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A nonlinear stochastic growth equation is derived from (i) the symmetry principles relevant for the growth
of vapor deposited amorphous films, (ii) no excess velocity, and (iii) a low-order expansion in the gradients of
the surface profile. A growth instability in the equation is attributed to the deflection of the initially perpen-
dicular incident particles due to attractive forces between the surface atoms and the incident particles. The
stationary solutions of the deterministic limit of the equation and their stability are analyzed. The growth of the
surface roughness and the correlation length of the moundlike surface structure arising from the stochastic

growth equation is investigated.

PACS number(s): 68.35.Bs, 61.43.Dq

I. INTRODUCTION

The understanding of the kinetics of surface growth pro-
cesses has recently developed into a highly active research
area of statistical physics (see Ref. [1]). The dynamics of the
surface evolution, e.g., in molecular beam epitaxy (MBE) or
physical vapor deposition is dominated by the competition
between roughening mechanisms due to deposition of par-
ticles and smoothening mechanisms due to surface diffusion
[2-6]. The growing surface can evolve into self-similar
structures or, in the presence of a growth instability, into
periodic patterns. In particular, the growth of amorphous thin
films represents an attractive system for the understanding of
surface growth processes because of the spatially isotropic
nature of the amorphous structure and the absence of long
range structural order. Experimental studies of amorphous
thin films, deposited by electron beam evaporation, display
the formation of moundlike structures on a mesoscopic
length scale [7,8]. Despite the complexity of the growth pro-
cess on the atomic scale this indicates that coarse-grained
continuum models based on stochastic growth equations [1]
can be useful for the understanding of the growth dynamics.

Our investigation focuses on the development and the
analysis of a minimal deposition equation appropiate for the
modeling of amorphous film growth under physical vapor
deposition conditions (low-energetic particles) and normal
incidence.

Our paper is organized as follows. In Sec. II we present
the basic experimental setup under consideration and a sum-
mary of constructive elements leading to a heuristic ansatz
for the deposition equation for amorphous film growth. In
Sec. III, we use a systematic approach to obtain the minimal
functional form of the deposition equation and relate the en-
tering terms to their underlying surface relaxation mecha-
nisms. This yields an additional justification of the heuristic
ansatz in Sec. II. In Sec. IV, we give a thorough discussion
of the existence and stability of the stationary solutions of
the deterministic deposition equation which constitutes the
skeleton of time evolution of the stochastic deposition equa-
tion. A detailed numerical investigation of the time evolution
of the correlation length and the surface roughness resulting
from the deposition equation is presented in Sec. V. Section
VI summarizes the major results of our study.
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I1. BASICS

As a tool for the theoretical description of the time evo-

lution of the surface morphology H();,t) where H denotes
the z coordinate of the growing surface at the substrate po-

sition x= (x,y) and time ¢ (see also Fig. 1), we use the well-
established phenomenological approach that is based on sto-
chastic nonlinear partial differential equations [1]

0,H=G(VH)+F+ . (1)

In Eq. (1), G denotes a functional that contains the various
surface relaxation phenomena and only depends on the de-
rivatives of the surface height since the growth process is
determined by the local surface properties. The functional
form of G depends strongly on the considered experimental
setup and the details of the kinetics of the deposition process.
Moreover, F in Eq. (1) denotes the mean deposition rate and
7]()?,[) is the corresponding deposition noise that determines

the fluctuations of the deposition flux about its mean F.
These fluctuations are assumed to be Gaussian white,

(n(x,0)(y,t"))=2D8x~y) 5(r—ﬂ>(,2)

(n(x,0))=0;

where the brackets denote ensemble averaging, D the fluc-
tuation strength, d the spatial dimension of the surface (d

vapor particle beam

amorphous film H(x,y.t)

substrate

FIG. 1. Sketch of the vapor deposition of an amorphous film on
a substrate.
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=1 or 2). For an estimate of the magnitude of D we refer to
Appendix A. Moreover, it proves useful to introduce the
height profile

h(x,t)=H(x,t)—Ft 3)

in the frame comoving with the mean deposition rate F.
Then, the spatiotemporal evolution of h();,t) is given by

a,h= G(VVz) + . If the deposition process has no excess ve-
locity, (9,h)=0, there is a simple, linear relation between
the mean growth or layer thickness (H) and time, (H) = Ft,
yielding (h)=0. This assumption is justified if the substrate
temperature is low enough to suppress particle desorption
and if the film grows with constant density.

The simplest equation of this type, d,h=vV>h+ 7, was
suggested by Edwards and Wilkinson [9] in order to describe
the sedimentation of a granular aggregate in the presence of
a gravitational field. In the context of surface growth phe-
nomena, the desorption of particles from the surface could
also cause the Laplacian term with positive v [10]. This ef-
fect, however, is negligibly small at usual substrate tempera-
tures used in vapor deposition experiments. Moreover, the
experimentally observed moundlike surface structure [7,8]
suggests the presence of a growth instability, i.e., ¥<<0 as we
shall argue in this paper. This kind of growth instability was
proposed by Villain [3] as the consequence of a diffusion
bias on the terraces of a crystalline layer due to a potential
barrier at the step edges. Although this effect is absent in
amorphous film growth, a term »V24 with negative v can
still appear due to the deflection of the initially perpendicular
incident particles caused by the interatomic forces between
the surface atoms and the incident particles, see Sec. 111 B.

Because the deposited particles prefer to relax at surface
sites that offer the strongest binding, a surface current of the
type fzKﬁ(Vzh) adds the term —KV*h to the growth
equation [2,4,10]. The resulting growth equation d,/h
=vV2h—KV*h+ 5 with negative v and positive K needs to
be supplemented by a nonlinear term to avoid exponential
growth at large length scales. If the growth instability vV 2
and the conserved Kardar-Parisi-Zhang (KPZ) equation d,4
=—KV*h+X\,V3(Vh)>+ 5 [3,5] are combined one obtains
the stochastic field equation d,hi=vV?h—KV*h
+A1V2(ﬁh)2+ 7, that has been proposed by Siegert and
Plischke [6] as a continuum model for the MBE growth of
crystalline layers in the presence of a step edge barrier. The

nonlinear term Ale(ﬁh)z can be motivated by a surface
current, that equilibrates the slope dependent adatom concen-
tration [3].

For amorphous film growth, the adatom concentration de-
pends on the surface slope because of a simple geometrical
argument by Moske [11] (see Appendix B for a variant of
this argument). If only freshly deposited particles are al-
lowed to diffuse before their relaxation their surface concen-

tration follows a behavior given by n~1/ l+(ﬁh)2~1
—(ﬁh)z/Z. This causes a diffusion current of the type j ~
—ﬁn~€(ﬁh}2 and leads to the )\IVZ(VVz)2 term with X\,
< 0. This argument is also valid, if additionally thermally
activated surface diffusion is present.
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Therefore, after renaming of the coefficients, a reasonable
heuristic model for the stochastic growth equation governing
deposited amorphous thin films is determined by

dh=a,Vh+a,V*h+a;VA(Vh)+ 7 )

with negative coefficients a,, a,, and a;.

III. MODEL EQUATION

In this section, we first derive the simplest nonlinear func-
tional form of the deterministic part of the surface growth
equation using the symmetry principles governing the amor-
phous growth process, no excess velocity and a low-order
expansion in the gradients of the height profile h(;,t) (for
the growth equation that allows for a finite excess velocity
see Appendix D). Then we relate the various terms entering
in this minimal deposition equation to microscopic processes
governing the amorphous surface growth.

A. Derivation of the minimal deposition equation

Following Ref. [1], the invariances under translation in
time, translation along and perpendicular to the growth di-
rection imply a phenomenological ansatz for the surface
growth dynamics of the form &lhIG(ﬁh)+ n. Here, the
functional G(ﬁh) only depends on the gradients of h();),
higher order spatial derivatives and their combinations.
Moreover, the rotation and reflection invariance in the plane
perpendicular to the growth direction, see Fig. 1, that reflects
the isotropy of the amorphous phase determines G(ﬁh) to be
a scalar, i.e., odd derivatives are ruled out and the \Y opera-
tors must be multiplied in couples by scalar multiplication. If
G(ﬁh) is not allowed to produce any excess velocity, it must
be given by the divergence of a vector field, i.e., G(v)h):
—V-j(Vh).

Next, we expand G(ﬁh) in orders of 4 and V, following
the aforementioned symmetry principles. The allowed linear
terms are V2h, V*h, VOh, etc. Only the first two of them are
regarded in the following and terms of order O(V°®) are
omitted. Therefore, the first and the second term of G(ﬁh)
read a,V?h and a,V*h.

The only functional form of G(VVz) being quadratic in A
and V, not being explicitly dependent on 4, and being a
scalar reads (V/)2. But this term (a KPZ nonlinearity [12])
does not satisfy the condition of no excess velocity. There-
fore, the possible terms being quadratic in % are at least of
order O(V*). One obtains ﬁ[(ﬁﬁh)(ﬁh)] as the common
type of terms of order O(V* h?). Now, the V-operators
have to be multiplied in couples, yielding two
combinations: 263V -[(VVh)-(Vh)]=b3V*(Vh)*> and
b,V -[(Vh)(V?h)]. Other possible terms of G(Vh) are of
order O(V® h%); we only mention that adding the term
ﬁ~[(ﬁh)(€h)2] would complete the list of terms up to
fourth order in V.

In summary, the functional form of G(ﬁh) is determined
by
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G(Vh)=a,Vih+a,V*h+b;,VA(Vh)2+ b,V -[(Vh)(V?h)]
+O(Ve, h3). (5)

Since the fourth term in Eq. (5) can be decomposed in the
form

I 1 -
V-[(Vh)(V2h)]=5 VA(VA) +2M (6)
with
ah 9,0.h
M =det 2 (7)
d.dh  dh

the functional form of the lowest-order nonlinear determin-
istic surface growth equation reads after renaming of the co-
efficients

ah=G(Vh)
=a,V2h+a,V*h+a;VA(Vh)2+a,M. (8)

Apart from the term a,M, the systematically derived depo-
sition equation (8) coincides with the Heuristic ansatz (4).
The last term in Eq. (8), a4M, is only present in the two-
dimensional case. In the one-dimensional case where / only
depends on one spatial coordinate, M =0 holds. As we shall
see in the next section, the physical origin of the term a,M
suggests that it is small and negligible. The two nonlinear
terms a3V2(Vh)? and a,M in Eq. (8) both break the up/
down symmetry of the height profile 4(x,7). Equation (8),
however, is invariant with respect to the combined transfor-
mation {/,a3,a4}—{—h,—as,—as}. As a consequence, the
signs of a3 and a, are of minor relevance as far as global
properties such as the roughness of the surface are con-
cerned.

B. Physical interpretation of the minimal deposition equation

The second and the third term on the right-hand side
(RHS) of Eq. (8) are directly related to the known micro-
scopic mechanisms of (i) the surface diffusion suggested by
Mullins [10] and (ii) equilibration of the inhomogeneus con-
centration of the diffusing particles on the surface as sug-
gested by Villain [3] and Moske [11] (see for alternative
argumentation Appendix B). This also implies that the coef-
ficients a, and a5 are negative. The microscopic origin of the
first and the last term on the RHS of Eq. (8), as far as the
amorphous surface growth is concerned, does not seem to be
available in the literature yet.

Here we propose a simple microscopic argument that
leads to both terms as a result of one dynamical mechanism.
Initially, the particles in the beam move in a direction per-
pendicular to the substrate towards the surface. But when
they are close to the surface, they are attracted by interatomic
forces in a direction perpendicular to the surface and not
perpendicular to the substrate. As a consequence, more par-
ticles arrive at places with V24 <<0 than at places with V2A
>0. This picture is also confirmed by molecular dynamic
simulations [13,14] where impinging particles are acceler-
ated towards the surface. For an indication of the relevance
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FIG. 2. Sketch of the deflection effect. Particles of the incident
beam being perpendicular to the substrate feel at a distance b from
the surface (full line) interatomic forces and their trajectories are
bent such that they arrive perpendicular to the surface.

of this effect, we refer to the recent experimental study [15].
In a simplified model, the deflection happens instantaneously
when a particle arrives at a distance b from the surface where
b characterizes the typical range of the interatomic force.
Before and after the change of direction the particles move
straight, as shown in Fig. 2. This simplification is justified if
the kinetic energy of the particles (typically several 0.1 eV
for electron beam evaporation) is very small compared to the
binding energy on the surface (being typical several eV).
Because of this interaction the particles feel an imaginary
surface (dashed line in Fig. 2) that is located at a distance b
from the real surface, as also shown in Fig. 2. The unit vector
perpendicular to the real surface reads

)

- 1 ( —VVz)
n=-———— .
Vi+(vm2 ! 1
The imaginary surface felt by the particles can be param-
etrized by

I b -
X =x— ———Vh, (10)
V1+(Vh)?
b
h' =h+ ———. (11)

V1+(Vh)?

Therefore, the number of particles arriving at a place of the
real surface (full line in Fig. 2) is increased by a factor

d.h

by
y >
V1+(Vh)?

a.h
1= b3, ———
V1+(Vh)?

a=det

1-ba,

d,h d,h
Y N — —
V1+(Vh)? V1+(Vh)?
(1

2)
For small gradients Vh, this factor simplifies to

—ba,d.h

1—b3h
a=det 5
1=b3h

—b3,d,h
=1-bV*h+b>M. (13)
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To obtain the total number of particles arriving at the sur-
face, a has to be multiplied with the mean surface growth F,

Fa=F—FbV?’h+Fb>M. (14)

Since only the deviations from the mean growth F count in
the deposition equation (4), the contribution arising from the
attraction of the surface to the particles in the growth equa-
tion reads

—FbV?h+Fb>M. (15)

Since b is positive, a;=—Fb<0 and a,=Fb* holds. The
a4 term can be omitted if b is small. As our numerical cal-
culations confirm, the incorporation of small @, does not
qualitatively change the results.

A different expression for the contribution of the particle
attraction to the growth of the surface height was derived by
Shevchik [16]. His theory should apply well in the limit of
large incident velocities of the incoming particles. By con-
trast, our theory deals with the limit that the kinetic energy of
the deposited particles is small before they are attracted by
the surface atoms.

In Sec. 1II, it has been stated that the concentration of the
diffusing particles on the surface is given by n
o /41 +(§h)2. In the spirit of the aforementioned consid-

eration, this statement must be reexamined. In fact, the num-
ber of diffusing particles per surface unit is determined by

o 1 .
nox ———e = 1= bV2h— —(VAh)2+ OV, ).
V1+(Vh)? 2

(16)

This causes a surface current f o —Vn that contributes to the
growth equation

—V =200V RN VE(VR)2+O(VO,RY)  (17)

with A\ ;<<0. Here, 2\ ;b is absorbed into the a,-term. There-
fore, the functional form of the growth equation in the small
gradient expansion remains unchanged by the fact that the
concentration of diffusing particles is nxa/\1+ (V*h)2 and

not noc1/y/1+(Vh)2.

IV. STATIONARY SOLUTIONS OF THE DETERMINISTIC
FIELD EQUATION

In this section, we investigate the stationary solutions of
the deterministic limit of Eq. (4),

dh=a,Vh+a,V*h+a;VA(Vh)? (18)

on an interval [0,L]¢ (d=1,2) subject to periodic boundary
conditions. We also discuss their existence and their stability
as function of the entering coefficients a;, a,, and a5. To
keep the discussion general we allow here for arbitrary signs
of the coefficients a;, a,, and a5. Stationary solutions of Eq.
(18) are determined by d,-#=0 and, therefore, solve
V2a,h+a,V*h+a;(Vh)?]=0. Integrating the latter and
using periodic boundary conditions leads to a,h+a,V2h
+a 3(§h)2= const. The arbitrary constant that reflects the
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translational invariance of Eq. (18) in growth direction can
be scaled out by the transformation #— A — const/a . There-
fore, the stationary solutions of Eq. (18) are determined by

ayh+a,Vh+a3(Vh)?=0. (19)

A. The solutions

Obviously, Eq. (18) possesses the homogeneous station-
ary solution #=0 for any combination of the coefficients a,

a,, and a;. Due to the nonlinearity a5(V4)? in Eq. (19), also
nonhomogeneous stationary solutions must be expected. If,
however, the sign of the ratio of @, and a, is negative, then
the homogeneous stationary solution #=0 is the only exist-
ing stationary solution. This can be seen as follows. A pos-
sible nonhomogeneous stationary solution possesses maxima

where VA=0 and V?A<0 holds and minima where V4=0
and V2h=0 is satisfied. At the extrema, Eq. (19) reduces
to —(a;/a,)h=V>*h. This yields the conditions
—(a;/a))hp =0 at maxima and —(a;/a;)h,,=0 at
minima. Necessarily, /,,,>h,;, must hold. As a conse-
quence, nonhomogeneous stationary solutions cannot exist if
a/a,<0 holds. Here, the sign of a; is arbitrary.

If the ratio a, /a, is positive, spatially varying stationary
solutions of Eq. (18) can exist. To understand the appearance
of periodic stationary solutions we first consider the case d
=1 and the fact that Eq. (19) can then be interpreted as the
spatial analog of the oscillator with quadratic friction [17].
For d=1, Eq. (19) reduces to

a|h+a2h"+a3(h’)2:0 (20)

with the prime denoting the derivative with respect to the
spatial variable. It proves useful to apply the transformation

@1

as
Z=exp a_h
2

to Eq. (20). As a result, one obtains Z"+(a,/a,)ZInZ=0
or, equivalently, after integration with respect to the spatial
variable

Loy @l L 2
5 2_02 n 5 = K=const. (22)

For positive ratios a; /a,, the second term on the LHS of Eq.
(22) determines a potential V(Z)=(a,/2a,)Z*(InZ—1/2)
and possesses the shape of a well with a minimum at Z ;,
=1 and V(Z;,)=—a,/4a,, a local maximum at Z ., =0 and
V(Zmax)=0, and diverges proportional Z* In Z for large Z as
depicted in Fig. 3. Only in the interval —a,/4a,<V(Z)<O0,
the potential possesses two values Z; and Z, for the same
fixed value of V(Z). Therefore, periodic solutions can only
exist if « lies in that interval. The points Z; and Z, deter-
mine the maximum and minimum values of the height profile
h(x). The minimum value of V(Z) at Z=1 corresponds to
h(x)=0. Moreover k=0 corresponds to a height profile
h(x) that varies between A, =a,2a; (hyn,=a»2a3) and
R pin=—% (hpax="1>) for ay/a3>0 (a,/a;<0). In the vi-
cinity of the minimum at Z=1, Eq. (22) can be approxi-
mated by the linear differential equation
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FIG. 3. Dependence of the rescaled potential v(Z)

=2a,V(Z)/a;=2Z*(In Z—1/2) as function of Z.

a
7"+ - (z-1)=0. (23)
aj

Therefore, decreasing « to V(Z,,;,), the periodicity length L
of the periodic height profile 4 (x) converges to 27\a,/a;.
On the other hand, since V'(0)=0, increasing x to zero
from below, L increases towards infinity. This implies, how-
ever, that periodic solutions of Eq. (20) exist if the condition

L>2m\a,/a, (24)

is fulfilled.

The stationary, spatially periodic solution of Eq. (20) can
be obtained using the shooting method. The boundary value
problem a;h+a,h"+a;(h')?>=0 with h being L periodic is
transformed to an initial value problem where 4'(0)=0 is
kept fixed and /(0) is varied until 4 fulfills 2’ (L/2)=0. The
fact that only half of the periodicity interval needs to be
considered results from the invariance x— L —x of Eq. (20)
in that case. A representative example of the stationary peri-
odic solution for a;=a,=a;=—1 is depicted in Fig. 4. Its
characteristic and in general nonsinusoidal shape combines a
wide mound and a narrow steep well. The larger the period-
icity length is, the narrower is the well. Note, however, that
the bottom part of the well is not cuspid for finite L, but
possesses a rounding on a length scale that cannot be re-
solved in Fig. 4. Therefore, the resulting height profile is still
smooth on the periodicity interval.

Next, we determine the dependence of the roughness w of
the nonhomogeneous stationary pattern being defined by

w2=(h—h)> (25)

on the length of the interval L. As a representative example,
we show in Fig. 5 a numerical calculation of w(L) for 27
<[L=<100 and a;=a,=a;=—1 using the shooting method
mentioned above. The result can be fitted to

VV(Z;)::b()+'bll;+'bzl;2 (26)

with by=—0.121, 5,=0.00427, b,=0.0186. As a conse-
quence, the difference between the minimum and maximum

-200

-400

-600 I I I I
0 20 40 60 80 100

X

FIG. 4. Stationary solution in 1D: —h—h"—(h")*=0, L
=100, solved by the shooting method. The height was transformed
by h(x)— h(x)+ const in order to obtain [dx h(x)=0. x was trans-
formed by x—x+94.6 in order to shift the minimum of 4(x) to x
=94.6. Thereby coincidence was achieved with the final state of the
simulation of the nonlinear deterministic growth equation (36), that
is shown in Fig. 6(f).

of the nonhomogeneous stationary solutions scales with L2
for large enough interval length L. This can be explained as
follows. Shifting the maximum of the nonhomogeneous sta-
tionary solutions to x=0 and the periodicity interval to
[ —L/2,L/2], these solutions converge to

B S U
h(x)= 2, 4a3x (27)

on the interval [ —L/2,L/2] for L—o. In fact, Eq. (27) is a
solution of Eq. (20), but it does not satisfy the periodic
boundary conditions on [ —L/2,L/2]. It corresponds to the
case that the constant on the RHS of Eq. (22) is set to zero.
The difference between the maximum and minimum of (27)
on [—L/2,L/2] is |a,L*/16a;| and its roughness on that in-
terval is determined by

200 T

W(L) 100 |

0 20 40 L 60 80 100

FIG. 5. Surface roughness w(L) of the stationary nonhomo-
genous solutions as a function of the periodicity interval L.
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1

WS

This is in perfect agreement with the numerical result, Eq.
(26), for large L.

The generalization to the two-dimensional case /(x,y) is
comparatively simple. Despite the fact that Eq. (19) is non-
linear, it is straightforward to see that an ansatz being an
additive combination of functions of the different spatial
variables h(x,y)=h,(x)+h,(y) solves Eq. (19). Moreover,
hy and h, are directly given by the aforementioned station-
ary nonhomogeneous solution in the case d=1 that exist for
L>21+a,/a;. Due to the rotational invariance in the x-y
plane (perpendicular to the growth direction), one also infers
that even more general solutions of the functional form

a

as

a

as

w(L) L?~0.0186|—|L>. (28)

mx+ny) ( my—nx
2

h(x,y)=h1<\/m +h o 2) (29)

n
exist where m and n are arbitrary integer numbers and /; and
h, are given by the stationary solutions in one dimension. In
straight analogy to the one-dimensional case, they exist if

L, \/Z (30)
I QY o
Jm?*+n? a

holds since L/\m>+n? is the period of /; and /4, in Eq.
(29). Another consequence is that also the squared roughness
w? of the two-dimensional solutions is an additive combina-
tion of the squares of the roughnesses of the one-dimensional
solutions

w2=w%+w§, (31)

where w; is the roughness of /;. As in the one-dimensional
case, w scales as L? for large L.

B. Stability of the solutions

Next, we investigate the stability of the stationary solu-
tions of the deterministic field equation (18). Since the initial
state of the growth process is a basically plain surface of the
substrate, it is useful to know the conditions for the stability
of the homogenous solution #=0. These can be obtained by
solving the linear limit of Eq. (18)

6,h=a1V2h+a2V4h. (32)

Using the solution ansatz h=exp[il€-§+ o(k)t] one obtains
the dispersion relation o(k)=—ak*+ a,k* from Eq. (32).
If a,>0, the growth rate o (k) is positive at least for large
enough k. Therefore, the homogenous solution is unstable in
that case. Furthermore, o (k) increases to infinity for k—oo.
There is no upper limit for the growth rate of Fourier modes

with large k, and, as an aside, the nonlinearity a3V2(V»h)2 in
Eq. (18) makes this worse by doubling the wave vector £.

This implies that for most initial conditions the deterministic
field equation (18) has no bounded solution if a, is positive.
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Moreover, if a,<0 and a;>0, o(k) is negative for all non-
zero k, and, therefore, the homogenous stationary solution of
Eq. (18) is linearly stable.

The realistic scenario is that a; and @, are negative as
explained in the previous chapter. In this case, o(k) is posi-
tive if 0<k<\a,/a,. The homogenous solution will be un-

stable if a wave vector k exists in that range. Since we in-
vestigate Eq. (18) on an interval [0,L]? subject to periodic
boundary conditions, the possible wave vectors are k
=(2mn,/L,27n,/L) where n, and n, are integer numbers.

Therefore, the smallest nonzero k=|k| is k=2/L. This im-
plies that the homogenous solution is unstable if 27/L
<\a;/a,, or equivalently

L>27T\a2/al. (33)

This condition is surely fulfilled in the experiment, because
the substrate usually measures about 1 cm in length and
width and 2 7+/a, /a; is only several nm [18]. Therefore, Eq.
(33) is a necessary condition for numerical and analytical
investigations of Eq. (18) since its neglection would remove
the instability of the homogenous solution #=0 against the
growth of Fourier modes with wave number k<<\/a/a,. The
conditions for stability and instability of the homogeneous
stationary solution are depicted in Fig. 7.

To investigate the stability of the nonhomogenous station-
ary solutions of Eq. (18) we solve this equation numerically
with a; and a, being negative and the assumption that Eq.
(33) holds because a, /a,>0 and Eq. (33) are necessary con-
ditions for the existence of the nonhomogenous stationary
solutions. Starting from a random height distribution close to
the homogenous solution #=0, a periodic surface structure
with a wave length of about N\ ,.=2m\2a,/a, arises and in-
creases in height as depicted in Fig. 6(a). N, corresponds to
the critical wave number k.= \/a,/2a, where o(k) has its
maximum. At later stages of the evolution, the nonlinearity

a3V2(VQh)2 causes a coarsening of the moundlike structure
where the mounds grow in length and height and the number
of mounds decreases. This coarsening precedes in such a
way that smaller mounds are ‘‘eaten’’ by their bigger neigh-
bors, as shown in Fig. 6. The final state is always a nonho-
mogenous stationary solution with only one mound [see Fig.
6(f)]. In the two-dimensional case, this is the stationary so-
lution A(x,y)=h(x)+h,(y) where &, and h, are nonho-
mogenous stationary solutions in one dimension with the
maximum period L. We conclude that the nonhomogenous
stationary solutions with one mound are stable whereas the
nonhomogenous solutions with more than one mound are
unstable. The similarity of the results in one and two spatial
dimensions is a consequence of the fact that A(x,y,?)
=h(x,t)+h,y(y,t) is a solution of Eq. (I18) in the two-
dimensional case if /2| and /%, are solutions of Eq. (18) in the
case d=1.

If a, and a, are positive and Eq. (33) holds, this can be
regarded as the result of a time inversion of the case where
a; and a, are negative. Therefore, the nonhomogenous sta-
tionary solutions are unstable. Moreover, for most initial
conditions a solution of Eq. (18) does not exist, and numeri-
cal simulation is therefore not reasonable in this case. The
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FIG. 6. Height profile /(x,?) calculated from the nonlinear de-
terministic growth equation in one dimension (36) using the param-
eters a;=a,=a3=—1 on an interval [0,100] subject to periodic
boundary conditions. The initial values of 4 on the 400 grid points
are random numbers taken from a uniform distribution between
+0.5 and —0.5. (a) t=2,6,11, (b) t=11,22,33, (¢) £=33,66,100,
(d  +=100,150,200, (¢)  +=800,900,1000, (f) ¢
=1200,1400,1600,3000,5000,10000. The height profiles at ¢
=3000,5000,10 000 are coincident with the stationary solution of
Eq. (36), that is shown in Fig. 4. The height profiles at different
times can be distinguished in such a way that the maximum of 4
increases with time in the pictures (a)—(f).

conditions for the existence and stability of the nonhomo-
genous stationary solutions are also depicted in Fig. 7.

V. QUANTITATIVE INVESTIGATION
OF THE MOUND GROWTH

At the end of the last chapter we have described the
growth of the moundlike structure arising from the nonlinear
deterministic field equation (18) under the conditions that a
and a, are both negative. Because these conditions combined
with a3 <0 are relevant in the context of amorphous surface
growth (see Sec. II) we apply them in the rest of this study.
Furthermore, we must prevent any artificial effect of the fi-
nite size L of the interval [0,L]¢ on the surface structure,

% h: unstable
nh: not existent
h: unstable
nh: not existent

h: unstable
nh: unstable
a1
h: unstable
nh: stable
h: stable

nh: not existent
h: stable

nh: not existent

L=2n(a,/a,)"

FIG. 7. Stability of the stationary solutions in the parameter
space spanned by a; and a,, h: homogeneous, nh: nonhomogenous.
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FIG. 8. Height-height correlation C(r,?) at the time =100 re-
sulting from the nonlinear deterministic growth equation (18) in
two dimensions on an interval [0,100]? subject to periodic bound-
ary conditions, using the parameters a; =a,=a3= —1. The initial
values of 4 on the N>=3012 grid points are random numbers taken
from a uniform distribution between +0.5 and —0.5.

because the substrate is usually much larger than the length
scale of the observed surface structure [7,8]. Therefore, L
must be large compared to the length scale of the calculated
surface structure, that is about N .=22a,/a; at the begin-
ning of the simulation and is increasing afterwards.

In this section, we first quantitatively investigate the
growth of the moundlike structure arising from the nonlinear
deterministic growth equation (18) under the aforementioned
conditions. Subsequently, we extend our investigation to the
nonlinear stochastic field equation (4). For that purpose
quantities need to be introduced, that describe the evolution
of the height and the length of the surface structure. The
height-height-correlation is defined by

C(r,t)=< <$f d[h(x,t)—h(1)]

x[h(;+;,t)—h_(t)]>> , (34)

r|=r

where (1) =( 1/Ld)fddxh(;,t) denotes the spatially average
of the height, and ((...))|;=, denotes the ensemble and
radially average. Then the surface roughness w(¢) is given
by w?(¢)=C(0,t), and the correlation length R .(¢) is defined
as the radius of the first maximum of C(r,t) occuring at
nonzero r (see Fig. 8). The quantities w(¢) and R.(¢) char-
acterize the height and length of the surface structure. Fi-
nally, we define the height-difference correlation by

H(r,t)=<<$J ddx(h(i,t)—h(;+;,t))2>>

R.(1), w(t), and H(r,t) are experimentally accessible [7]
and, therefore, candidates for a comparison of experimental
data and theory.

|r|=r

35)
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FIG. 9. Correlation length R.(¢) calculated from the nonlinear
deterministic growth equation (36) in one dimension using the pa-
rameters a;=a,=az=—1 on an interval [0,400] subject to peri-
odic boundary conditions. The initial values of /4 on the 800 grid
points are random numbers taken from a uniform distribution be-
tween +0.0005 and —0.0005. ¢, =34.6 (left dashed line) denotes
the time when R_(¢) climbs over 27+2a,/a,, and t,=117.5 (right
dashed line) denotes the time when R (?) reaches 47\2a,/a,. The
solid line that fits R.(¢) for t>t¢, is calculated by R.(t)=p,
+\pt+p,yt with the parameters po=—12.4, p;=414.7, and p,
=423.

A. Nonlinear deterministic growth equation in one dimension

Here, we investigate the deterministic field equation (18)
in the case d=1 reading explicitly

dh=a,0*h+a,d*h+a302(d.h)>. (36)

As a representative example, we solve this equation by nu-
merical simulation (see for details of the method Appendix
C) with the coefficients a;=a,=a3;=—1 and the interval
length given by L=400. The number of grid points is N
=800 and the initial values of / on these grid points are
independent random numbers taken from a uniform distribu-
tion between +0.0005 and —0.0005. The corresponding re-
sults for the correlation length R .(¢#) and the surface rough-
ness w(t) are shown in Figs. 9, 10, and 11.

At carly stages the linear limit of Eq. (36) &chal&ﬁh
+a2(9§h is sufficient to describe the surface growth. This
implies that a Fourier mode with wave number & grows with
a growth rate o(k)=—ak*+a,k* Because o(k) has its
maximum at k.= +a;/2a, and o(k,.)=— a%/4a2, this critical
mode begins to dominate the surface growth after a short
time. Therefore, the correlation length R (¢) first increases
and then remains constant at R.(¢)=2m/k.=2m\2a,/a,
until the time #=1¢;, when the nonlinearity a ﬁi(&xh)z raises
R.(t) above this value (see Fig. 9). For the same reason, the
surface roughness w(?) follows approximately a time evolu-
tion exp[o(kc)t]zexp(—aft/4a2) for t<<t,, as soon as the
cricital mode begins to dominate the other Fourier modes
(see Fig. 11). Actually, the growth of w(¢) at t<t, can be
fitted by an exp(0.235¢)-behavior (see solid line in Fig. 11)
yielding that the growth rate of w(¢) is a little bit smaller
than o(k,.)=0.25. This deviation is caused by the contribu-
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FIG. 10. Surface roughness w(¢) resulting from the same simu-
lation as the correlation length in Fig. 9. The solid line that fits w(¢)
for t>1¢, is determined by w(#)=0.05¢+ const.

tion of Fourier modes with growth rate o(k)<o(k.). We
mention that a reduction of the initial values of 4 would
extend the time interval [0,¢, ], before the effect of the non-
linear term sets in. Therefore, the critical mode would have
more time to dominate the other Fourier modes. This yields
that the growth rate of w(¢) for t<<t; converges to o(k,)
from below in the limit of very small initial values of 4.

After t=¢t, has been reached, the nonlinear term
aﬁi(&xh)z is no longer negligible and is roughly doubling
the correlation length R.(¢) in the time interval [#;,7,] as
shown in Fig. 9 between the dashed lines. Then the curvature
of R.(¢) changes and R_.(¢) follows asymptotically a V1 be-
havior. The growth of R.(¢) for t>t, can be fitted by
R.(t)=po+pi+p,t with the parameters p,=—12.4, p,
=414.7, and p,=4.3 as depicted in Fig. 9 (solid line). The
surface roughness w(¢) grows linearly beyond ¢=¢, with the
slope dw/dt=0.05 as shown in Fig. 10 (solid line).

Next, we investigate the effect of the initial distribution
or, equivalently, the initial surface roughness of the height %

1

10

0 10 20 30 40 50

FIG. 11. Surface roughness w(¢) resulting from the same simu-
lation as the correlation length in Fig. 9. The solid line that fits w(#)
for t<<t, is determined by w(#) = constX exp(0.235¢).
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FIG. 12. Correlation length R (#) calculated from the nonlinear
deterministic growth equation (36) in one dimension using the pa-
rameters a;=a,=az=—1 on an interval [0,400] subject to peri-
odic boundary conditions. The initial values of /# on the 800 grid
points are random numbers taken from uniform distributions be-
tween +0.0005 and —0.0005 (right line), +0.005 and —0.005
(second line from the right), +0.05 and —0.05 (third line from the
right), and +0.5 and —0.5 (left line), respectively.

on the growth of R (¢) and w(z). Again, we solve Eq. (36)
on the interval [0,400] with the coefficients a;=a,=a;=
— 1. The initial values of 4 on the N=800 grid points, how-
ever, are random numbers taken from four different uniform
distributions, namely, between +0.0005 and —0.0005,
+0.005 and —0.005, +0.05 and —0.05, and +0.5 and —0.5.
The results for the correlation length R.(¢#) and surface
roughness w(t¢) are depicted in Figs. 12 and 13. Figure 12
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t

FIG. 13. Surface roughness w(¢) calculated from the nonlinear
deterministic growth equation (36) in one dimension using the pa-
rameters a,=a,=az=—1 on an interval [0,400] subject to peri-
odic boundary conditions. The initial values of / on the 800 grid
points are random numbers taken from uniform distributions be-
tween +0.0005 and —0.0005 (right line), +0.005 and —0.005
(second line from the right), +0.05 and —0.05 (third line from the
right), and +0.5 and —0.5 (left line), respectively.

-2
w(0)

FIG. 14. t; (circles) and ¢, (squares) as functions of the initial
surface roughness w(0) calculated from the same simulations as
R.(t) and w(?) in Figs. 12 and 13. The solid line that fits ¢, is given

by ¢,=—4 In[w(0)]+1. The dashed line that fits ¢, is given by ¢,
= —4 In[w(0)]+85.

indicates that the larger the initial values of / are, the smaller
is the time ¢, when R_.(f) begins to exceed A\,
=2m+2a,/a, and also the time ¢, when R_.(¢) reaches
2N.,=4m\2a,/a;. The dependence of the characteristic
times ¢, and ¢, on the initial surface roughness w(0) is de-
picted in Fig. 14. As a result, ¢; can be approximated by ¢,
=—4In[w(0)]+1  or  equivalently  w(0)exp(0.25¢))
=exp(0.25)=const. This implies that the nonlinear term
aﬁi(&xh)z begins to take an effect, when the surface rough-
ness w(t), that follows the w(0)exp(0.25¢) behavior for ¢
<t,, comes up to a fixed value. We emphasize that the con-
stant in this law is still dependent on the rescaled initial
height distribution %(x,0)/w(0). Furthermore, ¢, can be ap-
proximated by #,=—4 In[w(0)]+85, yielding #,=1,+ 84.
Figures 12 and 13 also indicate that the long time behavior of
R (t) and w(?), i.e., R.(1)~ Jt and w(t)~t for t>1,, is not
influenced by the initial height distribution except that the
curves are shifted to later times if the initial values of /4 are
decreased. Another result of Figs. 12 and 13 is that the
curves of R.(¢) and w(¢) in the transition period [7,,¢,] are
changed from convex into straight, if the initial height /(x,0)
increases.

Finally, we extend the discussion of Eq. (36) to general
coefficients a, a,, and a;. We have explained that in the
validity regime of the linear equation for r<t; R.(?)
reaches \.=2m\2a,/a; and remains constant until =¢,
and that w(¢) follows approximately an exp(—a%t/4a2) be-
havior, as soon as the cricital mode begins to dominate the
surface growth.

It is straightforward to see that —a,/ a% is a time constant,
Va,/a; is a length constant, and a,/a; is a height constant
in Eq. (36). Changing a,/a; by an arbitrary factor would
change all heights by the same factor. The same holds for
Va,/a; and all lengths and —a, /a% and all times, respec-
tively. Therefore, all relations that hold in the case a;=a,
=a;=—1 can be generalized by division of all heights by
a,/as, all lengths by va,/a,, and all times by —az/a%. For
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instance t is determined by [as;w(0)/

az]exp(—O.ZSa%tl /a,)=const where the constant in this
law depends on the function 4 (x,0)=/h(\a, /a,x,0)/w(0) in
the same way as it would depend on h(x,0)= h(x,0)/w(0) in
the case a;=a,=a;=—1. The relation between ¢, and ¢,
can be generalized by t,=t,—84a,/ a%. These relations
yield that, if |a;| is decreased, #, and ¢, increase. By means
of R (1)~ J one obtains R (t)~constX \a,/a, \/—azl t/a,
=constX \—a;t for t>t, where the constant does not de-
pend on the coefficients a;, a,, or a;. This seems paradoxi-
cal because the coarsening of the surface structure is caused
by the nonlinearity a; ﬁi(ﬂxh)z. But, on the other hand, by an
increase of |as| one could decrease ¢, and #, and shift the
R () curve to smaller times and thereby increase R.(¢) at
any fixed time t>¢,. Finally, w(¢) grows linearly at t>¢,
with  the  slope  dw/dt=0.05(ay/as)(—a>la,)=
—0.05a%/as.

B. Nonlinear deterministic growth equation in two dimensions

Next, we investigate the nonlinear deterministic growth
equation (8) in the case d=2. Except for some quantitative
deviations, the same considerations as in one dimension are
also valid in two dimensions.

In the regime of the linear growth equation (32) with ¢
<t,, the critical mode with wave number k.= \a/2a, be-
gins to dominate the other Fourier modes after a short time.
Then, the surface roughness w(¢) follows again approxi-
mately an exp[o(k(.)t]=exp(—a%t/4a2) behavior and the cor-
relation length remains constant at R .(¢)=7.0156/k,
=7.0156\2a,/a;. The difference in the behavior of R (?)
between the case d=2 and the case d=1 is due to the radi-
ally average in the definition of C(7,t).

We solved Eq. (8) on an interval [0,100]? subject to pe-
riodic boundary conditions with the coefficients a;=a,
=a;=—1 and with a,=0, a,=0.08 and a,=0.2, respec-
tively. The initial values of # on N>=3012 grid points were
random numbers taken from a uniform distribution between
+0.5 and —0.5. The results for R () and w(¢) are depicted
in Figs. 15 and 16, respectively. The long time behavior of
R.(t) and w(¢) is the same as in the case d=1, i.c., R.(¢)
~+/t and w(t)~t for t>t, with the slope of w(¢) deter-
mined by dw/dt=0.08. The deviations from this behavior at
later stages are due to the finite size of the interval [0,100]%.

Figures 15 and 16 also indicate that the term proportional
to a4 has no qualitative effect, except for a little acceleration
of the growth of R.(¢#) and w(¢). Because of the relations
a4=Fb* and a,=—Fb, a, is not independent of a;. In a
comparison with experimental results [18] we have self-
consistently checked that the inclusion of the a, term does
not quantitatively impact the results.

The growth behavior of R.(¢) and w(¢) at later stages,
ie., R.(t)~ Jf and w(t)~t for t>1t,, can be obtained if one

applies the transformation x—bx, h—b%h, and t— bt to all
lengths, heights, and times where « and z are positive con-
stants and b is a positive number. Because the coefficients of
Eq. (18) have the dimensions [a,]=length®/time, [a,]
=length*/time, and [a;]=length*/(timeX height), they are
transformed thereby according to a,;—b> ‘a;, a,
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FIG. 15. Correlation length R_.(¢) calculated from the nonlinear
deterministic growth equation (8) in two dimensions using the pa-
rameters a,=a,=az=—1, a;=0 (solid line), a,=0.08 (dotted
line), and a,=0.2 (dashed line) on an interval [0,100]? subject to
periodic boundary conditions. The initial values of 4 on the N
=3012 grid points are random numbers taken from a uniform dis-
tribution between +0.5 and —0.5.

b4—z—a

—b*a,, and a;— as. Then, Eq. (18) is transformed

to

h=b>"2a,\V2h+b*7a,V*h+b* """ % VA(Vh)2.
(37)

This equation would correspond to the original Eq. (18) if
2—z=4—z=4—z—a=0 held. Because this condition can-
not be fulfilled, we neglect one of the three terms on the RHS
of Eq. (18). We neglect the term proportional to a, because
at large length scales fourth order derivatives are smaller
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FIG. 16. Surface roughness w(?) calculated from the nonlinear
deterministic growth equation (8) in two dimensions using the pa-
rameters a,=a,=az=—1, a;=0 (solid line), a,=0.08 (dotted
line), and a,=0.2 (dashed line) on an interval [0,100]? subject to
periodic boundary conditions. The initial values of 4 on the N?
=3012 grid points are random numbers taken from a uniform dis-
tribution between +0.5 and —0.5.
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than second order derivatives and at large heights linear
terms are smaller than quadratic terms. So a,V*A is small
compared to a,V2h and a;V2(Vh)?. Therefore, we can omit
the condition 4—z=0 and we retain the conditions 2 —z
=4—z—a=0, yielding z=a=2. Then one obtains that
R.(t) follows a time evolution determined by R.(7)~¢"*
=¢"2, w(r) follows a dynamics given directly by w(t)
~t¥?=¢, and the surface roughness of the stationary solu-
tions of Eq. (18) is governed by w(L)~L“=L?. Further-
more, the height-difference correlation can be written as
H(r,t)y=r*%g(t/r*)=r*g(t/r*) for t>t,, as we confirmed
by numerical simulations of the deterministic growth equa-
tion (18). This, however, does not imply that H(r,t) follows
a r* behavior at a fixed time >¢, and small r, because g( &)
does not saturate for large £€=1/r>.

C. Linear stochastic growth equation

As a first approach to obtain insights in the dynamics of
the nonlinear stochastic growth equation (4), we investigate
its linear limit

dh=a,V?h+a,V*h+n (38)

on an interval [0,L]¢ subject to periodic boundary condition
and the initial condition 4(x,0)= 0. Equation (38) has proved
to be sufficient to describe the surface growth of amorphous
ZrAlCu films up to a layer thickness of about (H)
=240 nm [18]. The height-height correlation C(r,?) that
arises from this equation is determined by

D . .exp[2o(k)t]—1
C(r,t)=<;l§0 exp(zk-r)T> Hi‘,

(39)

where (---);=, denotes radially average and o(k)=
—ak*+ a,k* the growth rate of the Fourier modes. Since all
possible  wave  vectors k have the form k
=(2mn,/L,27n,/L), where n, and n, are integer numbers,
C(r,t) converges in the limit of large L, yielding

| D . .exp[2a(k)t]—1
C(r,t)= < (2W)df dk eXp(lkﬁ”)T

|7 =r

(40)

Therefore, the RHS of Eq. (39) is basically independent of L.

Next, we investigate the scaling behavior of the surface
growth arising from Eq. (38) at carly stages. If >0 is small
compared to —az/af, the wave number & must be large
compared to \a;/a, if a noticeable difference between the
term {exp[2a(k)¢]—1}/o(k) in Eq. (39) and 2¢ should appear.
Therefore, C(r,t) varies on a length scale that is much
smaller than \a,/a;. On that length scale, the term propor-
tional to a; in Eq. (38) can be neglected yielding 4,k
=a,V*h+ 7. If one applies the transformation x—bx, h
—b%h, and t—b’t, the coefficients of this equation are
changed by a,—b* “a, and D—b>*"9"2D. This implies
that the equation is not changed if the condition 4 —z=2«
+d—2z=0 holds. This yields z=4 and o= (4 —d)/2. There-
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FIG. 17. Correlation length R (#) resulting from the nonlinear
stochastic growth equation (41) in one dimension on an interval
[0,400] subject to periodic boundary conditions, using the param-
eters a,=a,=a;=—1 and D=10"10°10"",10"2,10"%,10"¢
(from the left line to the right line), respectively.

fore, R.(t) follows a ¢'?=¢"* behavior and w(¢) follows a
197 = (4= 4D8 pehavior if ¢ is small compared to —a, /a%.

At later stages, the critical mode dominates the surface
growth. Then the surface roughness w(¢) follows an
exp(—a%t/4a2) law and the correlation length R .(#) saturates
into R.(t)=2my2a,/a, in the case d=1 and into R.(¢)
=7.0156\2a,/a; in the case d=2.

D. Nonlinear stochastic growth equation in one dimension

In this section, we discuss the nonlinear stochastic growth
equation (4) in the case d=1:

dh=a,0*h+aydh+ay0*(9,h)*+ 7. (41)

For this, we solve Eq. (41) on an interval [ 0,400] subject to
periodic boundary conditions and the initial condition
h(x,0)=0, using the parameters a;=a,=az;=—1 and D
=10',10°,10"",1072,1074,107°, respectively. Figures 17
and 18 depict the corresponding correlation length R .(¢) and
surface roughness w(?).

At early stages the linear growth equation (38) is suffi-
cient to describe the surface growth. Then the height / of the
surface profile is proportional to JD whereas the length scale
of the surface structure does not depend on D. If the noise
strength D is small, it takes longer time, before the nonlinear
term aﬁi(ﬂxh)z gains an effect. Then, the critical mode has
enough time to dominate the other Fourier modes. Therefore,
w(t) follows an exp(—a%t/az) behavior and R.(#) remains
constant at R.(¢1)=2m2a,/a; until the time t=¢;, when
R (t) begins to exceed this value by the effect of the non-
linear term. On the other hand, for large D this behavior is
not seen, because the critical mode has not enough time to
dominate the other modes before the effect of the nonlinear
term sets in.

Figures 17 and 18 also indicate that the growth of the
correlation length R.(¢) and the surface roughness w(¢) at
later stages is not changed by the stochastic term if D is
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FIG. 18. Surface roughness w(¢) resulting from the nonlinear
stochastic growth equation (41) in one dimension on an interval
[0,400] subject to periodic boundary conditions, using the param-
eters a,=a,=a;=—1 and D=10",10°,10"",10"2,107%,107°
(from the left line to the right line), respectively.

small, i.e., R.(#) still follows a Jt law and w(t) grows lin-
early for #>1, with the slope dw/dt=— 0.0Sa%/a} This is a
consequence of the fact that the stochastic term is not in-
creasing whereas the magnitude of the moundlike surface
structure is increasing. Therefore, we expect the same long-
time behavior also for large noise strength D at later stages
of the surface growth.

E. Nonlinear stochastic growth equation with a,=0

To ascertain the relevance of the growth instability deter-
mined by the term a,V?h (with a,<0) for the growth of a
periodic moundlike structure, we investigate the case when it
is absent. Thus, we discuss Eq. (4) in the limit a;=0:

ah=a,V*h+a;Vi(Vh)+ 7, (42)

where a, and a; are negative numbers. This equation (with
a;>0) was proposed by Lai and Das Sarma [5] as the rel-
evant growth equation for ideal MBE growth of crystalline
layers at higher temperatures. They stated that the surface
arising from Eq. (42) evolves into a self-similar structure and
they derived the growth exponents a=(4—d)/3, z=(8
+d)/3, and B=a/z=(4—d)/(8+d) from a dynamic
renormalization-group analysis.

These exponents describe the scaling behavior of Eq. (42)
at later stages and large distances. At early stages and small
distances the dynamic exponents resulting from the linear
limit of Eq. (42) are valid: a=(4—d)/2, z=4 and B=a/z
=(4—d)/8. By a numerical calculation of the height-height
correlation C(r,t) corresponding to Eq. (42) we have con-
firmed that no periodic structures arise. Therefore, C(r,?)
possesses no maximum at nonzero r (see Fig. 19) and the
correlation length R (7) is not defined.

We conclude that the incorporation of the growth insta-
bility induced by the term a, V>4 is necessary to describe the
experimentally observed formation of a mesoscopic mound-
like structure of the growth of amorphous thin films.

2-0 T T

C(r,t) |

05 L L I I
0 10 20 30 40 50

FIG. 19. Height-height correlation C(7,¢) at the time =100
resulting from the nonlinear stochastic growth equation (42) in two
dimensions on an interval [0,300]% subject to periodic boundary
conditions, using the parameters a,=a3;=—1 and D=1.

VI. CONCLUSIONS

In this study, we have proposed a nonlinear stochastic
field equation (4) for amorphous thin film growth. Starting
from a phenomenological approach based on nonlinear sto-
chastic partial differential equations, using the symmetry
principles relevant for amorphous film growth, the condition
of no excess velocity, and an expansion in the gradients of

the surface profile h(; ,t) we obtained the functional form of
the equation. Furthermore, we related the constituents of the
growth equation to processes determining the interaction of
the depositing particles with the already condensed surface
atoms. Most importantly, we have demonstrated that the one-
dimensional and deterministic limit of Eq. (4) already con-
tains many major ingredients for the understanding of the
two-dimensional and/or stochastic case. In particular, the
growing surface morphology typically possesses a periodic
moundlike structure that coarsens with increasing time, i.e.,
with increasing time mounds successively disappear and the
moundlike structure widens. In the nonlinear regime the
characteristic length scale of the surface structure follows a
\# behavior whereas its typical height grows linearly with
time .

The condition of no excess velocity implies that the film
growth occurs at constant density. On the other hand, the
possibility of density variations at amorphous film growth
cannot be rejected by physical arguments. Furthermore, a
comparison of experimental results for amorphous ZrAlCu
films indicates the necessity of incorporating density varia-
tions [ 18] at least for that material. Therefore, it is important
as a next step to extend our analysis of the growth equation
for the case of a basically homogeneous density (4) to a
thorough investigation of the long-time behavior of the
growth equation in the presence of significant density varia-
tions (D4).
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APPENDIX A

In this chapter, we discuss the role of the deposition noise
by means of statistical considerations. We also present an
estimation of the noise strength D in microscopic terms.

If n undistinguishable particles arrive on the surface
within a time and space interval of the size (Ax)?At¢, the
number of distributions of the n particles within that time,
and space interval scales such as [(Ax)2A¢]"/n!. This im-
plies that, if N particles arrive on the total surface area L’
within the time interval [0,7], the probability that n of the
particles arrive on a surface area (Ax)? within a time interval
of the length A¢, is given by

P(n)=

N! (Ax)2Az\"
n!(N—n)! L2T

(Ax)2Ar\ V7"
LT '
(A1)
The total number of deposited particles is given by N
=®(L>T where ®, is the number of deposited particles per
surface area and time. Therefore, the probability P(n) reads
N! ®o(Ax)>Ar\" | ®o(Ax)2Ar\ NV
n!(N—n)! N N '

P(n)=
(A2)

Because of ®,(Ax)*At<® L>T=N, one obtains n<N,
yielding

P(n)= nl—![d)o(Ax)zAt]”exp[—@0(Ax)2At]. (A3)

Equation (A3) constitutes the Poisson distribution. It has the
mean (n)=®,(Ax)*Ar and the variance ((n—(n))*)
=d,(Ax)?At. The spatially averaged height increase AH
that is caused on a surface area (Ax)? by the deposition of n
particles of the volume () during a time interval Az reads
AH=nQ/(Ax)?>. It possesses the mean (AH)
=(n)Q/(Ax)*=® QAt=FAt and, therefore, the variance

(AH—(AH))2)=((n—(n))*)Q%/(Ax)*
= 02At/(Ax)>=FQAt/(Ax)%.
(Ad)
On the other hand, the height increase produced by deposi-
tion reads
1

AH=FAt+
(Ax)?

t+At .
f f n(x,t)d*xdt  (A5)
t (Ax)?

yielding (AH)=FAt and finally
((AH—(AH)Y)*)=2DAt/(Ax)>. (A6)

By a comparison of Egs. (A4) and (A6) one obtains the
relation

2D=FQ (A7)
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for the noise strength where F' is the mean surface growth
and () is the particle volume.

APPENDIX B

Here, we present a derivation of the nonlinear term
¢13V2(Vah)2 in Eq. (8) that is a modification of the argument
in Ref. [11]. It allows for an estimation of the size of the
coefficient a5 in microscopic terms and also the determina-
tion of its sign. The flux of incoming particles per surface
area and time unit generally depends on the slope of the
surface

@(j):¢0/\/1+(€h)2~¢0<1—%(%)2). (B1)

A particle that arrives at the location )7 diffuses along the
surface until it relaxes at the location x with probability

d*x P(|]x—y|). Here, x and y are coordinates in the local
system of the surface. The mean square of the diffusion

length is defined by /2= [d?x(x—y)*P(|x —y|). The number
of particles that relax at x per surface area and time unit is
therefore given by

) - i L 12 i 4
f &’y ©(y)P(|x=y[)=®(x)+ PV [+ O(1).
(B2)

The product of this quantity with Q\/1+(V/)? determines
the growth velocity in growth direction where Q) =F/®d, is
the particle volume. Therefore, the growth velocity reads

1 -
F— §F12V2(Vh)2+ O(1%), (B3)

in the case of small gradients and small diffusion length /. As
a consequence, the spatial deviation of the growth velocity
from the mean growth velocity F being the relevant term
entering in the gradient expansion of Eq. (8) is basically
determined by the second term in Eq. (B3),

1 2
ay=—gFl (B4)

with a3 being negative.

An alternative derivation of the coefficient a5 is explained
as follows. Because of a geometrical reason [11] the concen-
tration of diffusing particles on the surface is given by n
=ny/N1+(Vh)? with ng=®,7=D,/*/4D' . Here, 7 is the
mean time of particle diffusion before relaxation, and D' is
the diffusion constant of the particles on the surface. Unlike
this, the adatom density on crystalline layers is slope depen-
dent because of the capture of particles at steps. A useful
interpolation formula in that connection is n=n,/[1
+ lz(ﬁh)z/ ai] where a, is the thickness of one atomic layer
[19]. The inhomogeneous particle concentration leads to a
diffusion current j =—D'Vn and therefore to a contribution
QD' V?n to the deposition equation. This contribution to the
deposition equation reads
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FI? 1 FI? R
—V2 %—?VZ(V/’!)Z (BS)

4 V1 (Va)?
at amorphous film growth and

F12V2 1 F14V2(V»h)2 (86)
4 1+ A(Vh)Ha:  4d®

at the growth of crystalline layers [19] and shows most
clearly the difference between amorphous and crystalline
growth processes.

APPENDIX C

To integrate numerically the growth equation (4), a
forward-backward difference method on a quadratic lattice
combined with a Euler algorithm in time has been used [20].
In discrete form, Eq. (4) can be rewritten as

n+1 n n n n n n n
hi; =hi; —)z[wi+lzj+wi71,j+wi,j+l+Wi,j71_4wi,j]

/24DAt,,
+ T (C1)

Wt]_alhz/ (A )Z[hl+1] hn ,j+hlr'l,j+l+h:l/ 1_4h:'1,j]
i h? ')2
3(A )2[( +1j N
+(hl+1/ h:?,j)(h:j i— 1J)+(hn _hl 1/)2
+(hzr'l7/'+1_hzr'l,_/)2+(hzr'l,_j+l )(hn —hi’, 1)
+(h =), (C2)

where 4} ; denotes /(x;,y;,t,) and every 7 ; is an indepen-
dent random number taken from a uniform distribution be-
tween —1/2 and 1/2. The prefactor 24DAt¢, /(Ax)2 guar-
antees that the noise 24DAt, /(Ax)zr,] has the same
variance as the spatial average of the Gaussian noise 7 on
the quadratic area (Ax)? around (x;,y ;) integrated over the
time interval [¢,,¢,+ At,]:

V24DAt, [(Ax)*r],

1 t,+At, x;+Ax/2 yj+Ax/2
= 2J dtJ de dyn(x,y,t).
(Ax) ty x;—Ax/2 y,*Ax/Z

(C3)

Equation (C3) means only that its two sides have the same
mean and variance. During the simulation the time increment
At,=t,. —t, has been dynamically adjusted.

APPENDIX D

In Sec. III we derived the simplest nonlinear growth equa-
tion using the symmetries relevant for amorphous film
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growth, the condition of no excess velocity and a low-order
expansion in the gradients of the height profile h(;,t): a,h
=a,Vih+a,V*h+ a3V2(€@)2 +a,M+mn, vyielding J,H
=a,ViH+a,V*H+a;V*(VH)?+a,M+ F+ 5. If the film
grows at contant density p,, the number of atoms of the
amorphous film per substrate area above a given substrate
position reads ¢ = pH, yielding

d.c=pola,VEH+a,V*H+a;VA(VH) +a,M+F+ 7).
(D1)

If significant density variations occur during the growth pro-
cess, the condition of no excess velocity is no more justified
even if all deposited particles contribute to the film growth,
i.e., if desorption is absent. If the density of the amorphously
grown material depends on the surface slope, p=p(€H),
0,c=p(€H) d,H holds instead of ¢=pyH. Here p(ﬁH) de-
notes the density at the surface. On the other hand, Eq. (D1)
still holds since the absence of particle desorption implies
that the rate of change of ¢ is given by a continuity equation
&tczpo[—ﬁ -f+ F+ 7]. Division of Eq. (D1) by p(ﬁH)
leads to

0 H= -0 [0, V2H+ a,VH+ a3 VA(VH)?
p(VH)
+a,M+F+ 7). (D2)

Next we expand pg/ p(ﬁm in terms of the gradients VH:
po/p(VH)=1+(as/F)(VH)*+ O[(VH)*]. Then, the ex-
pansion of the deterministic part of the RHS of Eq. (D2) up
to the order O(V* H?) and neglecting all corrections to the
deposition noise yields

0,H=a,V?H+a,V*H+a;V}(VH)*+a,M

+as(VH)*+F+ 7. (D3)

Finally, by the transformation % ()? ,1)=H| (); ,t)— Ft, one ob-
tains

dh=a,V2h+a,V*h+a;VA(Vh)2+aM+as(Vh) 2+ 5
(D4)

as the relevant continuum model for amorphous film growth
in the presence of local density variations depending on the
surface slope. The fifth term on the RHS of Eq. (D4) is of
Kardar-Parisi-Zhang (KPZ) form [12] and leads to a finite
excess velocity. Note that as; must be positive, because at
oblique particle incidence exposed atoms cast a shadow upon
unoccupied places on the surface and thereby cause an addi-
tional volume increase if the surface diffusion is weak. A
comparison with experimental results on amorphous
Zr45Al; sCuyq s-film growth [ 18] ascertains that Eq. (D4) con-
stitutes a valid model for amorphous thin film growth.
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