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The concept of controlling stochastic resonance has been recently introduced @L. Gammaitoni et al., Phys.
Rev. Lett. 82, 4574 ~1999!# to enhance or suppress the spectral response to threshold-crossing events triggered
by a time-periodic signal in background noise. Here, we develop a general theoretical framework, based on a
rate equation approach. This generic two-state theory captures the essential features observed in our experi-
ments and numerical simulations.

PACS number~s!: 05.40.2a, 02.50.Ey, 47.20.Ky, 85.25.Dq
I. INTRODUCTION

Stochastic resonance ~SR! is a nonlinear noise-mediated
cooperative phenomenon wherein the coherent response to a
deterministic signal can be enhanced in the presence of an
optimal amount of noise. Since its inception in 1981 @1#, SR
has been demonstrated in diverse systems, including sensory
neurons, mammalian neuronal tissue, lasers, Superconduct-
ing quantum interference devices ~SQUIDs!, tunnel diodes,
and communications devices @2#. Variations and extensions
of the classical definition of SR have also appeared in the
literature, in connection with systems having nonperiodic in-
puts ~e.g., dc, wideband! with the detector response quanti-
fied by various information-theoretic @3# or spectral cross-
correlation @4# measures.
Recently, we introduced a control scheme which allows

us to enhance or suppress the spectral response in the basic
SR effect @5#. Our control strategy is applicable when input
information is transmitted via the crossing of either a thresh-
old or potential energy barrier. This raises the intriguing pos-
sibility that in situations where external signals might be
potentially deleterious, e.g., electromagnetic field interac-
tions with neuronal tissue @6#, their effects could be substan-
tially reduced or even eliminated via ~externally applied!
control signals.
In this work we present a detailed theoretical treatment of

the control phenomenon, based on a perturbation-theoretic
development of the response power spectral density for weak
input signals and weak barrier modulation amplitudes. We
focus on the effect of the barrier modulation ~the ‘‘control’’!
on the output signal power attenuation and amplification at
the fundamental of the signal frequency. First, however, we
summarize ~for the sake of completeness! the recent phe-
nomenological description of the response @5#, based on the
results of experiments carried out on one of the simplest
hysteretic bistable devices, the Schmitt trigger.

II. PHENOMENOLOGY OF CONTROLLED SR

The motivation for this investigation was the observed
rich phenomenology created by the interplay of the two driv-
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ing frequencies as seen in the output power spectral densities
~PSDs! of a driven Schmitt trigger ~ST!. Specifically, for
relatively large barrier modulation amplitudes, digital simu-
lations of the ST reveal ‘‘dips’’ and peaks in the power spec-
tra at combination tones um1vS6m2vMu, with vS ,M being
the signal and barrier frequencies and m1,2 integers. The
phase offset f between the signal and the barrier modula-
tion, as well as the ratio of the frequencies, appear to deter-
mine the locations of the peaks and dips, with the height ~or
depth! determined by the modulation amplitudes. This be-
havior is depicted in Figs. 1–4. Figures 1 and 2 show two
PSDs for vM5vS and phases f50 and f5p/2, respec-
tively. For small signal but relatively strong barrier modula-
tion, well-defined dips at the even and odd harmonics are
evident in the PSD for f50. Note that the signal and barrier
modulation amplitudes are always taken to be less than the
barrier separation b, so that there are no transitions in the
absence of noise. Shifting the phase to p/2 results in strong
peaks embedded within the same dips, as displayed in Fig. 2.
For double frequency modulation vM52vS and phase f

FIG. 1. The power spectral density S(v) from a numerical
simulation of the Schmitt trigger shows dips for equal frequency
modulation vM5vS and phase f50. Details of the simulations are
described later in the paper; the data shown correspond to parameter
values hS530, hM5200, b5300, s570, vM5350.
317 ©2000 The American Physical Society
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50, the power spectrum in Fig. 3 displays sharp peaks at odd
multiples and dips at even multiples of the fundamental fre-
quency vS ~i.e., the dips occur at integer multiples of vM).
For f5p/2, the signal peaks are suppressed ~Fig. 4!. An
exploration of all the observed features in the output PSDs is
beyond the scope of this work. Instead, following a summa-
rization of the experimental results, the remainder of the pa-
per is aimed at reproducing the experimental results for the
signal output power at the fundamental frequency, for the
special ~and somewhat limited! case of small signal and bar-
rier modulation amplitudes via a perturbation development.
Hence, the theory cannot reproduce all the features of the
numerically generated ~using relatively strong barrier modu-
lation amplitudes! Figs. 1–4.
The experiments were carried out in a modified ST elec-

tronic circuit, schematically shown in Fig. 5. The ST is a
simple threshold system @7,8# possessing a static hysteretic
nonlinearity. The upper and lower threshold voltages are
VU5b and VL52b , so that 2b is the ~static! threshold sepa-
ration. A subthreshold 64 Hz time-sinusoidal signal S(t)
5ASsinvSt (AS,b) and Gaussian noise ~band limited at 10
kHz and ac coupled to the ST! are applied to the input. Then,
in the absence of any barrier modulation, the standard SR
effect can be reproduced at the output of the ST, matching
the results of earlier experiments @7# and rate theories @8#.
The measured quantity is the output signal power ~SP! at the
fundamental frequency vS as a function of input noise

FIG. 3. Same as Fig. 1 but with vS5
1
2vM .

FIG. 2. Same as Fig. 1 but with phase f5p/2.
power. Here, the SP is defined as the spectral power at the
fundamental frequency vS ~which was taken to be 64 Hz!
minus the continuous noise background power within a small
frequency range around vS ; it is, thus, a measure of the
height of the signal feature above the noise background in
the output PSD.
To realize the control scheme we modulate the upper and

lower thresholds sinusoidally, VU(t)5b1AMsin(vMt
1f),VL(t)52VU(t), which results in a ‘‘breathing’’ oscilla-
tion ~Figs. 6 and 7! of the barriers with frequency vM . We
keep the signal and threshold modulating amplitudes fixed
such that AM1AS,b ~no deterministic switching! and in-
vestigate the system’s response as a function of the phase
offset f , which is chosen to be the ‘‘control parameter’’ and
the input noise power.

FIG. 4. Same as Fig. 3 but with f5p/2.

FIG. 5. Circuit diagram for the modified Schmitt trigger. S1, S2,
S3: Stanford Research DS345 function generators. F: Stanford Re-
search SR560 preamplifier. O1, O2, O3, O4: Burr-Brown opera-
tional amplifiers. The resistor values are R151 kV , R255 kV ,
R3510 kV , R45100 kV .
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Our experimental results, first presented in @5#, are shown
in the gray-scale plots of Fig. 8, where the signal power is
gray-scale encoded as a function of the phase and input noise
power. Analogous results are obtained if the output signal-
to-noise ratio is taken as the measure of the response. Figure
8~a! is simply the classic SR case @2# with no control (AM
50): the signal power passes through a maximum at an
optimal noise intensity, with the location of the maximum
depending on the internal parameters, as well as the input
signal amplitude AS , but only weakly on the signal fre-
quency vS , provided this frequency lies well within the de-
vice bandwidth.
Figures 8~b! and 8~c! correspond to the modulated-

threshold cases vM5vS , and vM52vS , respectively. The
most striking feature of Fig. 8~b! is a significant suppression
of the output signal power below its value in the nonmodu-
lated case @Fig. 8~a!#, at values 0 and p of the control phase
f . Note also that the plot appears symmetric with respect to

FIG. 6. The input signal S(t) ~middle trace! relative to the
modulated upper and lower thresholds, for four different phases.
The two frequencies are identical: vM5vS . Black and gray distin-
guish the first and second halves of the drive cycle. The arrows
indicate the most likely times of switching events.

FIG. 7. Same as Fig. 6, but with vM52vS .
a phase translation of p . A suppression behavior is also
present in the case where vM52vS for f53p/2 @Fig. 8~c!#;
however, in this case, a significant enhancement of the out-
put SP ~compared to the nonmodulated case! is also evident
at phase f5p/2.
The principle goal of this paper is to achieve a quantita-

tive understanding of the suppression and enhancement ef-
fects for each of the two modulation schemes. In Sec. III we
derive expressions for the output power at the signal fre-
quency, first for double frequency modulation, then for equal
frequency modulation. Though straightforward, these calcu-
lations are not trivial: they need to be taken to cubic and
quartic order, respectively, in order to capture the key effects
of controlled SR. In Sec. IV we test these analytic predic-

FIG. 8. Experimental results: Gray-scale plot of signal power at
vS vs phase and noise for ~a! no modulation, ~b! vM5vS , and ~c!
vM52vS . Parameters: vS52p64s21, b5300 mV, AM
5200 mV,AS530 mV. In ~b!, the maximum signal enhancement
occurs near f5p/2 and f53p/2, and the maximum suppression
occurs near phases f50 and f5p . In ~c!, the maximum signal
enhancement occurs near f5p/2, and the maximum suppression
occurs near f53p/2. Note the differing signal power gray scales in
~a!, ~b!, and ~c!.
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tions against numerical simulations of three different bistable
systems. Taken together, our results demonstrate that con-
trolled SR is a generic phenomenon for such systems, and
can be understood in a unified way.
Our control scheme, which is implemented via modula-

tion of the potential energy barrier by a time-sinusoidal sig-
nal with controlled phase, must be contrasted to the case of
multiple cyclic inputs applied at the input of a nonlinear
device. In this case, one obtains ‘‘combination tones’’ at fre-
quencies un1v16n2v2u ~for two input signals of frequency
v1,2) with n1,2 being integers and the symmetry of the sys-
tem setting selection rules for the appearance of specific sets
of combination tones in the response. This case was already
discussed in the 19th century by von Helmholtz @9# in con-
nection with frequency mixing in the inner ear. With noise,
one observes @10# a SR effect at every combination tone that
appears in the output, with the symmetry of the device once
again predicating the appearance of certain sets of frequen-
cies in the output PSD.

III. GENERAL THEORY

We consider a two-state system. We have in mind a fairly
general bistable system, but it will be conceptually conve-
nient sometimes to use language specific to the Schmitt trig-
ger. The two states correspond to output values 1c and
2c , respectively. For convenience, we will also refer to the
states themselves as 6c . Following Ref. @8#, we suppose that
the dynamics is governed by rate equations for the state
probabilities p6 that the system is in the state 6c ,

ṗ15W2~ t !p22W1~ t !p152 ṗ2 , ~1!

where W6(t) is the transition rate out of the 6 state, and the
overdot denotes differentiation with respect to time. In the
modulation schemes we are considering, the transition rates
are time periodic. The solution to the linear first-order differ-
ential equation ~1! is

p1~ t !5
1
g~ t ! F p1~ t0!g~ t0!1E

t0

t
W2~ t8!g~ t8!dt8G , ~2!

where

g~ t !5expE @W1~ t !1W2~ t !#dt . ~3!

Replacing p1(t0) in Eq. ~2! with dx0c gives us the condi-
tional probability p1(tux0 ,t0) that the system at time t is in
the 1c state given that the state at time t0 was x0 ~which
may be 1c or 2c):

p1~ tux0 ,t0!5
1
g~ t ! Fdx0cg~ t0!1E

t0

t
W2~ t8!g~ t8!dt8G .

~4!

The conditional probability density of the two-state output
x(t) is
p~x ,tux0 ,t0!5p1~ tux0 ,t0!d~x2c !1p2~ tux0 ,t0!d~x1c !

5p1~ tux0 ,t0!d~x2c !1@12p1~ tux0 ,t0!#

3d~x1c !. ~5!

The conditional expectation value is

^x~ t !ux0 ,t0&5E
2`

`

xp~x ,tux0 ,t0!dx5c@2p1~ tux0 ,t0!21# .

~6!

To focus on generic behavior, independent of initial condi-
tions, we form the asymptotic expectation value ^x(t)&as

^x~ t !&as[ lim
t0→2`

^x~ t !ux0 ,t0&5c@2p1
as~ t !21# , ~7!

where p1
as(t)[p1(tux0 ,t0→2`).

To calculate p1
as(t), notice that the initial condition term

in Eq. ~4! can be rewritten in terms of a definite integral,

dx0c
g~ t0!
g~ t ! 5dx0c expH 2E

t0

t
@W1~ t8!1W2~ t8!#dt8J .

~8!

Since the rates W6 may be assumed to be bounded from
below by a positive constant, the integral in Eq. ~8! will
approach 1` as t0→2` , and the initial condition term ~8!
will decay exponentially, yielding

p1
as~ t !5

1
g~ t !E2`

t
W2~ t8!g~ t8!dt8. ~9!

We assume that in the adiabatic limit ~where the signal
and modulation frequencies vS ,M are well within the trigger
and noise bandwidths!, the rates are given by

W6~ t !5 f @m6hS sinvSt1hM sin~vMt1f !# , ~10!

where, in general, the specific form of f would depend on the
system being investigated. The parameters m and hS ,M cor-
respond to the threshold b and signal/modulation amplitudes
scaled by the noise power ~referred to D or s in the follow-
ing sections!.
Assuming the typical experimental case in which the

starting times from run to run are random with respect to the
signal and modulation phases, it is appropriate to average the
correlation function over the initial phases. Alternatively, we
can avoid adding another phase variable to Eq. ~10! by cycle
averaging the correlation function over t. Here, one cycle is
defined as the period of W6(t), so we restrict ourselves to
cases where vS and vM are commensurate frequencies.
Cycle averaging over t yields a stationary correlation

function K̄(t). Taking the longtime limit t→` eliminates
time-decaying correlations ~noise background! while pre-
serving correlations that persist indefinitely ~signal! @11#.
The resulting initial-phase-averaged asymptotic correlation
function K̄as(t) can be written in terms of the asymptotic
expectation value ~7! ~see Gammaitoni et al. in @2#!,
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K̄as~t !5Š^x~ t1t !&as^x~ t !&as‹t

5^c2@2p1
as~ t1t !21#@2p1

as~ t !21#& t , ~11!

where ^•& t denotes a cycle average over t. Fourier transform-
ing K̄as(t) will lead to a formula for the total output power at
the signal frequency vS .
For small signal and threshold modulation hS ,M!1, we

can expand the rates W6(t) in hS ,M ,

W6~ t !5
1
2 (
n50

`

~21 !nan@6hS sin~vSt !

1hM sin~vM t1f !#n. ~12!

Here, the an are the expansion coefficients an
5@2(21)n/n!#@dn f (m)/dmn# @the factor (21)n is included
to keep a1 positive#. For any specific example these coeffi-
cients are found via a formal expansion of the transition rates
W6 . For the Schmitt trigger, these rates can be cast as the
inverses of the mean first passage times of a Brownian par-
ticle to an absorbing barrier at the switching threshold @8#,
provided the noise bandwidth is within that of the device.
We can compute p1

as(t) to n th order as follows. We use
Eq. ~12! to obtain the rates expanded to n th order. We insert
the expanded rates into Eq. ~3! and Taylor expand the expo-
nential to obtain an expansion of g(t) to n th order. We mul-
tiply the n th order expansions of W2(t) and g(t), discard
terms above n th order, and integrate to obtain the expansion
of *2`

t W2(t8)g(t8)dt8. We multiply the result by the n th
order expansion of 1/g(t) and discard higher order terms to
obtain the desired expansion of p1

as(t) to n th order.
Having obtained an expansion of p1
as(t) to n th order, one

can use Eq. ~11! to obtain an expansion of the asymptotic
correlation function, but to what order is it correct? First,
note that in the unmodulated case (hS ,M50) the rates W6

are equal, implying p1
as(t)51/2. This implies that in an ex-

pansion of 2p1
as(t)21, the lowest order term is of at least

first order in hS ,M . It follows that an n th order expansion of
p1
as(t) will give us an asymptotic correlation function ~11!
with a leading order of at least 2. Also, the asymptotic cor-
relation function will be correct to ~at least! order n11.

A. Double frequency modulation

At this stage in the calculation we specify the barrier
modulation frequency vM . We will begin with the case
vM52vS ; in Sec. III B we will turn to the case of equal
frequency modulation.
It turns out that the required calculations are rather in-

volved, because to attain a sufficiently accurate and consis-
tent final result @Eq. ~17! below#, we have to keep terms
through cubic order in the expansion ~12!. As a result, the
expressions for the intermediate steps are very long, which
unfortunately tends to obscure the essential structure of the
derivation. Therefore, for the sake of clarity we present here
the calculation of the power spectrum in which we truncate
the expansion ~12! after its quadratic term. We then simply
quote the final result of the derivation which keeps the higher
order terms. The interested reader can find full details of the
latter derivation on AIP’s Electronic Physics Auxiliary Pub-
lication Service ~EPAPS! @13#.
Following the procedure outlined in Sec. II, we find Eq.

~9! to quadratic order in (hS ,hM)
p1
as~ t !5

1
21

a1hS@2vS cos~vSt !1a0 sin~vSt !#

2~a0
21vS

2!
2hShMF ~a02a22a1

2!cos~vSt1f !12a2vS sin~vSt1f !

4~a0
21vS

2!

1
1
8 S 2a1

2

a0
21vS

2 1
2a02a223a1

2

a0
219vS

2 D cos~3vSt1f !1
vS~6a0

2a216a2vS
224a0a1

2!

4~a0
21vS

2!~a0
219vS

2!
sin~3vSt1f !G . ~13!

Since p1
as(t) was expanded to quadratic order, ^x(t1t)&as^x(t)&as is correct through third order,

^x~ t1t !&as^x~ t !&as5
c2a1

2hS
2

2~a0
21vS

2!
S 12hM

a1
2vS cos~f !2~a0

22a22a0a1
212a2vS

2!sin~f !

a1~a0
21vS

2!
D cos~vSt !1••• ~14!
plus a multitude of t-dependent terms of the form cos or
sin(NvSt1•••), where N is a nonzero integer. None of these
terms will survive the process of cycle averaging over t that
yields the initial-phase-averaged asymptotic correlation func-
tion K̄as(t)5Š^x(t1t)&as^x(t)&as‹t .
From the coefficient of d(v2vS) in the ~one-sided!

power spectrum 2*2`
` K̄as(t)e2ivtdt , we find that the total

output power at the signal frequency vS is
pc2a1
2hS

2

a0
21vS

2 F 12hMa1H vS cosf1a0 sinf

a0
21vS

2 2
2a2

a1
2 sinfJ G

~15!

for vM52vS . One can rewrite Eq. ~15! in the following
manner:
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pc2a1
2hS

2

a0
21vS

2 F 12hMa1H sin~f1Q !

Aa0
21vS

2 2
2a2

a1
2 sinfJ G ,

~16!

with Q5tan21(vS /a0). As noted earlier, a1 is a positive
coefficient.
The same steps leading to Eq. ~15! can be retraced using

a less severe truncation of the transition rates W6(t). As we
show later, all the key features of the controlled SR scheme
are reproduced if we keep terms through cubic order as in-
dicated in Eq. ~12!. The details of the derivation can be
found elsewhere @13#. The result corresponding to Eq. ~15! is

pc2a1
2hS

2

a0
21vS

2 F 12hMa1S vS cosf1a0 sinf

a0
21vS

2 2
2a2

a1
2 sinf D

1hM
2 S a2

213a1a3

a1
2 1

a1
226a0a2

2~a0
21vS

2!
1
3a1

224a0a2

4a0
2136vS

2 D
1
3
2 hS

2S a3
a1

2
a0a2

a0
21vS

2D G . ~17!

B. Equal frequency modulation

We performed analogous calculations as above for the
case vM5vS , which is straightforward but tedious. Here,
we present only the final expression for the output power at
the signal frequency vS . The interested reader can find the
complete derivation on the Internet @13#. The result is
pc2a1
2hS

2

a0
21vS

2 F 11hM
2 H ~a1

22a0a2!~a0 cos 2f2vS sin 2f !

2a0~a0
21vS

2!

2S a2
a0

2
3a3
2a1

D cos 2f2
a2
a0

1
3a3
a1

2
a0a2

a0
21vS

2

1
a1
22a0a2

a0
214vS

2 J 1
3hS

2

2 S a3
a1

2
a0a2

a0
21vS

2D G ~18!

for vM5vS . We note that the lowest order correction to the
signal power is quartic, compared to cubic in the double
frequency case. In order to get consistent results to this order,
the expansion of the rates ~12! has to contain all terms up to
and including cubic order. As above, we can introduce the
phase Q5tan21(vS /a0) and rewrite Eq. ~18! as

pc2a1
2hS

2

a0
21vS

2 F 11hM
2 H ~a1

22a0a2!cos~2f1Q !

2a0Aa0
21vS

2

2S a2
a0

2
3a3
2a1

D cos 2f2
a2
a0

1
3a3
a1

2
a0a2

a0
21vS

2

1
a1
22a0a2

a0
214vS

2 J 1
3hS

2

2 S a3
a1

2
a0a2

a0
21vS

2D G . ~19!

C. dc symmetry breaking
It is worthwhile emphasizing a unique qualitative feature

of the controlled SR scheme. While a traditional SR experi-
ment ~i.e., one with no barrier modulation! on a symmetric
Schmitt trigger yields zero average dc output, the barrier
modulation can break the plus-minus symmetry between the
two states and thereby generate a finite dc output power. This
effect occurs only for equal frequency modulation. Analyti-
cally, the dc term in the power spectrum arises from a
t-independent term in the autocorrelation function @13#. The
expression for the dc part of the power spectral density
(vM5vS) is
Pdc5
pc2hM

2 hS
2@~2a0a1

212a0
2a212a2vS

2!cosf1a1
2vS sinf#2

2a0
2~a0

21vS
2!2

. ~20!
Intuitively, the origin of this effect can be understood by
contemplating Fig. 6. There are two contributions. First, we
can see that the modulation induces an asymmetry in the two
transition rates, keeping in mind that the transitions are much
more likely to occur when the barrier distance is smallest
~denoted by the two arrows in the figure; we refer the inter-
ested reader to the Appendix for a brief discussion on the
existence of this minimum distance!. For example, when f
50, the upward transition rate is much smaller than the
downward rate, and the reverse is true when f5p . This
asymmetry leads to the cosf term in Eq. ~20!. The second
effect, which gives rise to the sinf contribution, reflects a
difference between the time intervals between optimal up-
down and down-up transitions. Again looking at Fig. 6, we
see for f5p/2 that the separation between optimal transi-
tion points is significantly different from a half-period, which
results in an asymmetric output square wave, and thus a non-
zero average ~dc! component.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

A. Direct simulations of the truncated rate equations

As a first step in testing the analytic predictions, we car-
ried out direct simulations of the time-dependent rate equa-
tions. In general, the experimentally measured power spec-
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tral density Sexpt relates to the theoretical signal power P
@given by either Eq. ~18! or Eq. ~17!# in the following man-
ner @8#:

Sexpt5
PG1ND

D
.

Here, D is the bin width of the measured power spectral
density, N is the noise background power spectral density at
the signal frequency, and G is the so-called processing gain
factor ~typically between 0.5 and 1!, which is an effect of
windowing the time series before Fourier analyzing it. In all
subsequent simulations we employed a Welsh window with
a processing gain G50.83.
In order to check the consistency of our numerical algo-

rithm, we numerically integrated the rate equations as given
by Eq. ~12!, including terms up to fourth order, in the fol-
lowing manner. At each time step a random number j is
chosen uniformly on the interval @0,1#. If the system is cur-
rently in the 6 state, j is compared with p6(t)5DtW6(t),
where Dt is the time step. If j,p6 , the system is changed
to the other state @8#. Figure 9 shows a comparison between
the theoretical predictions and the results from the rate equa-
tion, for the output signal power as a function of the modu-
lation phase. Because of the various approximations in the
course of the derivation of Eqs. ~18! and ~17! we do not
expect perfect agreement. Nevertheless, the matching is good
enough to strengthen our confidence in the numerical results
presented in the subsequent subsections.

FIG. 9. Output signal power P vs phase f from direct simula-
tions of the rate equations ~12! for vM5vS ~top! and vM52vS
~bottom!, respectively. The dashed line in each figure is the corre-
sponding theoretical result ~18! and ~17!, respectively. Parameter
values are a050.371745

1
2a15

1
2a25

3
4a3 , c55.66, hS58c/D ,

hM516c/D , and D5140.
B. The double-well system

It is of interest to test the developed two-state theory for
systems with continuous state variables. Here, we consider
the simplest bistable dynamic potential

U~x !52
a
2 x

21
b
4 x

4, ~21!

where the potential minima are at 6c56Aa/b , and U0
5a2/4b is the ~unmodulated! barrier height. We furthermore
consider the limit of large damping and thus assume that the
Langevin equation is given by

ẋ52]xU~x !1ADj~ t !, ~22!

where j(t) is d-correlated white noise with unit variance, so
that

^j~ t !j~ t8!&5d~ t2t8!. ~23!

We also restrict ourselves to the high-barrier, adiabatic limit,
so that we may identify the transition rates W6 with the
Kramers rate, to a good approximation, which in the absence
of modulation is given by

W65
AU9~0 !U9~c !

2p
exp@22U0 /D# . ~24!

It is worth noting that the Kramers rate is derived under the
assumption that the probability density within a well is
roughly at equilibrium. That is still the case if the signal
frequency is much lower than the rate at which the probabil-
ity equilibrates, which is simply U9(6c). Thus we require
v!U9(6c)52a . In the vast majority of the SR literature
@2,8# the modulation term (;USx sinvSt) is simply added to
the right side of Eq. ~21!. This has the effect of not only
modulating the barrier heights, but also the position of the
potential extrema and their curvatures. On the other hand, it
is conceptually simpler to modify only the barrier heights, so
that the modified Kramers rate becomes

W6~ t !5
a

A2p
exp$22@U06US sinvSt

1UM sin~vMt1f !#/D% ~25!

Equation ~25! is true only to linear order if one merely adds
the modulation terms to the potential ~21!. Here we use an
alternative approach which alters the barrier height directly.
This has the advantage of giving a consistent path from Eq.
~24! to Eq. ~25!; the disadvantage is that the simpler picture
is slightly less elegant algebraically. Since the curvatures
U9(0)52a , U9(c)52a do not depend on the parameter b,
it is possible to modulate the barrier height a2/4b and keep
the curvatures and thus the prefactor in Eq. ~24! constant. In
order to implement the symmetric barrier modulation and the
asymmetric ‘‘rocking’’ of the potential, we allow the barrier
height, and thus b, to depend on x and t and to be different on
each side of the origin,
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b→b~x ,t !5b1~ t ! if x>0

5b2~ t ! if x,0

with

a2

4b6~ t ! 5U06US sinvSt1UM sin~vMt1f !

⇒b6~ t !

5
a2

4@U06US sinvSt1UM sin~vMt1f !#
.

~26!

Modulating the coefficient b from Eq. ~21! in such a way
guarantees that, within the adiabatic approximation, Eq. ~25!
is exact. We emphasize that we chose this modulation as a
mere technical convenience to avoid further approximations.
Comparing Eqs. ~10! and ~25!, we have m5U0 /D , hS

5US /D , hM5UM /D , and

f @m6hS sinvSt1hM sin~vMt1f !#

5~a/A2p !exp$22@m6hS sinvSt

1hM sin~vMt1f !#%,

a052 f ~m !5
A2a
p
exp~22U0 /D !,

a1522
d f ~x !
dx U

x5m

5
2A2a

p
exp~22U0 /D !52a0 ,

~27!

a25
2
2!
d2 f ~x !

dx2
U
x5m

5
2A2a

p
exp~22U0 /D !5a1 ,

a35
22
3!
d3 f ~x !

dx3
U
x5m

5
238a
6A2p

exp~22U0 /D !5
4
3 a0 .

In Fig. 10 we compare the analytical predictions ~bottom
panels! against numerical simulations ~top panels! for the
case of double frequency modulation, vM52vS , using
‘‘typical’’ parameter values. The agreement is good. For the
case of single frequency modulation, vM5vS , Fig. 11
shows a similarly good match between the fourth order result
~18! and numerical simulations of the double well potential.
As we alluded to in Sec. III C, the average dc output

predicted by Eq. ~20! can be compared to numerical simula-
tions. This comparison is shown in Fig. 12, where we have
plotted the square of the averaged mean value of x. The
agreement is rather good. We also see that the dc output is
largest close to phases f50 and p , which indicates that for
this system the cosf term in Eq. ~20! is dominant over the
sinf contribution. It follows that the corresponding physical
mechanism reflected in the data is a modulation-induced
asymmetry in the up/down transition rates ~see the discus-
sion in Sec. III C!.

C. The Schmitt trigger

A dynamical model for the Schmitt trigger was introduced
previously @Eq. ~6.21! in Ref. @8##. We can modify that
model to fit the present situation by including the threshold
modulation in the effective gain g̃5g1eMcos(vMt1f),

y5sgn@ g̃y2eS cosvSt2x# ,

ẋ52kx1sj~ t !. ~28!

Here, x represents colored noise with correlation time tc
5k21 @j(t) is d correlated white noise with unit variance# so
that the variance of x is ^x2&5s2/2k . In order to evaluate the
analytic predictions, we need expressions for the expansion
coefficients an up to n53. We find

Ap

k a05S E
2m

m

eu
2
f~u !du D 21

,

Ap

k a15
em2~f~m !2f~2m !!

S E
2m

m

eu
2
f~u !du D 2 ,

FIG. 10. Output signal power vs input noise strength D and
modulation phase f for the double well system with vM52vS .
Top: digital simulations; bottom: the analytical predictions ~17!.
The gray scale range is ~0,20!. Parameter values are U05256, 2c
511.13, US58, and UM516
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Ap

k a25
e2m2f̃~m !2

S E
2m

m

eu
2
f~u !du D 3 2

em2m@f~2m !1f~m !#

S E
2m

m

eu
2
f~u !du D 2 ,

Ap

k a35
e3m2f̃~m !3

S E
2m

m

eu
2
f~u !du D 4

2
2me2m2f̃~m !@f~2m !1mf~m !#

S E
2m

m

eu
2
f~u !du D 3

1em2
~2m211 !f̃~m !14mf8~m !1f9~m !

3S E
2m

m

eu
2
f~u !du D 2 ,

~29!

where f(m) is the probability integral

FIG. 11. Output signal power vs input noise strength D and
phase f for the double well system with vM5vS . Parameters are
as in Fig. 10. There is excellent agreement between the simulations
~top! and the analytic predictions ~18! ~bottom!. The gray scale
range is ~0,10!.
f~m !5
1

Ap
E

2`

m

e2u2du S ⇒f8~m !5
1

Ap
e2m2

and f9~m !5
22m

Ap
e2m2D

and

f̃~m !5f~m !2f~2m !5
1

Ap
E

2m

m

e2u2du .

@Expressions for the first two coefficients can be found in
Eqs. ~6.13! in @8#.#
Using the notation of Sec. III, we let m5gAk/s , hS

52eSAk/s , and hM52eMAk/s . In order to obtain a quali-
tative agreement with the experimental results from Fig. 8,
we replaced the parameters in Eqs. ~29!, ~18!, and ~17! by
their actual experimental values but for eS and eM , which

FIG. 12. Average dc output vs phase f and input noise strength
D in the case of equal frequency modulation for the Duffing system
~21!. Parameters are the same as in Fig. 11. The top panel shows
data from numerical simulations; the bottom panel displays the pre-
diction ~20!. The dependence on D is implicitly defined via the
expressions for the expansion coefficients ~27!. The gray scale
range is ~0,300!.



326 PRE 62MARKUS LÖCHER et al.
are chosen smaller ~by a factor of 10! in order to stay within
the perturbation theory approximation. The relatively large
barrier modulation (AM5200 mV) in the experiment is be-
yond the low-order expansion. Figure 13 displays the theo-
retical results ~18! and ~17!, respectively, utilizing the nu-
merically computed an given in Eq. ~29!. The analytical
results agree qualitatively with the experimental results pre-
sented in Sec. II.

V. SUMMARY

To summarize, we have developed a general theoretical
framework for stochastic resonance in threshold-and-barrier-
modulated bistable systems. The two-state theory success-
fully describes the low-order effects of a general nonfeed-
back control scheme, which can both enhance the

FIG. 13. Theoretical output signal power vs noise power D and
phase f using the expressions ~29! for the an . Equation ~18! is
displayed in the top panel, Eq. ~17! in the bottom panel. Parameters
are as follows: k510 kHz, g5300 mV/9 V5

1
30 , c59,v

52p64 s21, eS51/3000, eM51/450. Notice that the experimental
values eS

exp530 mV/9 V510eS , and eM
exp5200 mV/9 V510eM

are larger by a factor of 10. The qualitative agreement with the
experimental results from Figs. 8~b! and 8~c!, respectively, is excel-
lent.
‘‘classical’’ SR effect and also suppress the response to a
weak signal. Experiments were carried out on a generic sto-
chastic resonator ~a modified Schmitt trigger!. Our experi-
mental results are confirmed in computer simulations of the
Schmitt trigger as well as in a potential double-well system.
Within a range of signal and modulation amplitudes, the
theory predicts the optimum phase difference and noise
strength for maximum enhancement or suppression of the
output signal power. The theory also shows good agreement
with secondary effects, such as the dc offset for equal fre-
quency modulation as well as a frequency dependent ‘‘drift’’
of the peak signal power for higher noise power. The good
agreement found in our studies suggests that application of
the theory to bistable systems other than the double well and
the Schmitt trigger should work equally well. The key ingre-
dient in any particular example is a knowledge of the transi-
tion rates, which could either be determined from first prin-
ciples or directly measured.
We believe that controlled SR may be useful in applica-

tions as diverse as the cancellation of power-line frequencies
in very sensitive magnetic sensing applications with super-
conducting quantum interference devices ~SQUIDs! and vi-
bration control in nonlinear mechanical devices, as well as in
the context of electromagnetic field interactions with neu-
ronal tissue @6#, where control of internal thresholds is pos-
sible @12# and the selective suppression of specific frequen-
cies could potentially be beneficial. Future work will aim to
develop analytical expressions for the background noise
power and also address the interesting case of incommensu-
rate frequencies.
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FIG. 14. Visualization of the region on parameter space for
which @du

eff(t)#9u tu.0 and @d l
eff(t)#9u t l.0 as a function of the ratio

r5AS /AM and phase shift f . Both quantities are positive in the
white region, while one of the two is negative in the black region.
Note that the minima in the distances disappear for small values of
r, i.e., if AS!AM .



PRE 62 327THEORY OF CONTROLLING STOCHASTIC RESONANCE
from ONR-Europe. M.L. would like to thank Anne-
Katherina Jappsen for valuable technical help.

APPENDIX: EXISTENCE OF MINIMUM BARRIER
DISTANCE

For vM5vS , the ‘‘distance’’ between the signal and the
~modulated! threshold

d~ t !5du~ t !5b1AM sin~vSt1f !2AS sinvSt

if 0<vSt<p

5d l~ t !5b1AM sin~vSt1f !1AS sinvSt

if p<vSt<2p ~A1!

depends on the four parameters b ,AM ,AS , and f . If one is
only interested in the existence of a minimum during the up
and the down cycle, one can eliminate the offset b and re-
write Eq. ~A1! as

deff~ t !5du
eff~ t !5sin~vSt1f !2r sinvSt if 0<vSt<p

5d l
eff~ t !5sin~vSt1f !1r sinvSt if p<vSt<2p ,

~A2!

where deff5(d2b)/AM depends on only two parameters,
namely the phase f and the amplitude ratio r5AS /AM . To
find the minimum distances we set (du

eff)850 on the interval
vStuP@0,p# and (d l

eff)850 on the interval vSt lP@p ,2p# ,
respectively. Here, the prime denotes differentiation with re-
spect to time. We find

vStu5arccosS 2
sinf

Ar222r cosf11 D ,
vSt l52arccosS 2

sinf

Ar212r cosf11 D .
It can happen that one of these extrema is actually a maxi-
mum. The intuitive arguments in Sec. III C about the result-
ing dc offset are meaningless unless the distance takes on a
minimum in both partitions of the drive cycle, so we must
check the second derivatives as well. These extrema are
minima only if the second derivatives are greater than zero.
The result is depicted in Fig. 14. Note that the role of vS is
merely to scale the time axis, i.e., it determines the location
of the minima in time but not their existence. Figure 14 thus
depends only on two parameters, the phase f and the ratio r.
The black regions show the parameter combinations for
which one of the extrema is a maximum; the white regions
are where both @du

eff(t)#9u tu and @d l
eff(t)#9u t l are positive. The

figure reflects the fact that for small enough values of the
ratio AS /AM , one of the minima in the up- and down-
partition of the drive cycle changes into a maximum over a
range of phase values. This is in contrast to the unmodulated
case (AM50) where a minimum always exists and is well
defined.
@1# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453
~1981!; C. Nicolis and G. Nicolis, Tellus 33, 225 ~1981!.

@2# For reviews see K. Wiesenfeld and F. Moss, Nature ~London!
373, 33 ~1995!; A. Bulsara and L. Gammaitoni, Phys. Today
49~3!, 39 ~1996!; L. Gammaitoni, P. Hänggi, P. Jung, and F.
Marchesoni Rev. Mod. Phys. 70, 223 ~1998!. An extensive
bibliography can be found at http://www.pg.infn.it/sr

@3# M. Stemmler, Network 7, 687 ~1996!; A. Bulsara and A.
Zador, Phys. Rev. E 54, 2185 ~1996!; C. Heneghan et al., ibid.
54, R2228 ~1996!; A. Neiman et al., Phys. Rev. Lett. 76, 4299
~1996!; F. Chapeau-Blondeau, Phys. Rev. E 55, 2016 ~1997!;
J. Robinson et al., Phys. Rev. Lett. 81, 2850 ~1998!.

@4# J. Collins et al., Phys. Rev. E 52, R3321 ~1995!; Nature ~Lon-
don! 376, 236 ~1995!; J. Levin and J. Miller, ibid. 380, 165
~1996!; D. Chialvo et al., Phys. Rev. E 55, 1798 ~1997!; L.
Gammaitoni, ibid. 52, 4691 ~1995!.
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