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Stochastic resonance in ion channels characterized by information theory
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We identify a unifying measure for stochastic resonance ~SR! in voltage dependent ion channels which
comprises periodic ~conventional!, aperiodic, and nonstationary SR. Within a simplest setting, the gating
dynamics is governed by two-state conductance fluctuations, which switch at random time points between two
values. The corresponding continuous time point process is analyzed by virtue of information theory. In
pursuing this goal we evaluate for our dynamics the t information, the mutual information, and the rate of
information gain. As a main result we find an analytical formula for the rate of information gain that solely
involves the probability of the two channel states and their noise averaged rates. For small voltage signals it
simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR
occurs only when the closed state is predominantly dwelled upon. Upon increasing the probability for the open
channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain,
i.e., no SR behavior occurs.

PACS number~s!: 87.16.2b, 87.10.1e, 05.40.2a, 02.50.Wp
I. INTRODUCTION

Stochastic resonance ~SR! constitutes a cooperative phe-
nomenon wherein the addition of noise to the information
carrying signal can improve in a paradoxical manner the de-
tection and transduction of signals in nonlinear systems ~see,
e.g., Ref. @1# for an introductory overview, and Ref. @2# for a
comprehensive survey and references!. Clearly, this effect
could play a prominent role for the function of sensory biol-
ogy. As such, the beneficial role of ambient and external
noises has been addressed not only theoretically ~see, e.g.,
Ref. @3#!, but has also been manifested experimentally on
different levels of biological organization—e.g., in human
visual perception @4# and tactile sensation @5#, in cricket cer-
cal sensory systems @6#, in the mammalian neuronal net-
works @7#, and ~even earlier! in the mechanoreceptive system
in crayfish @8#. Presumably, the molecular mechanisms of
biological SR have their roots in stochastic properties of the
ion channel arrays of the receptor cell membranes @1#. This
stimulates interest in a study of SR in biological ion chan-
nels. One of the outstanding challenges in SR research is
therefore the quest to answer whether—and how—SR occurs
in single and/or coupled ion channels.

These channels are evolution’s solution enabling mem-
branes made of fat to participate in electrical signaling. They
are formed of special membrane proteins @9#. In spite of their
great diversity, these naturally occurring nanotubes share
some common features. Most importantly, the channels are
functionally bistable, i.e., they are either open, allowing spe-
cific ions to cross the membrane, or are closed @9#. The regu-
lation of the ion flow is achieved by means of the so-called
gating dynamics, i.e., those intrinsic stochastic transitions oc-
curring inside the ion channel that regulate the dynamics of
open and closed states. The key feature of gating dynamics is
that the opening-closing transition rates depend strongly on
external factors such as the membrane potential ~voltage-
gated ion channels!, membrane tension ~mechanosensitive
ion channels!, or presence of chemical ligands ~ligand-gated
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ion channels!. This sensitivity allows one to look upon the
corresponding ion channel as a kind of single-molecular sen-
sor which transmits input information to the signal-
modulated ion current response.

Recently, it was demonstrated experimentally by
Bezrukov and Vodyanoy @10# that a parallel ensemble of
independent, although artificial ~alamethicin! voltage-gated
ion channels does exhibit SR behavior, when the
information-carrying voltage signal is perturbed by a noisy
component. These authors put forward the so-called nondy-
namical model of SR. It is based on a statistical analysis of a
‘‘doubly stochastic,’’ periodically driven Poisson process
with a corresponding voltage-dependent spiking rate @10,11#.
Conceptually, such a model can be adequate to those situa-
tions only where the channel is closed on average with open-
ings constituting relatively rare events. An experimental
challenge is to verify whether the SR effect persists for
single natural biological ion channels under realistic condi-
tions. Moreover, a second challenge is to extend the theoret-
ical description in Ref. @11# to account properly for a distri-
bution of dwell times spent by the channel in the conducting
state.

The previous research on SR in ion channels was exclu-
sively restricted to the case of conventional SR, i.e., SR with
a periodic input signal. In a more general situation, however,
input aperiodic signals can be drawn from some statistical
distribution. This case of the so-termed aperiodic SR was
recently put forward for neuronal systems @6,12–14#. Note
that the important assumption of dealing with a signal real-
ization that is taken from a stationary process was made in
all previous studies. In practice, however, one frequently en-
counters a situation where this stationarity assumption is not
rigorously valid, because the signal has a finite duration on
the time scale set by observation. In this nonstationary situ-
ation, both spectral and cross-correlation SR measures are
inadequate. A preferable approach is then to look for SR
from the perspective of statistical information transduction
@6,14#. As elucidated in this work, information theory @15#
4272 © 2000 The American Physical Society
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can indeed provide a unified framework to address different
types of SR, including nonstationary SR. It is the main pur-
pose of this work to investigate the possibility to enhance the
transmission of information in a single ion channel in the
presence of a dose of noise. This task will be accomplished
within a simplistic two-state Markovian model for ion chan-
nel conductance @9#. Already within such an idealization, our
analysis in terms of information theory measures turns out to
be rather involved.

II. TWO-STATE MODEL

In principle, a microscopic description of the gating dy-
namics should be based upon a detailed understanding of the
structure of the channel’s ‘‘gating dynamics.’’ The present
state of the art assumes that voltage-sensitive gates are rep-
resented by mobile charged a-helix fragments of the channel
protein which can dynamically block the ion conducting
pathway. Therefore, the gating dynamics can be described by
a diffusive motion of gating ‘‘particles’’ in an effective po-
tential. Then Kramers diffusion theory @16,17# and its exten-
sion to the realm of fluctuating barriers ~see, e.g., Ref. @18#
for a review and further references! can be utilized to de-
scribe the gating dynamics. Such a type of procedure, how-
ever, is still in its infancy @19#. For our purpose, it suffices to
follow a well-established phenomenological road provided
by a discrete phenomenological modeling @20#.

The simplest two-state model of this kind reflects the
functional bistability of ion channels. Dichotomous fluctua-
tions between conducting and nonconducting conformations
of single ion channels were clearly seen in patch clamp ex-
periments @20#. The statistical distributions of sojourn times
of the open channel state and the closed channel state, re-
spectively, are generically not exponentially distributed @20#.
However, one can characterize these time distributions by an
average time ^To(V)& to dwell in the open ~O! state, and by
a corresponding average time ^Tc(V)&, to stay in the closed
~C! state. These two averages depend on the transmembrane
voltage V. Then the actual multistate gating dynamics can be
approximately mapped onto the effective two-state dynamics
described by the simple kinetic scheme

O �
kc~V !

ko~V !

C ,

with corresponding voltage-dependent effective transition
rates kc(V)51/^To(V)& and ko(V)51/^Tc(V)&, respec-
tively. Although such a two-state Markov description pre-
sents a rather crude approximation, it captures the main fea-
tures of the gating dynamics of the voltage-sensitive ion
channels—the dichotomous nature and the voltage-
dependence of transition rates. Moreover, by construction
this model yields the correct mean open ~closed! dwell times,
and the stationary probability for the channel to stay open,
i.e., Po(V)5^To(V)&/
@^To(V)&1^Tc(V)&# . An example of the experimental de-
pendence of the transition rates on voltage V can be found
for a K1 channel in Refs. @21,22#, and is depicted in Fig. 1.
We note that, in contrast to the closing rate kc, the opening
rate has no exponential dependence on the voltage. In par-
ticular, these two rates are not symmetric ~with respect to
dependence on V; cf. Fig. 1!. The reason for this is that the
two-state description results in a reduction of an intrinsic
multistate ~or multiwell! gating dynamics, and thus presents
only a shadow of the real behavior. In this sense, the Mar-
kovian approximation models the true non-Markovian dy-
namics on a coarse grained time scale.

To proceed, one has to generalize this working model to a
case with time-dependent voltages V(t)5V01Vs(t)1Vn(t).
Here we distinguish among three components of the voltage:
~i! the constant bias voltage V0; ~ii! some time-dependent,
unbiased signal Vs(t); and ~iii! a noisy component voltage
Vn(t). The noisy voltage Vn(t) is assumed to be a stationary
Gaussian Markovian noise with zero average and root mean
squared amplitude s . Moreover, it possesses a frequency
bandwidth f n . Let us restrict our treatment to the situation
where both the signal and the external noise are slowly vary-
ing on a time scale set by diffusive motions occurring within
the open ~or closed! conformation. This time scale tcon typi-
cally lies in the msec range, as manifested experimentally by
the fast events in channel activation @19#. We thus can apply
a fluctuation rate model @1,11#, assuming that the transition
rates ko(c)(t)[ko(c)@V(t)# follow the voltage V(t) adiabati-
cally. Furthermore, we assume that the applied Gaussian
voltage Vn(t) effectively presents ‘‘white noise’’ on the time
scale set by the decay of autocorrelations of the ion current
fluctuations. The autocorrelation time t I51/@ko(V0)
1kc(V0)# is typically of the order of milliseconds @20#. Then
the choice of a noise bandwidth f n satisfying t I

21! f n
!tcon

21 , i.e., f n;10–100 kHz, presents a consistent specifi-
cation for the fluctuating rate description. The role of exter-
nal noise is thus reduced within the same two-state approxi-
mation merely to forming new, noise-dressed time-
dependent transition rates k̄a5o ,c(t)[^ka5o ,c@V(t)#&n .
These result from taking the stochastic average of the fluc-
tuating rates over the external noise. These effective rates
now depend on the noise rms amplitude s , the static voltage
V0, and the time-dependent signal Vs(t). It turns out that
within the given approximation the averaged transition rates
do not depend on the noise bandwidth f n ; also see Appendix
A.

FIG. 1. Voltage dependence of the opening rate, ko , and the
closing rate, kc , for a K1 ion channel vs a static voltage V0 ~solid
lines!; cf. Eq. ~A1!. The corresponding probability for the channel
in the open state is depicted by the dotted line.
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Our models for the channel dynamics thus read

dPo~ t !
dt 52 k̄c~ t !Po~ t !1 k̄o~ t !Pc~ t !,

~1!
dPc~ t !
dt 52 k̄o~ t !Pc~ t !1 k̄c~ t !Po~ t !,

where Po(t) and Pc(t) denote the time-dependent probabili-
ties for a single ion channel to be open or closed, respec-
tively. The stochastic process described by Eq. ~1! is a non-
stationary random telegraph noise with time-dependent
transition rates. This model has been extensively studied in
the literature, for example, to model conventional SR @2,23#.
Moreover, this model was studied in Ref. @24# from the per-
spective of input-output cross-correlations as a simple model
for aperiodic SR. However, to the best of our knowledge, a
detailed analysis of this cornerstone model, using informa-
tion theory @15,14# to specify the information transduction
process, has not been developed previously.

III. STATISTICAL DISTRIBUTION OF CURRENT
FLUCTUATIONS

How can we estimate the amount of information transmit-
ted from the input voltage signal V s(t) to the output ion
current I(t)? A comparative statistical analysis of the ion
current fluctuations performed in the absence and presence of
a signal allows one to answer this question.

When the channel is open, a large number of ions cross
the channel, thus creating a finite, mean current Io(t). This
current obeys the Ohmic law Io(t)5go@V(t)2Vk# , where go
is the conductivity of the open channel and Vk is the ‘‘rever-
sal’’ potential ~Nernst potential! for K1 ion flow. When the
channel is closed, the ion flow is negligible and the current is
zero. We recall that the current passing through the open
channel is generally time dependent in accordance with the
externally applied signal V s(t). However, we will assume
that information about the signal is encoded in the switching
events of current between zero and Io(t), and not in the
additional modulation of Io(t). In other words, the informa-
tion is assumed to be encoded in the signal-modulated con-
ductance fluctuations between go and zero @25#.

Moreover, one can describe the resulting current fluctua-
tions in terms of conductance fluctuations, i.e.,

I~ t !5g~ t !@V~ t !2Vk# , ~2!

wherein g(t) is a two-state random point process @26,27#.
The sample space of g(t) within the time interval @0,t# con-
sists of stochastic trajectories which flip between zero and g0
at randomly distributed switch-time points t i , i51,2, . . . ,
i.e.,

0,t1,t2,•••,ts,t . ~3!

This defines a continuous time point process t( t̃ ), 0< t̃<t .
Next we divide the sample space into two subspaces: ~i! the
subspace ‘‘o’’ contains all trajectories which finish in the
open state at the end point t of the considered time interval,
and ~ii! the subspace ‘‘c’’ contains all trajectories which end
in the closed state, respectively. Furthermore, within each
subspace the trajectories are divided into the subclasses de-
scribed by the number s50,1,2, . . . , which enumerates the
number of intermediate flips that occurred between open and
closed states in order to arrive at the final state. The prob-
ability distribution on this space is given by a sequence of
joint multitime probability densities Q s

c(o)(t ,ts , . . . ,t1) for
switches to occur at time t1 ,t2 , . . . ,ts , and to end up at
time t in either the open state o or closed state c, respectively.
This probability distribution is normalized, i.e.,

(
a5o ,c

FQ0
a~ t !

1(
s51

` E
0

t
dtsE

0

ts
dts21 . . . E

0

t2
dt1Q s

a~ t ,ts , . . . ,t1!G
51. ~4!

The probability densities Q s
c(o)(t ,ts , . . . ,t1) are readily

constructed by taking into account the facts that the process
g(t) is ~semi!-Markovian for any given realization of the
voltage signal V s(t), with the switching time points t i being
drawn alternatingly from two different time-dependent Pois-
son distributions @27#. In particular, the probability to stay in
the closed conformation until time t, given that this confor-
mation has been occupied initially with the probability
Pc(0), is

Q0
c~ t !5e2*0

t k̄o(t)dtPc~0 !. ~5!

To obtain the remaining probability densities, we introduce
the conditional probability density

Pc~t2ut1!5 k̄o~t2!e2*
t1

t2k̄o(t)dt ~6!

for leaving the state ‘‘c’’ in the time interval @t21dt ,t2# ,
given that this state was occupied with probability 1 at t̃
5t1. Analogous expressions, with indices changed from c to
o, hold obviously also for the complementary quantities
Q0

o(t) and Po(t2ut1). Then the multitime probability densi-
ties emerge as

Q2n
c ~ t ,t2n , . . . ,t1!5e2*t2n

t k̄o(t)dtPo~t2nut2n21!

3Pc~t2n21ut2n22! . . . Po~t2ut1!

3Pc~t1u0 !Pc~0 ! ~7!

for a given even number of flips, and

Q2n11
c ~ t ,t2n11 , . . . ,t1!5e2*t2n11

t k̄o(t)dtPo~t2n11ut2n!

3Pc~t2nut2n21! . . . Pc~t2ut1!

3Po~t1u0 !Po~0 ! ~8!

for an odd number of flips, respectively. The probability den-
sities for the other subspace ~labeled with o) can be written
down by use of a simple interchange of the indices c and o in
Eqs. ~5!–~8!.
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The above reasoning yields a complete probabilistic de-
scription of the stochastic switching process that is related to
the conductance fluctuations g(t). In terms of the stochastic
path description, the probability that the channel is open at
the instant time t is therefore given by

Po~ t !5Q0
o~ t !

1(
s51

` E
0

t
dtsE

0

ts
dts21•••E

0

t2
dt1Qs

o~ t ,ts , . . . ,t1!.

~9!

An analogous expression also holds for the probability of the
closed conformation Pc(t). Upon differentiating Po(t) and
Pc(t) with respect to time t, one can check that these time-
dependent probabilities indeed satisfy the kinetic equations
~1!.

IV. STOCHASTIC RESONANCE QUANTIFIED
BY INFORMATION THEORY

In the following we derive a general theory for various
information measures that can be used to quantify the infor-
mation gain obtained from an input signal Vs(t) being trans-
duced by the ion channel current realizations I(t) when
Vs(t) is switched on, versus the case with Vs(t) being
switched off. Intuitively, this information describes the dif-
ference in uncertainty about the current realizations in the
absence and presence of the signal Vs(t).

A. Preliminaries

We start out by reviewing the necessary background. Let
us first consider a discrete random variable A. As demon-
strated by Shannon in 1948 @15# ~his expression was discov-
ered independently by Wiener!, the information entropy

S~A!52k(
i51

n

p i ln p i ~10!

provides a measure of the uncertainty about a particular re-
alization A i of A @28#. In Eq. ~10!, the set p i denotes the
normalized probabilities for the realizations A i to occur,
( i51

n p i51. The positive constant k in Eq. ~10! defines the
unit used in the measurement. If the information entropy is
measured in binary units, then k51/ln 2, natural units yield
k51, and digits give k51/ln 10. This measure attains a
minimum ~being zero! if and only if p i51 for a particular
value of i, and all others satisfy p i50. It reaches a maximum
if p i51/n . The information entropy for a probability distri-
bution is therefore a measure of how strongly it is peaked
about a given alternative. The uncertainty is consequently
large for spread out distributions, and small for concentrated
ones.

The application of an external signal ~perturbation! results
in a change of probabilities p i , and consequently in entropy
S(A). The gained information I is then defined by the cor-
responding change in entropy, i.e., I5Sbe f ore–Sa f ter .

The generalization of the information concept to the case
of a continuous variable A(x) presents no principal difficul-
ties. In this case a proper definition of entropy reads
S~A !52kE p~x !ln@p~x !Dx#dx

[2kE p~x !ln@p~x !#dx2k ln Dx , ~11!

wherein p(x) is the probability density, and Dx denotes the
precision with which the variable A(x) can be measured
~coarse graining of cell size!. As clearly seen from Eq. ~11!,
the absolute entropy of a continuous variable is not well
defined since it diverges in the limit Dx→0. Nevertheless,
the entropy difference :5 information is well defined, and
does not depend on the precision Dx .

B. t information

The generalization of information theory to the case of
stochastic processes is not trivial. In our case, the proper
definition of entropy of the switch-point process t( t̃ ), con-
sidered in the time interval @0,T# , is, by analogy with Eq.
~11!,

St@TuVs#[2k (
a5o ,c

HQ0
a~T !lnQ0

a~T !

1(
s51

` E
0

T
dtsE

0

ts
dts21•••

3E
0

t2
dt1Qs

a~T ,ts , . . . ,t1!

3ln@Qs
a~T ,ts , . . . ,t1!~Dt !s#J , ~12!

where Dt denotes the precision of time measurement, and
the symbol Vs indicates that the entropy is defined in pres-
ence of the signal Vs(t). The presence of the time resolution
Dt in Eq. ~12! gives the name ‘‘t entropy’’ to this quantity
@29#. It is very important that in the contrast to the case of a
continuous variable, the contribution of the finite time reso-
lution Dt to the t entropy cannot be recast in a form like
2k ln Dx @cf. Eq. ~11!#. We note that its contribution de-
pends on the statistics of the random process being different
in the presence and absence of a signal. This is why not only
the absolute entropy, but also the difference of entropies,
become poorly defined for continuous time point random
processes. As a result, the definition of information in this
manner becomes rather ambiguous.

For a sufficiently large time interval T the averaged infor-
mation transferred per unit time from the input voltage signal
Vs(t) to the output current signal I(t) can be defined as
follows @30,31#:

It5
St~TuVs50 !2St~TuVs!

T . ~13!

This information measure can be termed ‘‘t information per
unit time’’ to underline its dependence on the time resolution
Dt . Upon taking the derivative of St@ tuVs# in Eq. ~12! with
respect to time t, after some involved algebra ~cf. Appendix
B! we obtain the result
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dSt@ tuV s#

dt 52k (
a5o ,c

k̄a~ t !ln@ k̄a~ t !Dt/e#P ā~ t !, ~14!

where ā5o , if a5c , and vice versa. Together with Eq. ~1!
and the definition ~13!, the prominent result in Eq. ~14! al-
lows one to express the t information for an arbitrary signal
V s(t) through straightforward quadratures.

The t-information concept was used to analyze the infor-
mation transfer in neuronal systems in Refs. @30,31#. How-
ever, the strong dependence of t information on the time
precision Dt @31# surely presents an undesirable subjective
feature. In search of objective information measures, we con-
sider information transfer in terms of the mutual information
measure.

C. Mutual information

To introduce the reader to the mutual information con-
cept, we follow the reasoning of Shannon @15#: the signals
V s(t) are drawn from some statistical distribution character-
ized by the probability density functional P@V s(t)# . Noting
that the probability densities Q s

a(t ,ts , . . . ,t1) in Eqs. ~5!,
~7!, and ~8! are in fact conditional with respect to
the given realization of V s(t), one can define the joint
probability densities, Q joint

a ,s @ t ,ts , . . . ,t1 ;V s(t)#
5Q s

a(t ,ts , . . . ,t1)P@V s(t)# for the corresponding stochas-
tic processes V s(t) and I(t). Moreover, one can define the
averaged probability densities ^Q s

a(t ,ts , . . . ,t1)&signal for
the process I(t) in the presence of the process V s(t), where
the path integral ^•••&signal[*D@V s# . . . P@V s(t)# denotes
stochastic averaging over the signal realizations. The mutual
information between the stochastic process V s(t) and I(t)
can then be defined as the entropy difference

MT~V s ,I !5Sav~T !2^St~TuV s!&signal , ~15!

where Sav(T) is the t entropy of an averaged process defined
similarly to Eq. ~12!, but with the averaged probability den-
sities ^Q s

a(t ,t1 , . . . ,ts)&signal . Note that making use of the
Bayes rules one can transform definition ~15! into a form
which makes transparent the fact that the mutual information
MT(V s ,I) is a symmetric functional of the processes V s(t)
and I(t), and provides a nonlinear cross-correlation measure
between them @15#. However, we will take advantage of an
equivalent form; it is obtained from Eq. ~15! by using Eq.
~12!, yielding

MT~V s ,I !5kK (
a5o ,c

HQ0
a~T !ln

Q0
a~T !

^Q0
a~T !&signal

1(
s51

` E
0

T
dtsE

0

ts
dts21•••

3E
0

t2
dt1Q s

a~T ,ts , . . . ,t1!

3ln
Q s

a~T ,ts , . . . ,t1!

^Q s
a~T ,ts , . . . ,t1!&signal

J L
signal

.

~16!
As clearly deduced from Eq. ~16!, Shannon’s mutual infor-
mation does not depend—due to its skillful definition in Eq.
~15! – on the time resolution Dt . This underpins its advan-
tage over the information measure in Eq. ~13!. Moreover, the
functional form ~16! inherits important connections between
the mutual information and another prominent information
measure: the ~relative! Kullback entropy, also termed infor-
mation gain.

D. Rate of information gain

Information gain @32# is given in terms of the relative
entropy of the given statistical distribution with respect to
some reference distribution. In our case, the reference distri-
bution corresponds to stationary ion current fluctuations in
the absence of the voltage signal V s(t). For a given signal
V s(t), the information gain reads

KT@IuV s#[k (
a5o ,c

HQ0
a~T !ln

Q0
a~T !

Q0
(0)a~T !

1(
s51

` E
0

T
dtsE

0

ts
dts21•••

3E
0

t2
dt1Q s

a~T ,ts , . . . ,t1!

3ln
Q s

a~T ,ts , . . . ,t1!

Q s
(0)a~T ,ts , . . . ,t1!

J , ~17!

where the index ‘‘(0)’’ in Q s
(0)a refers to the case when no

voltage signal is applied. The relative entropy can be re-
garded as a signal-induced deviation of the entropy of the
random point process t( t̃ ) from its stationary value obtained
in the absence of signal. Although the absolute entropy of
such a switch-time point process t( t̃ ) depends strongly on
the time resolution Dt and thus is not well defined, the de-
viation of entropy from the steady-state value can be defined
independently of Dt via Eq. ~17!. For stochastic processes
this relative entropy plays a role similar to the entropy dif-
ference, thus characterizing an information measure. This
justifies its given name: information gain. In contrast to mu-
tual information this measure can be defined for determinis-
tic signals as well. Consequently, information gain can be
used as an information measure both for conventional and
aperiodic SR. Moreover, this measure is also well defined for
nonstationary signals, and therefore can be used to quantify
nonstationary SR as well.

In contrast to information gain, mutual information is
more difficult to handle analytically. This is rooted in the fact
that the averaged point process t( t̃ ) is a non-Markovian
process, with corresponding joint probabilities not factoriz-
ing into products of conditional probabilities.

The following important inequality can be deduced:

MT~V s ,I !5^KT@IuV s#&signal2KT@^I&signal#

<^KT@IuV s#&signal . ~18!

In Eq. ~18!, KT@^I&signal#>0 is the relative entropy of an
averaged process g(t) defined similarly to Eq. ~17!, but
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with averaged multitime probability densities
^Q s

a(T ,t s , . . . ,t1)&signal . The averaged information gain
thus provides an upper bound for the mutual information.
Moreover, applying a weak Gaussian signal, which can be
regarded as a white noise on the time scale set by the ion
current fluctuations, one can show that the difference be-
tween the mutual information and the averaged information
gain in Eq. ~18! is of order O (A4), where A denotes the rms
amplitude of signals A5^V s

2(t)&signal
1/2 . On the other hand, it

is shown below that the averaged information gain per unit
time is of the order O (A2) and does not depend, within the
given lowest order approximation, on other statistical param-
eters of signal. Thus the upper bound for mutual information
in Eq. ~18! can indeed be achieved with an accuracy of
O (A2). This fact opens a way to calculate the informational
capacity for weak signals @33#.

The information gain can be evaluated from Eq. ~17!
without further problems. By differentiating KT@I uV s# with
respect to T, we find, following the reasoning detailed in
Appendix B, the remarkably simple, main result for the rate
of information gain, i.e.,

dKt@I uV s#

dt 5k (
a5o ,c

F k̄a~ t !lnS k̄a~ t !

k̄a~V0!
D 2 k̄a~ t !

1 k̄a~V0!GP ā~ t !, ~19!

wherein k̄a(V0) denotes the stationary transition rates in the
absence of signal. Together with Eq. ~1! this equation com-
pletely determines the information gain within the considered
two-state model for any applied signal V s(t). For the case of
a periodic signal V s(t) ~conventional SR!, or a stochastic
stationary signal ~aperiodic SR!, one should additionally av-
erage Eq. ~19! over the signal fluctuations and take the limit
t→` . In doing so, Eq. ~19! yields the stationary rate of in-
formation gain. For weak stochastic signals this quantity also
defines the informational capacity @33#

C' lim
T→`

^KT@I uV s#&signal /T . ~20!

If the signal is deterministic and has a finite duration, one
obtains the total information gain K by integrating Eq. ~19!
in a range from 0 to ` .

V. STOCHASTIC RESONANCE IN SINGLE K¿ ION
CHANNELS

In the following we apply our developed information
theory concepts to investigate SR in a K1 ion channel. We
restrict our treatment to the case of weak signals with a time
duration which strongly exceeds the autocorrelation time of
current fluctuations t I . Then, after some elementary calcu-
lations in the lowest order of V s(t), Eqs. ~19! and ~1! yield

dKt@I~ t !uV s~ t !#
dt 5R~V0 ,s !V s

2~ t !, ~21!

where the form factor
R~V0 ,s !5
1
8 k

k̄o~V0!k̄ c~V0!

k̄o~V0!1 k̄ c~V0!
@bo

2~V0!1bc
2~V0!#

~22!

depends on the static voltage V0 and—via the rates
k̄a(V0)—on the rms noise amplitude s . In Eq. ~22!,
ba(V0)52(d /dV0)ln@k̄a(V0)#, a5o and c, and the noise av-
eraged rates k̄o(c)(V0) are given in the Appendix A for a K1

channel in Eqs. ~A2! and ~A3!.
In the case of stationary stochastic signals or for periodic

driving, Eq. ~21! provides—after stochastic averaging, or av-
eraging over the driving period of applied voltage V s(t),
respectively—the stationary rate of information gain. For
signals of finite duration the total information gain is directly
proportional to the total intensity of signal j5*0

`V s
2(t)dt :

K5R~V0 ,s !j . ~23!

As a result we find that weak signals of the the same inten-
sity j produce equal information gains. The occurrence of
three different kinds of SR behavior, i.e., periodic, aperiodic,
and nonstationary SR, clearly depends on the behavior of the
form function R (V0 ,s) vs the rms noise amplitude s . We
recall that the static voltage ~membrane potential! V0 con-
trols whether the ion channel is on average open or closed,
cf. Fig. 1. In Fig. 2, we depict the behavior of the function
R (V0 ,s) vs the rms noise amplitude for different values of
the applied static voltage. If the K1 ion channel is closed, on
average, we observe that the information gain becomes
strongly amplified by noise, and can even pass through a
maximum, i.e., SR occurs @cf. Fig. 2~a!#. In contrast, when
the stationary probability for an open channel P o5ko /(ko
1k c) becomes appreciably large, the addition of an addi-
tional dose of noise can only deteriorate the detection of
signal. As a result, the information gain decreases monotoni-
cally with increasing noise amplitude @cf. Fig. 2~b!#. This
no-SR behavior occurs at a static bias of V0'249 mV,
yielding P o'0.08. Note also, if the channel is predominantly
open, that the information gain becomes practically insensi-
tive to the external noise @cf. the bottom curve in Fig. 2~b!#.
The occurrence of SR in the considered single ion channel
thus requires that the channel is predominantly resting in its
closed state.

VI. CONCLUSIONS

Let us now summarize the main results of this work. We
have studied an illustrative two-state model for a single ion
channel gating dynamics from an information theoretic point
of view. The channel serves as an information channel, trans-
ducing information from the applied time-dependent voltage
signal to the ion current fluctuations. Three different infor-
mation theory measures have been developed to characterize
stochastic resonance. From our viewpoint it is advantageous
to use an information measure which is independent of time
resolution Dt . We argued that the rate of information gain
constitutes a unified characteristic measure for periodic ~con-
ventional!, aperiodic, and nonstationary stochastic reso-
nance. For conventional ~periodic! SR and aperiodic SR this
measure yields the averaged information gain per unit time.
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Moreover, for weak stochastic signals it also gives the infor-
mational capacity, i.e., the maximal mutual information
which can be transferred per unit time for random signals
with a fixed rms amplitude. The concept of information gain
can also be applied to the case of nonstationary deterministic
signals with finite duration, i.e., nonstationary SR; cf. Eqs.
~22! and ~23!.

Our main result is the closed formula for the rate of in-
formation gain in Eq. ~19!: it can be evaluated in a straight-
forward manner by using the corresponding probabilities of
the two-state gating dynamics in Eq. ~1!. The information
gain itself follows upon a time integration. In the presence of
weak driving we derived handy analytical results given in
Eqs. ~21!, ~22!, and ~23!. For voltage input signals referring
to a stationary process the averaged rate of the information
gain is determined by the rms amplitude of the signal input
and by the form factor R(V0 ,s). In the case of a nonstation-
ary signal of finite duration, the total information gain is the
product of this very form function and the integrated signal
intensity j .

The experimental procedure for determining the rate of
information gain can be formulated along the lines used for
the t entropy in Ref. @31#. First, one finds the corresponding
probability histograms in the presence and absence of a sig-
nal, and then evaluates the information gain for the related

FIG. 2. Information gain versus rms amplitude of external noise
s at various static bias voltages V0. The form function R(V0 ,s) in
Eqs. ~21!–~23! is plotted vs the rms noise intensity s .
stochastic chains. Naturally, this information gain will still
depend on the time resolution Dt . However, in contrast to
the t information, this experimentally determined informa-
tion gain should exhibit a much weaker dependence on the
time resolution Dt . By using increasingly smaller time grids
Dt , the experimentally obtained rate of information gain will
approach a definite value.

Our theoretical results have been applied to investigate
the phenomenon of stochastic resonance in a potassium-
selective Shaker IR ion channel @21#, as depicted within Figs.
2~a! and 2~b!. Interestingly enough, we find that periodic,
aperiodic, or nonstationary SR for this sort of ion channel, as
quantified by the rate of information gain, is exhibited only
for a situation in which the channel resides on average in a
closed state. This type of behavior is rooted in the asymme-
try of two rates ko and kc , with ko depicting a characteristic
steep, thresholdlike behavior; cf. Fig. 1.

Our SR feature is similar to the study of parallel SR in an
array of alamethicin channels @10#, although the two situa-
tions are not directly comparable. We note that the amount of
transmitted information depends crucially on the membrane
potential V0. For the model studied the information transfer
is optimized at zero noise level near V0'246 mV when the
opening probability becomes appreciable @note the upper
curve in Fig. 2~b!#. However, under such optimal conditions
the addition of external noise has the effect of only further
deteriorating the rate of information transfer @Fig. 2~b!#.
Upon further increasing the static bias V0 the ion channel
probability to stay open increases. The rate of information
transfer then diminishes and becomes practically insensitive
to the input noise level.

These results hopefully will motivate researchers to mea-
sure the predicted SR behavior in single potassium ion chan-
nels. Ever since the discovery of the SR phenomenon, the
quest to use noise to optimize and control the transduction
and relay of biological information has been one of the Holy
Grails of SR research. Given this challenge, such and related
experiments are much needed in order to settle the issue in
question.
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APPENDIX A: MODEL FOR AVERAGED TRANSITION
RATES IN A POTASSIUM CHANNEL

The opening and closing rates for the effective two-state
model can be found from the voltage-dependent average
dwell times. The latter can be determined from the experi-
mental recordings. The experimental dependence of the ef-
fective transition rates on voltage V0 for the potassium-
selective channel Shaker IR embedded in the membrane of a
Xenopus oocyte at fixed temperature T518°C has been fitted
@22,21# by a Hodgkin-Huxley type of data parametrization
@34#. This corresponding fitting procedure yields
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k c~V !5a 1e2b1V , a 150.015, b 150.038,
~A1!

k o~V !5
a 2~V1V 2!

12e2b2(V1V2) , a 250.03, b 250.8, V 2546,

which are depicted in Fig. 1. Note that we replace the origi-
nal fit of the closing rate k c in Refs. @22,21# by a new ex-
pression in Eq. ~A1!. Unlike Ref. @22#, our fit of experimen-
tal data in Ref. @22# is now also valid for positive voltages V.
One should emphasize that the two rates in Eq. ~A1! are
strongly asymmetric with respect to their dependence on
voltage. In particular, the opening rate k o(V ) depicts a steep,
thresholdlike behavior; see Fig. 1. In this work we explicitly
use these experimental findings in our calculations. The rates
in Eq. ~A1! are measured in msec21, and the voltage in mV.
According to our model study, the input voltage reads V
5V 01V n( t) when no additional signal is applied. Equations
~A1! must be averaged over the realizations of V n( t) to ob-
tain the noise averaged rates k̄ o(V 0) and k̄ c(V 0). For a
Gaussian voltage noise V n( t) this averaging of the exponen-
tial in the first equation in Eqs. ~A1! is governed by the
second cumulant, yielding

k̄ c~V 0!5a 1e b1
2s2/22b1V0, ~A2!

where s5^V n
2( t)&1/2. The averaged opening rate

k̄ o~V 0!5
1

A2ps
E

2`

` a 2~V 01V 21y !

12e2b2(V01V21y ) e
2(y2/2s2)dy

~A3!

unfortunately cannot be analytically simplified further. How-
ever, this rate along with its derivative d k̄ o(V 0)/dV 0 can
readily be evaluated numerically from Eq. ~A3!.

APPENDIX B: CALCULATION OF ENTROPY
AND INFORMATION GAIN

The purpose of this appendix is to provide the readers
with some details of calculation of the entropic measures for
the continuous time random point two-state process consid-
ered in this paper. First, we note two useful properties of the
multitime probability densities which can be established
from Eqs. ~7! and ~8!. That is,

d
d t

Q s
a~ t ,t s , . . . ,t1!52 k̄ ā~ t !Q s

a~ t ,t s , . . . ,t1!, s>0,

~B1!

and
Q s
a~ t , t ,t s21 , . . . ,t1!5 k̄a~ t !Q s21

ā ~ t ,t s21 , . . . ,t1!, s>1.
~B2!

The index a in Eqs. ~B1! and ~B2! takes the values a5o and
c, and the index ā takes the value ā5o , if a5c , and vice
versa. Using Eqs. ~B1! and ~B2!, one can check that P o (c )
given in Eq. ~9! does satisfy Eq. ~1!.

Furthermore, let us consider the t entropy in Eq. ~12! as a
sum of two contributions, S t@ t uV s#5k(a5o ,cSa( t), with
Sa( t) defined from the corresponding partitioning in Eq.
~12!. Then, repeatedly using the relationships ~B1! and ~B2!,
after some straightforward, but lengthy calculations, we ob-
tain

d
d t

S o~ t !52 k̄ c~ t !S o~ t !1 k̄ o~ t !S c~ t !1 k̄ c~ t !P o~ t !

2 k̄ o~ t !ln@ k̄ o~ t !Dt#P c~ t ! ~B3!

and

d
d t

S c~ t !52 k̄ o~ t !S c~ t !1 k̄ c~ t !S o~ t !1 k̄ o~ t !P c~ t !

2 k̄ c~ t !ln@ k̄ c~ t !Dt#P o~ t !. ~B4!

The addition of Eqs. ~B3! and ~B4! then yields Eq. ~14!.
Likewise, splitting the information gain Kt@I uV s# in Eq. ~17!
into the sum of two contributions, Kt@I uV s#
5k(a5o ,cKa( t), and invoking the properties ~B1! and ~B2!
we obtain, after some algebra,

d
d t

K o~ t !52 k̄ c~ t !K o~ t !1 k̄ o~ t !K c~ t !2@ k̄ c~ t !

2 k̄ c~V 0!#P o~ t !1 k̄ o~ t !lnS k̄ o~ t !

k̄ o~V 0!
D P c~ t !

~B5!

and

d
d t

K c~ t !52 k̄ o~ t !K c~ t !1 k̄ c~ t !K o~ t !2@ k̄ o~ t !

2 k̄ o~V 0!#P c~ t !1 k̄ c~ t !lnS k̄ c~ t !

k̄ c~V 0!
D P o~ t !.

~B6!

Adding Eqs. ~B4! and ~B5! results, after multiplying by k , in
our main result, in Eq. ~19!.
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