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What can be stated by the Glansdorff–Prigogine criterion concerning
the stability of mass-action kinetic systems?

Thomas Wilhelm and Peter Hänggi
Departement of Physics, University of Augsburg, Memminger Strasse 6, D-86135 Augsburg, Germany

~Received 17 August 1998; accepted 22 December 1998!

We investigate which general results concerning the local stability of steady states of arbitrary
chemical reaction networks can be deduced with the Glansdorff–Prigogine stability criterion.
Especially, it is proven that the presence of an autocatalytic reaction is not a necessary condition for
a violation of the thermodynamic stability condition. It turns out that every reaction with at least one
variable reactant at each side of the reaction equation can potentially destabilize the steady states.
An explicit example of a simple reaction system without autocatalytic reactions where the stability
of the steady state changes via a supercritical Hopf bifurcation is discussed. Furthermore, in
expanding the original concept for proving local stability to global stability analyses, a general way
for constructing different Lyapunov functions is given. © 1999 American Institute of Physics.
@S0021-9606~99!51412-8#
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I. INTRODUCTION

The theory of thermodynamics allows one to derive in
the classical deductive manner according to the ideal proto-
type of Euklid’s ‘‘Elements’’ from few general axioms a
multitude of prominent results. However, up to now the
theory is valid only at equilibrium and near equilibrium. In
the general nonequilibrium case the multifarious dynamical
phenomena are not covered in such a general way by the
thermodynamic theory.

Near equilibrium, where linear relations between the
thermodynamic flows and forces are valid, the celebrated
Onsager–Casimir theory is fully satisfactory to understand
and describe the observed phenomena. The Brussels group
developed their theory with the aim to derive in the thermo-
dynamic framework interesting results also for systems far
from equilibrium ~cf. Ref. 1!. An important field of applica-
tions has been, from the very beginning, chemical reaction
networks.1–3 Chemical systems have also been used to dem-
onstrate that the Glansdorff–Prigogine stability criterion is
not necessary, but only sufficient for the local stability of
steady states.4,5 Nevertheless, it could be that for modeling of
chemical systems interesting and relevant results follow from
this criterion. For example, one could find a subclass of re-
action networks with only thermodynamically stable steady
states which directly implies kinetic stability ~according to
the usual mathematical local stability theory!.

In this context it is especially interesting to note that it
has often been stated that reaction networks with unstable
steady states contain autocatalytic reactions. The Brussels
group showed that special autocatalytic reactions yield a de-
stabilizing contribution in the framework of the Glansdorff–
Prigogine stability theory.1–3 Indeed, all known oscillating
reaction systems ~e.g., model systems such as the
Brusselator,3 the Lotka–Volterra system,6 the Oregonator,7
or the smallest chemical reaction system with Hopf
bifurcation8! contain at least one autocatalytic reaction. On
the other hand, e.g., the homogeneous Turing system ~cf.
6120021-9606/99/110(13)/6128/7/$15.00
Ref. 3! with its cross-catalytic property in the absence of a
direct autocatalytic reaction always has a locally stable
steady state. Thus, the question arises whether an autocata-
lytic reaction is really necessary for an unstable steady state
~e.g., for a Hopf bifurcation! of the whole network. It should
be noted that in all known chemical and biochemical reaction
systems which show sustained oscillations the stable limit
cycle always arises via a supercritical Hopf bifurcation.9

In this work we investigate in a general manner the ther-
modynamic stability of arbitrary mass-action kinetic reaction
networks. In particular, we show that former analyses of
single reactions with the result that autocatalytic reactions
destabilize the steady state and nonautocatalytic ones do not,
has not been carried out in the necessary generality. It is
demonstrated that ~without knowledge of the steady state
concentrations! with the studied criterion the stability of the
steady states can be proven only for a very restricted class of
reaction networks. Furthermore, we present a simple ex-
ample of a reaction system with a supercritical Hopf bifur-
cation, which does not contain an autocatalytic reaction.

In the analysis we confine ourselves to the important
case of reaction networks with mass-action kinetics where
one reaction can be written as

S1(
i

n i
1Xi


k2

k1

P1(
i

n i
2X i ~n i

1 ,n i
2 ,k1,k2>0 !. ~1!

The reaction velocity is assumed to be proportional to the
concentrations of the involved reactants ~in consideration of
their molecularity!. Here S and P denote the sum of the con-
stant substances and products and k1 and k2 the rate coef-
ficients of the forward and backward unidirectional reaction,
respectively. Xi is the ith variable reactant and n i

1 and n i
2 its

stoichiometric coefficients. In this case a simple unambigu-
ous definition for an autocatalytic reaction can be given. The
considered reaction is autocatalytic, if

n i
1Þ0, n i

2Þ0, n i
1Þn i

2 ~2!

for at least one reactant Xi .
8 © 1999 American Institute of Physics
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II. THERMODYNAMIC STABILITY ANALYSIS OF
ARBITRARY MASS-ACTION KINETIC REACTION
NETWORKS

According to the general theory developed by the Brus-
sels group ~cf. Ref. 1!, the thermodynamic equilibrium state
is locally stable if the excess entropy d2S , taken at equilib-
rium, is negative for arbitrary small deviations, i.e.,

~d2S !eq,0. ~3!

If the system is thermally and mechanically stable, this con-
dition reduces to the condition for stability with respect to
diffusion, i.e.,

(
i

dm idn i.0, ~4!

where m i ,n i denote the chemical potential and the mole
number of reactant Xi , respectively.

The thermodynamic theory for local stability of nonequi-
librium steady states ~ss! is based on the assumption of stable
local equilibrium ~cf. Ref. 1!. In purely mathematical terms,
this can be expressed in terms of a negative definite function,
which for physical reasons may be termed excess entropy
density:

~d2s !ss,0. ~5!

In the domain of phase space where this is a negative definite
function it serves as an appropriate Lyapunov function which
can prove the stability of the steady states.

The analyzed steady state is globally stable in a domain
D of the phase space if the time derivative of the excess
entropy density, i.e., the excess entropy production density is
positive for all deviations contained in D:

d~d2s !ss
dt .0. ~6!

To prove the local stability it is sufficient to analyze the
linearized form at the steady state ~cf. Appendix B, Ref. 4!. It
is clear that this criterion is only sufficient for the usual
mathematical local stability, because the latter does not re-
quire any Lyapunov function. For homogeneous chemical
reaction systems ~6! simplifies to

(
j

dv jdA j.0, ~7!

where v j ,A j denote the reaction velocity and the affinity of
the j th reaction, respectively. This expression has the inter-
esting property that it consists of a sum of different terms,
each belonging exactly to one reaction. Of course the ther-
modynamic stability condition ~7! can only be violated if at
least one term is negative.

We now successively prove the following ~1! For sys-
tems under constant temperature and pressure the excess en-
tropy density is a negative definite function in the whole
phase space @d2s5 f (c i), where c i denotes the concentration
of reactant X i#. ~2! Already the simple reaction X
Y ~this is
the simplest nonautocatalytic reaction with variable substrate
and product! always yields a negative term in the excess
entropy production density. ~3! Reaction networks consisting
exclusively of reactions where one side of the reaction equa-
tion contains only constant ~‘‘outer’’! reactants always have
locally stable steady states.

A. The excess entropy density is a negative definite
function in the whole phase space

For systems under constant temperature and pressure
condition Eq. ~5! reduces to

L5(
i ,k

~]m i /]c k!ssdc idc k.0, ~8!

where L is proportional to the negative excess entropy den-
sity. This quadratic form is positive definite if its form matrix
F5(]m i /]c k)ss /(RT) is positive definite ~R and T denote
the gas constant and temperature, respectively!. With the
chemical potential of the i th variable reactant given by

m i5m i
01RT ln c i , ~9!

F reduces to

F5diagS 1c̄1 , . . . , 1c̄n D . ~10!

Because for positive-valued steady states $ c̄ i% all eigenvalues
of F are positive, the function L is positive definite ~and thus
the excess entropy density negative definite! and therefore
well suited to serve as a Lyapunov function.

B. The simplest example

The tendency of an autocatalytic reaction to destabilize
the steady state of the whole system has been explained with
the help of the Glansdorff–Prigogine stability criterion ~e.g.,
Refs. 1–3!. In order to analyze a special reaction for its
ability to destabilize the stationary state one must take into
account the variation of all involved variable substances. In
doing so, one recognizes that already the simplest monomo-

lecular reaction X

k2

k1

Y with variable substrate and product

always yields a negative term in the excess entropy produc-
tion density.

From the affinity A5RT ln(qx/y), where q is the equilib-
rium constant, and the corresponding reaction velocity v
5k1x2k2y , where lower case characters denote the con-
centration of the reactants, one obtains for the first variation

dA5RT S dx
x̄ 2

dy
ȳ D , dv5k1dx2k2dy . ~11!

Upon combining one finds the quadratic form

dvdA5RT S k1

x̄ ~dx !21
k2

y ~dy !22S k2

x̄ 1
k1

ȳ D dxdy D . ~12!

Note that the excess entropy production density contains the
negative dxdy term. The whole expression is positive
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semidefinite if and only if 2k1k2 /( x̄ ȳ )>(k2 / x̄ )2
1(k1 / ȳ )2, which for (x ,y )Þ( x̄ , ȳ ) never holds. The equal-
ity sign is obtained in the equilibrium case.

Generally one studies the definiteness of quadratic forms
with n variables via its form matrices F. A quadratic form is
positive definite if all main minors of its F are positive defi-
nite. For the studied reaction, F reads

F5S k1

x̄
2

1
2 S k1

ȳ
1
k2

x̄ D
2

1
2 S k1

ȳ
1
k2

x̄ D k2

ȳ

D . ~13!

Both 131 main minors are always positive, because the uni-
directional reaction rates as well as the steady state concen-
trations are positive, but the determinant det(F) is negative
semidefinite:

det~F !52
1
4 S k1

ȳ
2
k2

x̄ D 2. ~14!

Note that in the equilibrium case the determinant is zero and
the whole quadratic form positive semidefinite
( ȳ /(RTk2)dvdA5(qdx2dy )2).

Herewith, we have shown that for this simplest case the
excess entropy production density @cf. Eqs. ~6! and ~7!# is not
positive semidefinite. Therefore, already the simplest nonau-
tocatalytic reaction can destabilize the steady state.

C. The general case

In order to decide whether an arbitrary reaction of the
form ~1! yields a positive or a negative contribution in the
excess entropy production density, i.e., in the sum ~7!, one
generally has to analyze an n3n form matrix F. The consid-
ered reaction always stabilizes the steady state if F is positive
semidefinite, i.e., if F has only non-negative main minors. It
will be shown that for all drawn conclusions it is sufficient to
analyze a general reaction with two variable substances of
the form

aX1bY

k2

k1

cX1dY, ~15!

where possible constant reactants are incorporated into the
rate constants ~which are therefore sometimes termed ‘‘ap-
parent’’ rate constants!. The velocity ~mass-action kinetics!
and affinity ~ideal solute systems! of this reaction can be
written as

v5k1x ay b2k2x cy d , A5RT ln~qx a2cy b2d !, ~16!

yielding

dv5~k1a x̄ a21 ȳ b2k2c x̄ c21 ȳ d !dx

1~k1b x̄ a ȳ b212k2d x̄ c ȳ d21!dy , ~17!

dA5RT S a2c
x̄

dx1
b2d
ȳ

dy D . ~18!

Therefore, dvdA /(RT )5Fdxdy , with the form-matrix ex-
plicitly reading
:45
F5S a2c
x̄

m 11
1
2S a2c

x̄
m 221

b2d
ȳ

m 11D
1
2S a2c

x̄
m 221

b2d
ȳ

m 11D b2d
ȳ

m 22
D , ~19!
where m 115k1a x̄ a21 ȳ b2k2c x̄ c21 ȳ d , m 225k1b x̄ a ȳ b21

2k2d x̄ c ȳ d21.

1. One-dimensional case

For example, for b5d , aÞc the problem is reduced to
the one-dimensional case:

sgn~F 1D!5sgn~~a2c !~aq2c x̄ c2a !!. ~20!

If one side of the corresponding reaction equation in Eq. ~15!
is constant, i.e., for a50 or c50, one recognizes F 1D.0. In
all other cases sgn(F1D) generally depends on the steady
state concentration x̄ . In the special case where the steady
state equals the thermodynamic equilibrium x̄ c2a5q , F 1D is
positive. At sufficient distance from equilibrium, however,
one cannot estimate the sign of F 1D without knowledge of x̄ .
Both 131 main minors of F in Eq. ~19! are positive if and
only if
~a50 or c50 ! and ~b50 or d50 !. ~21!

2. Two-dimensional case

The 232 main minor of F ~19! is its determinant

det~F !52
1
4 S a2c

x̄
m 222

b2d
ȳ

m 11D 2<0. ~22!

We analyze under what conditions this expression vanishes.
In the two-variable case ~aÞc and bÞd ! det(F)50 can be
rewritten as

~bc2ad !~q x̄ a2c ȳ b2d21 !50. ~23!

This expression vanishes at equilibrium q5 x̄ c2a ȳ d2b , or if

ad5bc . ~24!

In the nonequilibrium case it follows from Eqs. ~21! and ~24!
that the only possibility for positive semidefinite F reads
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~a50, b50 !

or

~c50, d50 !. ~25!

As can be seen already from Eqs. ~17! and ~18! arbitrary
reactions with n variables and only constant reactants at one
side of the reaction equation always stabilize the steady state,
thus completing our analysis. Therefore, we have shown that
only reactions with constant reactants at one side of the re-
action equation tend to stabilize the steady state~s! of the
reaction network.

III. A SIMPLE MASS-ACTION KINETIC SYSTEM WITH
HOPF BIFURCATION CONSISTING ONLY OF
NONAUTOCATALYTIC REACTIONS

We demonstrate that the sample system:

A→
k0
X,

2Y

k21

k1
Z,

~26!

X1Z→
k2
Y1Z,

Y→
k3
B,

~A and B denote constant reactants! which does not contain
an autocatalytic reaction according to definition ~1! and ~2!,
nevertheless possesses for special parameter values an un-
stable steady state. In particular, it exhibits a supercritical
Hopf bifurcation yielding stable limit cycles near the bifur-
cation point.

Assuming simple mass-action kinetics and upon intro-
ducing the dimensionless quantities (x ,y ,z)/(k0a)k3
→(x ,y ,z), k3t→t the corresponding differential equation
system is written in the form:

ẋ512k2xz ,

ẏ52y22k1y212k21z1k2xz , ~27!

ż5k1y22k21z .

This system has one steady state

~ x̄ , ȳ , z̄ !5S k21

k1k2
,1,

k1
k21

D . ~28!

Carrying out a linear stability analysis, the characteristic
polynomial of the Jacobian may be written in the form

l32Tl22Kl2D50, ~29!

where T, D indicate the trace and determinant, respectively.
It follows from the Hurwitz criterion that the steady state is
locally stable if the coefficients at this point fulfill the con-
dition T ,K ,D ,2(TK1D),0. A Hopf bifurcation occurs
@with the special property that the real eigenvalue is negative
~cf. Ref. 8!# if T ,K ,D,0 and TK1D50. The calculation
shows that the coefficients at the steady state ~28! read:
T52~k1k215k211k21
2 !/k21 ,

K52~k1k21
2 15k1

2k21k1
2k2k2122k21

2 !/~k1k21!, ~30!

D52k1k2 .
For the choice that k151, k2151 one obtains

T52~61k2!,

K5126k2 ,
~31!D52k2 ,

TK1D5k2
2117/3k221,

i.e., the Hopf bifurcation occurs at k2
H
ªk25(A325217)/6

'0.1713 ~from 6k2
H.1 it follows that K,0!. Numerical

integration shows that it is supercritical bifurcation, i.e., a
stable limit cycle arises, which becomes unstable if k2 is
lowered to k2*'0.1576.

IV. DISCUSSION
In this work we systematically have studied the capabil-

ity of the Glansdorff–Prigogine stability citerion for general
statements about the stability of steady states of mass-action
kinetic systems. Let us summarize the most important re-
sults.

Generally, i.e., without the restriction to mass-action ki-
netic systems, three points need to be emphasized

~1! Originally the concept of local stability proof by use
of the excess entropy density has been based on the assump-
tion of local equilibrium. This very concept can be used in a
strict mathematical formulation without reference to local
equilibrium. An arbitrary function may be used as a
Lyapunov function to prove the global stability of the steady
state contained in a domain D of the phase space if only this
function is ~positive or negative! definite in this domain. One
should note that the definiteness of the underlying quadratic
form at the equilibrium point does not mean in general the
definiteness of the corresponding quadratic form at the non-
equilibrium steady state point. Without giving here an ex-
plicit example, one can imagine systems where the equilib-
rium quadratic form is negative definite, but the
corresponding nonequilibrium form not. By contrast, the
function excess entropy density can be ideally suited to serve
as a Lyapunov function for steady states, because it is ~posi-
tive or negative! definite in a surrounding of this point with-
out fulfilling this condition at the equilibrium point. ~An ex-
ample for nondefinite excess entropy density at the
equilibrium point is the regular solutions as in the special
sense, the simplest generalization of ideal solutions ~cf., e.g.,
Ref. 1!.

~2! The Glansdorff–Prigogine stability citerion in the
formulation of Eqs. ~5! and ~6! is, although based on the idea
of Lyapunov functions, a local criterion. It is therefore inter-
esting to extend this concept for a global stability analysis.
This has been discussed in Appendix B, where we have out-
lined a general scheme for the construction of Lyapunov
functions.

~3! The Glansdorff–Prigogine stability citerion is only a
sufficient, but not a necessary condition for local stability of
the corresponding steady state. Nevertheless, two decades
ago there was an intensive discussion about this point in the
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literature ~cf. Ref. 5, and citations therein!. For example,
Eigen obviously overestimated the validity of this criterion,
when, in his famous article,10 he stated: ‘‘A steady state is
unstable whenever a negative fluctuation dxs occurs.’’ This
is equivalent to the statement that condition ~7! is violated
~cf. Ref. 10!.

In Ref. 4 we have discussed the last two points in detail
using the simple example system of Ref. 8.

At this point it is worth to refer to other efforts to extend
the thermodynamic nonequilibrium stability theory to the
whole nonequilibrium range. A remarkable approach has
been given by Keizer in a series of papers ~cf. Ref. 11, and
citations therein!, summarized in his monograph.12 He pro-
posed the ‘‘s function,’’ a kind of generalized entropy,
whose second variation is proportional to the inverse of the
covariance matrix. This function serves as a Lyapunov func-
tion and is indeed for certain situations of the Gauss–Markov
limit a necessary and sufficient condition for stability of the
considered steady state. Keizer and Chang were also able to
give an experimental verification for this theory.13 Note also
related work for the so termed ‘‘stochastic potential’’ ~or
generalized thermodynamic potential!, originally introduced
by Graham14 for Fokker–Planck processes, generalized by
Hänggi15 for Markovian master equations and recently stud-
ied in related form e.g., by Ross and co-workers ~for a recent
publication see Ref. 16!.

Discussing the possibility of a violation of condition ~7!,
in Ref. 10 Eigen also argued that ‘‘autocatalytic reaction
systems... are the candidates for such instabilities.’’ In this
work we show that autocatalytic reactions are not a neces-
sary condition for this violation.

The general result that reaction networks consisting ex-
clusively of reactions where one side containes only constant
substances are always locally stable is already known with
the work of Clarke ~cf. Ref. 17!. He instead used for his
analyses a graph theoretic approach. However, because the
analyses in this work are based on Lyapunov functions, we
in addition can study global stability.

In Sec. II A we have shown that for mass-action kinetic
systems the function excess entropy density ~L! always ful-
fills the necessary condition for a Lyapunov function to be
~positive or negative! definite. In Appendix A we have
proved the same result for the more general function Lmf .
From a mathematical point of view, this result is closely
related to a corresponding result given in Ref. 18, wherein
exclusively equilibrium situations were addressed.

The sample system studied in Sec. III has been known
explicitly at least since the paper of Cook et al.19 It is con-
structed as an extension of the well-known trimolecular
model,20 which has been criticized, like the ‘‘Brusselator,’’
because of the assumption of its trimolecular reaction. Sys-
tem ~27! is one of three different schemes which have been
demonstrated in Ref. 19 to yield as asymptotic limit cases the
original trimolecular model, whereby one of these systems
still contains an autocatalytic reaction. ~The authors stated
that ‘‘These three-variable schemes are of great interest in
themselves as the simplest oscillatory ‘real chemical’
schemes involving only first- and second-order steps.’’ A
comparison with the system of Ref. 8 shows that this is ob-
viously not the case.! The decomposition of the trimolecular
reaction according to system ~26! is only bimolecular in the
forward and backward direction of all reactions. However,
the stability analysis, especially the determination of the
Hopf bifurcation hyperplane, has not been done in our gen-
eral way.

Simple systems such as Eq. ~27! are well suited for the
application of local bifurcation theory ~cf., e.g., Ref. 21! to
analytically prove that the occurring Hopf bifurcation is in-
deed supercritical.

One further point is especially interesting with regard to
actual studies. The stable limit cycle of the original trimo-
lecular two-variable model becomes unstable ~and the sys-
tem diverges! if the velocity constant of the autocatalytic
reaction is sufficiently small. If one simply adds a further
intermediate variable as a storage substance, the stable limit
cycle exhibits a period doubling cascade into chaos when
lowering the autocatalytic reaction rate.20~c!,22 If the rate is
lowered even further, the stable chaotic attractor becomes
unstable and the system diverges again. In contrast, in sys-
tem ~27! we observed the same ~two-dimensional! behavior
than in the original two-variable model.20 Of course the pe-
riod doubling and the chaotic region in the parameter space
could be so narrow that we did not find it numerically, but it
seems that the trajectories of the whole three-dimensional
model are in fact confined to a two-dimensional surface in
the long time limit. Thus, system ~27! is a good candidate for
applying ‘‘no-chaos theorems’’ in similar form as recently
presented in Ref. 23.
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APPENDIX A: PROOF OF THE POSITIVE
DEFINITENESS OF A FUNCTION CONSTRUCTED
USING MOLE NUMBERS INSTEAD OF
CONCENTRATIONS

If one uses the chemical potential of reactant Xi as a
function of the mole fraction x i ~note that in this appendix x i
is used for the mole fraction of reactant Xi and not for its
concentration! instead of the concentration c i @like in Eq.
~9!#, one obtains another function for the excess entropy den-
sity. This can be used as a Lyapunov function if it fulfills the
condition of definiteness. We here prove that this condition
is always fulfilled, because the form matrix of the according
quadratic form is positive definite. With

m i5m i
01RT ln x i . ~A1!

~with the mole fraction x i5c i /(( ic i1cc)! one obtains the
function

Lmfª(
i ,k

~]m i /]ck!ssdc idck.0. ~A2!
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Here, cc denotes the concentration of the constant sub-
stances. If cc is very large, Lmf becomes identical to L of Eq.
~8!. The form matrix F of this quadratic form can be written
as
F5
1

~( ic i1cc!P ic i
F̃ ~A3!

with
 25 Septem
ber 20
F̄5S P i52
n c i~( i52

n c i1cc! 2P ic i ¯ 2P ic i
2P ic i c1P i53

n c i~c11( i53
n c i1cc! ¯ 2P ic i

] ] � ]

2P ic i 2P ic i ¯ P i51
n21c i~( i51

n21c i1cc!
D . ~A4!

This real symmetric matrix is positive definite if—after the triangle decomposition F̃5CB , where without loss of generality
we can set c i i51 for all i—all diagonal elements b i i are larger than zero ~cf. Ref. 24!. One immediately recognizes b11.0.
Applying the Gaussian algorithm to F̃ to generate the upper triangular matrix B, after elimination of the first row and the first
column the new matrix F̃1 reads

F̃15
~( ic i1cc!c1

( i52
n c i

F̃1 ~A5!

with

F5 15S 0 0 ¯ 0
0 P i53

n c i~( i53
n c i1cc! ¯ 2P i52

n c i
] ] � ]

0 2P i52
n c i ¯ P i52

n21c i~( i52
n21c i1cc!

D . ~A6!
24 13:55:45
One now recognizes that b22.0 and that this likewise works
for all remaining n22 steps. In each step, one c i is elimi-
nated and the new appearing b i i is larger than zero which
finishes the proof.

It follows that the function Lmf is, like the function L ~8!,
for the ideal solute systems under consideration always a
suited Lyapunov function, because it fulfills the necessary
condition of definiteness.

In Ref. 4 we have shown that in the considered sample
system the region of the parameter space for which the ~lo-
cal! stability of the steady state can be proven with the help
of the Lyapunov function Lmf is generally smaller than the
region for which the ~local! stability can be proven with L.

APPENDIX B: CONSTRUCTION OF DIFFERENT
LYAPUNOV FUNCTIONS ON THE BASIS OF THE
GLANSDORFF–PRIGOGINE CRITERION

We demonstrate a simple procedure for the construction
of Lyapunov functions for proving the global stability of
steady states in a domain of the parameter space containing
the equilibrium point. For the sake of simplicity we confine
ourselves to the simple case of thermal and mechanical
stable homogeneous systems.

According to the Glansdorff–Prigogine theory the equi-
librium of these systems is locally stable if condition ~4! is
fulfilled. With the assumption of stable local equilibrium
these authors derived the inequality ~7! being a condition for
local stability of the considered steady state. Because this
derivation is based on the idea of using the excess entropy
density as a Lyapunov function, it is natural to study with
this function global stability as well. As we have shown in
Sec. II A ~and in Appendix A for the more general function
Lmf!, the function

Leedª(
i

~c i2 c̄ i!2

c̄ i
~B1!

is positive definite, and therefore well suited to serve as a
Lyapunov function. Leed is the function L ~8! with finite de-
viations Dc i instead of infinitesimal deviations dc i .

Starting from

~d2s !ss}(
i

~dm idc i!ss , ~B2!

we show that related Lyapunov functions can be obtained.
The function Leed follows directly from Eq. ~B2! if one uses
for the variation of the concentrations the finite deviation
from the steady state Dc i . If, in addition, one uses for the
chemical potentials the finite deviation Dm i , one obtains

L fd5(
i

~c i2 c̄ i!ln
c i
c̄ i
. ~B3!

This function is positive definite ~for c iÞ c̄ i! and therefore
suited to serve as a Lyapunov function.

A third related function can be obtained from the rela-
tion

1
2

]

]t d2s52(
i

dS m i

T D ]

]t dc i>0, ~B4!
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which one obtains in deriving Eq. ~7! ~cf. Ref. 1!. If one uses
instead of the first variation for both, the chemical potential
and the concentration, the finite deviation D, the time deriva-
tive of this third function reads: dLShear /dt5( i ln(ci /c̄i)ċi ,
yielding

LShear5(
i
c i ln

c i
c̄ i

2c i1 c̄ i , ~B5!

which is positive definite. This is the well-known Lyapunov
function for chemical reaction systems used first by Shear,
who deduced the expression from the Boltzmann
H-Theorem.

Both functions L fd and LShear prove the local stability of
the considered steady state exactly for the same region in the
parameter space as the function Leed , which follows by ex-
pansion of the logarithm of these functions. However, in Ref.
4 we have shown that LShear is better suited for proving the
global stability. Indeed, in Ref. 25 it has been shown that
with the help of LShear the global stability of the thermody-
namical equilibrium point can be proven in the whole phase
space for arbitrary generalized mass-action kinetic systems.

Further related Lyapunov functions follow from L fd and
LShear if one again takes the chemical potential as a function
of the mole fraction as outlined for Lmf in Appendix A.

This idea for the construction of different Lyapunov
functions is interesting also with respect to more general sys-
tems than only thermal and mechanical stable homogeneous
ones, for which more general expressions of the excess en-
tropy density, e.g., 1/2d2s5d(1/T)du1d(p/T)dv
2d(m i /T)dc i , exist.
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