periodic (t→`) deviation
^d x̂(t)&b from the equilibrium mean position is considered
as the averaged output signal. For instance, in the case of
5137 ©1999 The American Physical Society



5138 PRE 59IGOR GOYCHUK AND PETER HÄNGGI
superconducting quantum interference devices ~SQUID’s!
the input signal corresponds to a periodically applied mag-
netic flux modulation, and the output relates to the total time-
periodic magnetic flux @15#. The used two level approxima-
tion is well justified at low temperatures kBT!\v0 and for a
small time-dependent bias ue12x0 f (t)u!\v0, where \v0
measures the energy splitting between the lowest tunnel dou-
blet and the first higher lying excited state in the bistable
double well.

III. LINEAR RESPONSE THEORY

Within the framework of linear response theory ~LRT!,
the input signal and the averaged output response are related
by

^d x̂~ t !&b5E
2`

t
x~ t2t8! f ~ t8!dt8, ~4!

where x(t) denotes the response function. The linear suscep-
tibility of TLS is defined as the one-sided Fourier transform
x̃(v)5*0

`e ivtx(t)dt . Furthermore, the spectral power of the
fluctuations reads Sxx(v)5*2`

` e ivtC̄xx(t)dt , where

C̄xx~t !5 lim
T→`

1
2T E0

T
^d x̂~ t !d x̂~ t1t !1d x̂~ t1t !d x̂~ t !&bdt

~5!

is the time-averaged symmetrized autocorrelation function of
TLS fluctuations. Note that the spectral power Sxx(v) in the
considered weak driving limit can be decomposed as

Sxx~v !5ux̃~v !u2S f f~v !1Sxx
(0)~v !. ~6!

Here, Sxx
(0)(v) stands for the spectral power of spontaneous

fluctuations in the absence of driving, and S f f(v) is the spec-
tral power of the signal, which is defined similarly to Sxx(v).
Moreover, Sxx

(0)(v) is related to the linear susceptibility x̃(v)
by the thermal fluctuation-dissipation theorem ~FDT! @16#

Sxx
(0)~v !5\ cothS \v

2kBT
D Im x̃~v !. ~7!

An evaluation of either Sxx
(0)(v), or x̃(v) for the spin-boson

model ~2! presents a difficult task which—apart from the
case a51/2, @6,7#—can be solved approximately only. To
this end, let us consider the driven TLS dynamics subjected
to the weak harmonic signal ~1!. In the regime, where inco-
herent transitions dominate and the tunneling coupling is
small, i.e., D!vc , the TLS dynamics can be described
within the so-termed noninteracting blip approximation
~NIBA! @12–14#. The corresponding generalized master
equation within NIBA for the evolution of ^ŝz&b in arbitrary
fields is well known @17–19#. An analysis of the asymptotic
solution of this equation for the case of weak adiabatic driv-
ing ~1! yields @6,7#

x̃~v !5
1
kBT

x0
2

cosh2~e/2kBT !

W
W2iv . ~8!

Here, W denotes the quantum rate of relaxation of the aver-
age level populations. This rate is the sum, W5W11W2 ,
of forward (W1) and backward (W2) rates, respectively,
which satisfy the detailed balance condition in the form
W1 /W25ee/kBT. The expression ~8! is valid in the incoher-
ent tunneling regime for x0A0 ,\V!\vc ,akBT @7#. For
Ohmic friction, this incoherent regime occurs whenever a
.1/2 for any temperature @12,13#. Moreover, we assume the
condition W!kBT/\ , which is readily obeyed in practice. In
this case, the quantum FDT ~7! can safely be substituted by
its classical analog, yielding for the unperturbed spectral
density of the TLS

Sxx
(0)~v !5

x0
2

cosh2~e/2kBT !

2W
W21v2 . ~9!

The spectral power density ~9! contemplates the random
transitions between levels of the TLS with the switching
rates W6 determined by relaxation of the mean populations;
it thus reflects the quasiclassical Onsager regression hypoth-
esis. The incoherent quantum rate W coincides within NIBA
with the golden rule expression, i.e. @12,13#,

W5D2E
0

`

dt exp@2Q8~ t !#cos@Q9~ t !#cos@et/\# . ~10!

The functions Q8(t) and Q9(t) in Eq. ~10! denote the real
and imaginary parts of the bath correlation function, respec-
tively, i.e. @13#,

Q8~ t !1iQ9~ t !5
4x0

2

\2 E0

t
dt1E

0

t1
^ ĵ~ t2!ĵ~0 !&bdt21ilt ,

wherein, \l54x0
2*0

`dv J(v)/pv denotes the bath reorga-
nization energy @19#. For the considered case herein, the
function Q(t) can be evaluated in the closed analytical form
to yield ~see, e.g., Ref. @20#!

Q9~ t !52a arctan~vct !,

Q8~ t !52a lnHA11vc
2t2

G2~11k !

uG~11k1ivMt !u2
J . ~11!

In Eq. ~11!, G(z) denotes the complex gamma-function, and
we used the abbreviations vM5kBT/\ , and k5vM /vc .
These expressions allow for a numerical evaluation of the
quantum rate ~10! with good accuracy. Moreover, in the low-
temperature domain pkBT!\vc and for small bias e
!\vc one arrives at the well-known analytical approxima-
tion @21#

W5
D2

2vcG~2a ! S 2pkBT
\vc

D 2a21

3GUS a1i
e

2pkBT
D U2

coshS e

2kBT
D . ~12!

It is worth pointing out here that the regime of validity of the
two-level approximation is not restricted by the temperature
domain kBT!\vc. For example, in proton transferring mo-
lecular complexes in nonpolar media the energy gap between
the lowest tunneling doublet and the next one is about v0
;400 cm21; which exceeds the cutoff frequency vc
;80 cm21 @22#. For such cases, kBT/\vc can take on
rather arbitrary values within the validity of a well-founded
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TLS approximation, but the physics is no longer described
within the low-temperature approximation used inherently in
Eq. ~12!.

IV. QSR: SPECTRAL POWER AMPLIFICATION VERSUS
SIGNAL-TO-NOISE RATIO

Let us next consider in detail the case of periodic forcing
~1!. The spectral power density of the signal is immediately
found to read

S f f~v !5
p

2 A0
2@d~v1V !1d~v2V !#. ~13!

Combining Eqs. ~13! and ~9! in Eq. ~6! one recognizes that
the spectral power density of the output ~within LRT! con-
sists of two d-spikes which are superimposed on a broadband
Lorentzian ‘‘background.’’ This situation characterizes con-
ventional stochastic resonance for a weak input signal. To
quantify it, we use two different measures, namely, the spec-
tral power amplification ~SPA! of the signal and the signal-
to-noise ratio ~SNR! at the output @2#. The SPA h is related
to the integral intensity of both spikes, and is defined by @23#

h~V !5pA0
2ux̃~V !u2. ~14!

Note that h has the dimensionality of @x0
2# . For the present

case it is convenient to use a dimensionless measure given
by h̃5(\vc /A0x0)2(2x0)22h . The signal-to-noise ratio R is
defined by the ratio between the spectral power amplification
~14! and the spectral power intensity of the spontaneous fluc-
tuations at the driving frequency V @2# in absence of driving.
It has the dimension of a frequency and reads within the LRT

R~V !5
pA0

2ux̃~V !u2

Sxx
(0)~V !

. ~15!

Upon combining Eqs. ~8! and ~9! one obtains for the spectral
power amplification

h~V !5
1

~kBT !2

pA0
2x0

4

cosh4~e/2kBT !

W2

W21V2 , ~16!

and likewise for the SNR

R5
pA0

2x0
2

2~kBT !2

W

cosh2~e/2kBT !
. ~17!

Note that within the considered adiabatic approximation the
SNR measure R does not depend on the angular driving fre-
quency V .

We focus now on the unbiased, symmetric TLS dynamics
~i.e., e50) in the low-temperature domain, where the ap-
proximation ~12! is fully valid. For the scaled SPA h̃ we
derive the main result

h̃5
p3w0

2T̃4(a21)

w0
2T̃4(a21/2)1V2 , ~18!

where we introduced the scaled temperature given by T̃
52pkBT/\vc and w0[D2G2(a)/2vcG(2a). As is clearly
seen from Eq. ~18!, the spectral power amplification h ex-
hibits a monotonic decrease vs increasing temperature if a
<1. Thus, no QSR phenomenon occurs for a symmetric TLS
in this parameter region, which is in full agreement with the
previous findings in this regime @5–7#. The behavior
changes, however, in the strong dissipation regime a.1:
Then—although not of exponential strong form—the alge-
braic increase of the incoherent rate W, being proportional to
T (2a21) with increasing friction strength is, in fact, sufficient
to counterbalance the algebraic decrease ~proportional T22)
of the output response with increasing temperature. This
finding thus extends prior research studies @5–7# to the whole
regime of viscous dissipation strength 0,a,` . In particu-
lar, we find that for the SPA measure QSR occurs for all a
.1. For given V , the maximum

h̃max5p3 @2~a21 !#2(a21)/(2a21)

2a21 ~w0 /V !2/(2a21)

~19!

in the signal power amplification takes place at

T̃max5@2~a21 !#1/2(2a21)~V/w0!1/(2a21). ~20!

Note that the SPA maximum hmax and its position Tmax are
related in the considered low-temperature approximation by
a scaling low hmax;Tmax

22 independently of a . Moreover,
substituting Eq. ~20! into Eq. ~12! ~at e50) we obtain the
condition

W~Tmax!5A2~a21 !V ~21!

for approximate matching of the time scales between inco-
herent tunneling dynamics and external driving at the SPA
maximum. This time-scale matching underpins the interpre-
tation of stochastic resonance as a synchronization phenom-
enon @2,23#. For very low V @such that the corresponding
Tmax(V),1022\vc /kB# the full numerical results for the
synchronization scaling function f (a ,V)5W(Tmax)/V are
consistent with its low-temperature approximation f LT(a)
5A2(a21) in Eq. ~21!. In particular, f LT(a) actually pro-
vides an upper bound for the true synchronization scaling
function, i.e., f (a ,V)< f LT(a). With increasing angular fre-
quency V a maximum for f (a ,V) vs a does appear ~not
shown!.

The corresponding bell-shaped QSR behavior is depicted
in Fig. 1~a! for the case a51.44; this specific value is of
relevance for the experimental SQUID dynamics as investi-
gated in Ref. @11# in absence of a periodic driving. The au-
thors do look forward, of course, to having this QSR result
verified by experimental practitioners.

With respect to the SNR measure the situation is more
delicate. We note that the signal-to-noise ratio R is actually a
monotonic decreasing function of temperature T for this par-
ticular value of friction strength @see Fig. 1~b!#. This finding
portrays the principal difference between the two QSR mea-
sures in use, particularly if applied in the quantum domain.
For SNR it follows from Eqs. ~17! and ~12! that R}T2a23.
Thus, quantum stochastic resonance, as quantified by SNR—
i.e., an increase of SNR with increasing noise strength—also
occurs in a symmetric (e50), TLS, if a.3/2. We empha-
size that the prediction of strictly monotonic increase of R
versus T for a.3/2 is a flaw of the low-temperature approxi-
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mation used for Eq. ~12!. By use of the full expression in Eq.
~10! and for kBT still essentially less than \vc , SNR exhib-
its a true maximum. This maximum is shifted towards higher
temperatures with increasing frictional strength a ~see
Fig. 2!.

V. SUMMARY

In summary, we revisited quantum stochastic resonance in
the deep cold within the linear response theory approach.
Our detailed analysis revealed @see Eq. ~18!# that QSR, as
quantified by the SPA measure, occurs also for symmetric,
unbiased dissipative TLS systems whenever the frictional
strength a exceeds the critical value a51. This finding is

FIG. 1. ~a! Scaled spectral power amplification of the signal h̃
vs scaled temperature for a symmetric TLS with Ohmic coupling
strength a51.44. Calculations were evaluated according to Eq.
~16!, using the exact NIBA relaxation rate as defined in Eqs. ~10!,
~11!, for different angular driving frequencies V . The scaling cutoff
frequency vc is typically of order 1012 s21 which corresponds ap-
proximately to 7.6 K. The dotted lines in ~a! and ~b! nearby the
corresponding curves depict the result based on the low-temperature
approximation in Eq. ~12!, cf. Eq. ~18!. The QSR enhancement of
the signal power amplification is quite striking. ~b! Signal-to-noise
ratio plotted in the scaled unit of R05(A0x0 /\vc)2(D2/vc) vs
scaled temperature for the same system parameters. Here, no QSR
occurs with respect to the SNR measure.
contrary to prior assertions in Refs. @5–7# where this strong
friction regime has not been addressed in detail. In particular,
due to the absence of an exponential detailed balance factor
for a symmetric TLS, is has been anticipated incorrectly that
the degradation of the output response with increasing noise
strength ~the temperature! cannot be sufficiently offset by the
algebraic temperature dependence of the incoherent, sym-
metric TLS rate.

With regard to the SNR measure, the related quantum SR
occurs only for a.3/2 @see Figs. 1~b!,2#. Quantum stochas-
tic resonance can take place also in a parameter region kBT
,\vc , for 3/2,a,2, beyond the validity of the low tem-
perature approximation pkBT!\vc inherent in Eq. ~12!.
With increasing a the position of SNR maximum for SNR is
shifted towards kBT;\vc ~at a;5) ~not shown!. Moreover,
because the SNR approximation does not involve a depen-
dence on angular driving frequency, its maximum behavior
clearly cannot properly typify the inherent stochastic syn-
chronization mechanism between noise-assisted ~tunneling!
transport through the barrier region and external periodic sig-
nal modulation which lies at the roots of the SR phenomenon
@2#. In contrast, the SPA measure exhibits a peak behavior
that with increasing angular frequency driving V shifts to-
wards higher temperature ~and thus higher total rates W!.
This is in qualitative agreement with such a rough, approxi-
mate matching of time scales for stochastic ~QSR! synchro-
nization @see Eq. ~21!#. Finally, we note that these results for
QSR in the strong friction regime are expected to become
observable for a periodically modulated magnetic flux dy-
namics in rf SQUID’s that are operating in the mK tempera-
ture region @11#.
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FIG. 2. Enhancement of SNR in unbiased TLS. Scaled signal-
to-noise ratio vs scaled temperature for differing dissipation
strengths a .
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