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Abstract. By use of external periodic driving sources, we demonstrate the
possibility of controlling the coherent as well as the decoherent dynamics of a
two-level atom placed in a lossy cavity. The control of the coherent dynamics is
elucidated for the phenomenon of coherent destruction of tunnelling (CDT), i.e.
the coherent dynamics of a driven two-level atom in a quantum superposition
state can be brought practically to a complete standstill. We study this
phenomenon for different initial preparations of the two-level atom. We then
proceed to investigate the decoherence originating from the interaction of the
two-level atom with a lossy cavity mode. The loss mechanism is described in
terms of a microscopic model that couples the cavity mode to a bath of
harmonic field modes. A suitably tuned external cw-laser field applied to the
two-level atom slows down considerably the decoherence of the atom. We
demonstrate the suppression of decoherence for two opposite initial prepara-
tions of the atomic state: a quantum superposition state as well as the ground
state. These findings can be used to decrease the influence of decoherence in
qubit manipulation processes.

1. Introduction
T h e  idea of controlling the coherent dynamics of a quantum system by an

external time-dependent force has found wide spread experimental and theoretical
interest in many areas of physics (for reviews see [l-31). It is, for example, a
commonly used tool to manipulate trapped atoms in quantum optics [4, 51 as well
as to control chemical reactions by a strong laser field [l-31. I n  the context of
quantum optics, it has been demonstrated experimentally [6] that a frequency-
modulated excitation of a two-level atom by use of a microwave field driving
transitions between two Rydberg Stark states of potassium significantly modifies
the time evolution of the system. In  the context of tunnelling systems it has also
been demonstrated that it is in principle possible to  completely suppress the
coherent tunnelling of an initially localized wave packet in a double-well potential
by an external, suitably designed time-periodic continuous-wave (cw) perturbation
(coherent destruction of tunnelling) [7].

t On leave of absence from Bogolyubov Institute for Theoretical Physics, Kiev,
Ukraine.
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However, real quantum systems are always in contact with their environment.
The coherent dynamics is then usually destroyed due to the influence of the large
number of environmental degrees of freedom. Not only the phase of the quantum
system is disturbed (decoherence) [8] but also energy exchange (dissipation) [9, 101
takes place between the system under consideration and the environment. An
example of such a system-bath interaction is the ensemble of electromagnetic field
modes in a cavity, each of which is described as a quantum mechanical harmonic
oscillator [4]. Each mode interacts with an atom trapped in the cavity. On the other
side, the cavity modes themselves are also not isolated from the macroscopic
environment; as such they are more realistically described as damped quantum
harmonic oscillators. A topic of fundamental interest is the decay of quantum
superpositions of states. In [ l l ]  it is shown how quantum optical non-classical
states are highly sensitive to dissipation stemming from a zero-temperature heat
bath. Experimental works studying decoherence systematically are rare. In [12] the
decoherence of mesoscopic superpositions of field states in the cavity has been
investigated. In a recent work, Wineland and collaborators [ 131 demonstrate that
the decoherence rate scales with the square of a quantity which describes the
separation between two initial states. Moreover, Knight and co-workers [ 141
proposed an experimental scheme to probe the decoherence of a macroscopic
object.

In this spirit, the question arises to what extent it is possible to control the
dynamics of a quantum system in the presence of decoherence and, moreover,
whether the effect of decoherence can be minimized by an external time-dependent
force, e.g. by a laser field [l, 7, 15-19]. T o  achieve this goal, various approaches
have been undertaken in recent years. (i) I t  has been shown that the effect of
coherent destruction of tunnelling (see above) can be used to slow down the
relaxation of a quantum system to its asymptotic equilibrium [16]. (ii) Moreover,
a suitable tailored sequence of radio-frequency pulses (‘quantum bang-bang’ [ 171
or ‘parity kicks’ [18]) that repeatedly flip the state of a two-level atom may be used
to suppress decoherence. (iii) The cavity-induced spontaneous emission of a two-
level atom can be manipulated by a strong rf field which couples to the cavity mode
[20]. (iv) The manipulation of the system-bath interaction by a fast frequency
modulation also results in slowing down decoherence and relaxation [19].

The objective of this work is to study the influence of a time-periodic driving
field on the dynamics of a two-level atom. In the first part of this work (section 2),
we deal with the objective to ‘freeze’ coherent dynamics, i.e. we shall employ an
effect known as coherent destruction of tunnelling. Most importantly, we inves-
tigate this freezing phenomenon from the viewpoint of its dependence on different
initial preparations.

In the second part of this work (section 3), we do not elaborate further on the
effect of coherent destruction tunnelling, but instead investigate the control of
decoherence of a two-level atom placed in a lossy cavity. Our model consists of a
two-state system which is coupled to a time-dependent periodic field. The driven
two-state system interacts furthermore with one mode of the cavity having the
frequency a. This mode is itself damped by coupling to a bath of harmonic
oscillators (Zossy cavity). It is known [21] that a Hamiltonian consisting of (1)  a
system part, (2) a harmonic oscillator with frequency 62 that is being coupled to the
system, and (3) a bath of harmonic oscillators which are coupled to this very single
harmonic oscillator can be mapped onto a Hamiltonian composed of the system
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part coupled to a harmonic bath with an effective spectral density. This effective
spectral density possesses a Lorentzian-shaped peak at SZ. The  completely isolated
atom (no driving, no cavity) evolves in time in a coherent way according to the
Schrodinger equation. It is this dynamics which we want to preserve and protect as
far as possible from the decoherent influence of the environment. Our major
finding is that a cw-control field can indeed be used to (i) reduce decoherence and
(ii) to restore to some extent the unperturbed, non-dissipative time evolution.

2. The driven two-level atom
2.1. Floquet formalism

T o  start we consider a Hamiltonian describing a two-level atom with
the ground state 11) and an excited state 12). The energy levels are separated by
the energy Ado. The atom with the transition dipole moment p is driven within the
long wavelength approximation by an external, time-dependent laser field of the
form &(t )  = &o cos ( w ~ t )  with frequency W L  and amplitude &o, yielding the driven
quantum system

h
2

H ( t )  = --[floc?z+s(t)c?x].

Here, the matrices c?i, i = x , y ,  z denote the Pauli spin matrices. The  part involving
s ( t )  = s cos (wLt) with s = 2p&o/h presents the time-dependent driving which
couples to the transition dipole moment p of the atom. Note that within this
scaling the amplitude s possesses the dimension of a frequency. The  driven time
evolution of the populations of the energy levels exhibits an oscillatory behaviour.
For an initial preparation of the atom in the ground state and for a resonant
driving, i.e. W L  =do, and with s not large, we can invoke the rotating wave
approximation. The population of each state then oscillates between 0 and 1 with
the Rabi frequency QR = s/2. Because the Hamiltonian (1) is periodic in time with
the period I = 27r/w~, i.e. H ( t  + 7) = H ( t ) ,  we next apply the Floquet formalism
[ l ]  to the general case away from resonance. The time-dependent Schrodinger
equation may be written as

[ H ( t )  - iha/at]I+(t))  = 0.

I Y , ( t ) )  = exp (-i&al/fi)I@a(4),

(2)

( 3 )

According to the Floquet theorem, there exist solutions to equation (2) of the form

with cy = 1,2. The periodic function I@,( t ) )  are termed the Floquet modes and
these obey

I@a(t + 7)) = I@a( tN .  (4)
Here, E ,  is the so-called Floquet characteristic exponent or the quasi-energy, which
is real-valued and unique up to multiples of h w ~ .  Upon substituting equation (3)
into the Schrodinger equation ( 2 )  one obtains the eigenvalue equation for the
quasi-energy E,

W t ) l @ a ( t ) )  = &al@LY(t)), (5)
with the Hermitian operator

X ( t )  = H ( t )  - ilia/&.
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We stress that the Floquet modes

I@af(t))  = I@a(t)) ~ X P  ( i m L t )  I@cm(t)), (7)
with n being an integer number n = 0, f l ,  f2,. . . yield equivalent solutions to
equation (3) but with the shifted quasi-energy

E, + &,I = E, + nhwL = E,,,. (8)
Therefore, the index a corresponds to a whole class of solutions indexed by
a’ = (a, n) .  The eigenvalues {E, }  can thus be mapped into a first Brillouin zone
obeying -hw~/2 5 E < h w ~ / 2 .  It is clear that for our choice of the external driving
force, i.e. s(t)  = s cos ( q , t )  the quasi-energies are functions of the driving ampli-
tude s and the driving frequency WL. For adiabatically vanishing external driving
they merge into the eigenvalues of the time-independent part of the Hamiltonian
(l), i.e.

E , n ( S , u L )  2 ~ f i d 0 / 2  + nfiwL, (9)
where the negative (positive) sign corresponds to a = 1 (a = 2). The Floquet
modes, correspondingly, turn into the eigenfunctions la) multiplied by an addi-
tional phase factor, i.e.

~@,,,(t)) la) exp (iwLnt). (10)
For a finite driving strength s # 0, the determination of the quasi-energies E,

requires the use of numerical methods. The  interested reader is referred in this
context to the literature [22, 231. However, we here state without proof that in the
high-frequency regime do << max [WL, ( S W L ) ” ~ ]  the difference between the two
quasi-energies is given by [15]

&2,-l - E1.1 = fidOJO(S/WL), (11)
where JO denotes the zeroth-order Bessel function of the first kind.

2.2. Freezing the coherent dynamics of a driven two-level system
Equation (1 1) implies a most interesting consequence for a driven two-level

system [15]: if one chooses the driving parameter s and WL in such a way that the
argument of the Bessel function is at a zero of the Bessel function, the splitting
between the quasi-energy vanishes. Possible transitions between the Floquet states
are then at most induced by the remaining periodic time-dependent parts of the
corresponding Floquet modes I@,(t)). This effect has been discovered in the
context of tunnelling systems. There, a wave packet, being an equally weighted
superposition of the symmetric and antisymmetric ground state, is initially
localized at one side of a double-well potential. By applying an external suitably
tailored periodic field, the wave packet can be stabilized and can be prevented from
coherently tunnelling back and forth between the two wells, i.e. one finds coherent
destruction of tunnelling (CDT) [l ,  71. We emphasize here that the crossing of two
tunnelling related quasi-energy levels yields a necessary (but not sufficient) cri-
terion for the suppression of coherent tunnelling [15]. Furthermore, we note that
the driven two-level system approximation (1) of the full driven double-well
potential is appropriate [7, 151 since it has been shown that excitations to higher
energy levels are negligible for the case of an initial superposition state (see below).
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The challenge we want to address next is as follows: how does the driven
dynamics of a two-level atom, which is being prepared in some arbitrary initial
state, evolve when the corresponding condition for the parameters obey the C D T
condition? The system dynamics can be described by its density operator j ( t ) ,
which is a 2 x 2 matrix, i.e.

i ( t )  = i / 2  + c Ui(t)&/2,
i=xy,z

where the expectation values q ( t )  := T r  {fi(t)c?i}, i = x , y ,  z are the dynamical
quantities of interest. i denotes the unit matrix and ux(t) and a y ( t )  are related to
the coherences (the off-diagonal elements) of ; ( t )  while a z ( t )  is the population
difference between the two energy eigenstates la). This implies that the state of the
quantum system at time t is fully determined by the knowledge of the three
expectation values ai( t).

T o  determine the state of the driven two-level system at time t ,  we consider the
Heisenberg equation of motion for the density matrix. Using the commutation
relations for the &i, we arrive at the equation of motion for the expectation values
ui(t) in (12), i.e.

b x ( 4  = - d o a y ( t ) ,

bz(t) = s ( t )a , ( t ) .  (13)

= doox(t) - S ( t ) Q Z ( t ) ,

T o  study the dependence of the effect of coherent destruction of tunnelling on the
initial preparation we first choose as the initial state an equally weighted coherent
superposition of the two unperturbed energy eigenstates, i.e.

corresponding to ox( t  = 0) = 1, ay(t = 0) = az(t = 0) = 0. We solve the set of
coupled differential equations (1 3) numerically by a standard fourth order Runge-
Kutta integration algorithm with adaptive step-size control. In  figure 1 ( a ) ,  the
time-dependence of the three expectation values is depicted. The  driving par-
ameters are chosen such that the C D T  condition is fulfilled: in doing so we use
WL = SO& and s = 120.241 . . . do. Surprisingly all three expectation values ai(t)
can be brought simultaneously to an almost perfect standstill!

Next, we choose the ground state as the initial state, i.e. we use IY( t  = 0)) = 11).
This corresponds to a x ( t  = 0) = aY(t = 0) = 0, az ( t  = 0) = 1. The  result is de-
picted in figure 1 (b). Applying to the so prepared two-level system a laser field
obeying the C D T  condition, we find that the y component, a, , ( t ) ,  and the z
component, a z ( t ) ,  exhibit strong oscillations. These oscillations follow from the
numerically evaluated Floquet theory for the driven two-level system, and are not
described by the Rabi oscillations as predicted from a rotating wave approxima-
tion; this latter approximation is strongly violated for our chosen set of driving
parameters. In contrast, cx(t) can be stabilized around the initial value of zero.
This finding is in accordance with the C D T  phenomenon: it reflects the fact that
the corresponding two equally weighted (‘left’ and ‘right’) localized parts of the
ground state wave function of a double-well potential, as represented within a
localized representation, can each be stabilized too.
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(4 uz(t = 0) = 1 (b) u,(t = 0) = I

a = 120.241&

UL = 50.0&
-Oe5 t
-1.0 c I

0 0.5 1.0 0 0.5 1.0
&t &t

Figure 1. (a) Time-dependence of the expectation values uj(t), j = x ,y ,  z, determining
the dynamics of the full density matrix of the two-level atom according to (12) and
(15). The  driving parameters are chosen such that the C D T  condition for coherent
destruction of tunnelling is fulfilled, i.e. the driving amplitude is set to
s = 120.24140 and the driving frequency W L  = 5040. The  two-level system is
prepared in an equally weighted superposition of the two energy eigenstates, i.e.
ur(t = 0) = 1, uy(t = 0) = u,(t = 0) = 0. (b) T h e  same as in (a) but for an initial state
preparation being the ground state of the two-level system, i.e.
ox(t = 0) = .,(t = 0) = 0, C,(t = 0) = 1.

This C D T  effect opens the doorway to manipulate the influence of an
environment on a quantum system. I t  is known [16] that the coherent destruction
of tunnelling survives to some extent in the presence of a coupling to the
environment. Certainly, the system will relax in the presence of an environment;
however, as it is demonstrated in [16], the relaxation process can be slowed down
considerably in the presence of a C D T  field.

In view of using differing initial preparations, the following remark should be
made. From the viewpoint of stabilizing the state of a qubit (characterized by a
quantum mechanical two-level system) in a quantum information processor [24], it
is of foremost interest to stabilize the coherent superposition of two states of the
qubit. Thus, our first choice (14) is of relevance in the context of the possibility for
quantum computing. Moreover, fundamental questions concerning the decoher-
ence of superposition states arise for the physics that occurs when one crosses the
interface between the classical and quantum world, and vice versa [8, 131.

3.

reducing decoherence of a two-level atom placed in a lossy cavity.

Control of decoherence for a two-level atom
In this section we shall study the influence of an applied cw-control field for

3 .1 .  Driven two-level atom in a lossy cavity
T o  start we consider a two-level atom in a dissipative environment, e.g. a lossy

cavity wherein the leakage of photons damps the radiation field. Additionally, the
atom may be manipulated by a time-dependent external field like a laser beam. In
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our model, the driven two-level atom is represented by the Hamiltonian ( 1 ) .  It is
coupled to one mode of the cavity which is described by one harmonic oscillator
with frequency 52, characterized by the annihilation and creation operators B and
Bt which fulfill the usual commutation relations for bosonic field operators. The
coupling constant is denoted by g and has the dimension of a frequency. This
cavity mode is damped by a bilinear coupling to a bath of harmonic oscillators of
frequencies w;. They are similarly described by bosonic annihilation and creation
operators 6; and 6 : .  The coupling constants of the cavity mode to the harmonic
bath are given by K ;  and have the dimension of a frequency. The total system-bath
Hamiltonian is therefore written as

ti
2H ( t )  = -- [ A O C ? ~  + ~ ( t ) & ~ ]

+ tiQ(BtB + i) + tig(I3 + B)bX

The influence of the bath on the two-level atom plus cavity mode is fully
characterized by the spectral density

N
J(w)  = 27rcK? S(W - W i ) .

i= 1

We let the number of bath modes go to infinity ( N  + 00) and choose an ohmic
spectral density for the bath oscillators with an exponential cut-off at some large
frequency w, >> do,  W L ,  52, i.e.

2 r
J(w)  = -w  exp ( -w /wc) .52

Here, we have introduced the damping constant r which is related to the quality
factor of the cavity. Since the cavity mode as well as the bath oscillators are
described by harmonic oscillators, we follow the approach in [21] and map the
Hamiltonian (15 )  onto a Hamiltonian where the central system, i.e. the two-level
atom, is now bilinearly coupled to a bath of mutually non-interacting harmonic
oscillators with an effective spectral density Jeff(w). Upon letting the cut-off
frequency go to infinity, i.e. w, + 00, this effective spectral density emerges as

For small frequencies w,  it increases linearly like in the original ohmic spectral
density J ( w ) .  However, it has a Lorentzian shaped peak at w = 52 with a line width

In the following section, we make extensive use of the bath autocorrelation
function M ( t )  = M ’ ( t )  + i M ” ( t ) ,  which is obtained in terms of the effective
spectral density J,ff(w), i.e.

r < a.

M ( t )  = ‘sp dwJ,ff(w) [coth (k) cos (wt )  - i sin (w t )  .
T O  2 k ~ T 1
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All our further considerations treat the case when the bath is at zero temperature,
i.e. T = 0. In this limit, and for our choice of the effective spectral density (22), we
obtain for the real and imaginary part, respectively, the analytical results

2 1 / 2  exp (-rt) sin [(a2 - r ) t ] .
B 

M N ( t )  = -4g2
( 8 2  - r 2 ) 1 / 2

The quantity of interest is the reduced density matrix for the two-level system
which we deno te jus t  as in the undamped case-by i j ( t ) .  I t  follows by tracing
over the bath degrees of freedom in the full density operator w(t) which
corresponds to the system-plus-bath Hamiltonian (15), i.e. @(t)  = trg l$’(t). Like
in the deterministic case in equation (12), $ ( t )  is fully characterized by the
expectation values ( ~ i ( t ) ,  i = x,y, 2. We shall determine their corresponding
equations of motions next.

3.2. Bloch-Redfield formalism
To deal with quantum dissipative systems, several techniques have been

developed [ l ,  9, 10, 221. A very efficient numerical algorithm for a general
quantum system with a discrete eigenvalue spectrum has been developed by
Makri and Makarov within the real-time path-integral formalism [25]. I t  has
also been applied to spatially continuous tunnelling systems in the presence of
driving [26]. Moreover, the real-time path-integral formalism has been used
extensively to describe a moderate-to-strong (!) two-level system-bath interaction
[ l ,  9, 21, 271. Recently, the former scheme has been generalized to describe multi-
level, driven vibrational and tunnelling dynamics in [28]. At weak system-bath
coupling the Nakajima-Zwanzig projector operator theory [29] provides a power-
ful tool to describe the corresponding reduced density matrix dynamics.

For our quantum optical problem at hand, the suitable method of choice, in the
presence of a physically realistic weak system-bath coupling, is the projection
operator technique: it yields in the Born approximation the generalized master
equation. It can be simplified further without loss of accuracy in leading order in
the (weak) coupling strength g by invoking the Markovian approximation [30]. For
strong harmonic driving, this objective was formally (only) developed a long time
ago by Argyres and Kelley [30]. Following the reasoning in [30] (see in this context
also [31]) we recently derived, for the case of a driven spin-boson problem with an
arbitrary control field, the explicit set of coupled, Bloch-Redfield type equations
[321
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The time-dependent rates r i ( t )  = d t ’ M ‘ ( t  - t’)bi(t ,  t’) ,  together with the
inhomogeneities A Y ( t )  = ReF(t), A , ( t )  = ImF( t ) ,  with F ( t )  = ( 1 / 2 )
$ d t ’ M ” ( t  - t ’ ) [u2( t ,  t’) - v 2 ( t ,  t ’ ) ] ,  determine the dissipative action of the thermal
bath on the two-level atom. The functions M ’  and M‘’ denote the real part and
imaginary part, respectively, of the correlation function M given in equations (20 ) .
The quantities u ( t , t ’ )  = ( l [ U ( t , t ‘ ) l l )  + ( 2 l C ( t , t ’ ) l l )  and v ( t , t ’ )  = ( l [ U ( t , t ’ ) 1 2 ) +
( 2 l U ( t ,  t’)12) are sums of matrix elements of the time evolution operator c ( t ,  t’)  of
the isolated (i.e. g = 0 )  driven two-level system. The functions bi read bl = Reuv’,
b2 = -(1/2) Im (u2 - v 2 ) ,  and b3 = (1/2) Re (u2 - v 2 ) .  Note that this set of equa-
tions is valid in the parameter regime g << 4 0 / 2 .  One can demonstrate that for the
undriven case, i.e. s = 0 ,  the analytic solution of equation (21)  in first order in g
reproduces the analytical path-integral weak-damping results in [ 9 ,  331.

3 .3 .  Controlling the decoherence of a quantum superposition of states
The idea of controlling the decohering influence of the environment on a

quantum system by an external time-dependent field is demonstrated for the case
of the two-level atom which is initially prepared in an equally weighted super-
position of the two energy eigenstates given by u x ( t  = 0) = 1, o y ( t  = 0) =
u,(t = 0 )  = 0. In doing so, we consider four different situations: ( 1 )  first, we
look at the isolated two-level atom dynamics without driving and without coupling
the atom to the lossy cavity mode. This case corresponds to setting s = 0 and g = 0.
Case ( 2 )  is devoted to the driven two-level dynamics. We switch on a coherent
driving cw field but keep the system isolated from the bath, i.e. s # 0 and g = 0. In
case (3) we investigate how the undriven system dynamics relaxes in the presence
of a dissipative coupling to the bath. We therefore set s = 0 and g # 0 ,  r # 0.
Finally, we demonstrate with case (4)  how this decoherent dynamics can be
manipulated with the help of an externally applied time-dependent control field
and set s # 0,  g # 0 and r # 0.

In order to preserve the coherent evolution of the two-level atom and to protect
it as far as possible from the decoherent influence of the environment, we choose
the following control scheme. Guided by the physics of a rotating wave approx-
imation for the driven system that most closely retains the unperturbed dynamics
of an initial superposition state (14)  we choose the following parameters: the
frequency and the amplitude of the driving field are taken to be in resonance with
the level spacing of the two-level system, i.e. WL = do and s = 40, which corre-
sponds to a moderately large driving strength. This choice implies a value of 0.5
for the ratio of the corresponding Rabi frequency and driving strength. This
indicates that the rotating wave approximation should be used with caution. Note
that under the C D T  condition, the field strength would assume an even larger
value of s = 2.404840. Furthermore, we remark that for such strong driving fields,
higher energy levels of the atom could be significantly populated [34] at long times.
However, for short times the off-resonant effects should be less important [15].
Such effects should also depend on the initial preparation. Indeed, this issue is a
topic of current research interest [28 ,  351 and pulse-control schemes have been
proposed [3 51 to avoid transitions to higher states of multi-level qubits.

For the following, the temperature is set to T = 0. For the strength of the
coupling between the two-level atom and the cavity mode we assume g = 0.0540.
This value is consistent with the range of validity of the Bloch-Redfield formalism
in Born approximation (see above). The  dissipative system-bath mechanism is
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specified as follows: the frequency of the cavity mode is chosen to be in resonance
as well, i.e. 52 = do. By doing so, in essence we maximize the influence of the bath.

For the line width of the cavity mode we set r = 0.1 do. This rather large value
mimics (on purpose) an extreme situation. In most realistic optical situations this
line width is generally much smaller. Nevertheless, such smaller values would
intensify our appealing finding of a driving-induced, enhanced recovery of coher-
ence even more. The motivation for our choice originates from numerical and
pedagogical reasons. A considerably smaller (but certainly more realistic) value for
r would render the result for the driven dissipative dynamics indistinguishable
from the result for the undriven coherent dynamics on our considered intermedi-
ate time scale (see figures 2 and 3 below). The  underlying principal mechanism is
not affected by the specific choice for r; the recovery of coherence with a smaller
value for r then occurs over a much longer time scale. Moreover, we remark here
that our model possesses a wider range of application, e.g. in solid-state two-level
systems where dissipative effects are generally stronger. Typical such systems are
flux-coupled [36, 371 and charge-coupled [38] Josephson qubits.

Our novel results are depicted in the figures 2 (a)-(c) and the figures 3 (a)-(c).
Figure 2(a) depicts the time-evolution of the x component, ux(t) .  The isolated
two-level dynamics (dashed line) shows coherent oscillations between -1 and 1 at
the frequency of the level spacing do. On top of this line one finds (barely visible
dotted line) the results for the driven two-level dynamics. This good agreement
follows also from the corresponding rotating wave approximation, yielding for this
preparation just the undriven result. The decoherence in the presence of a finite
bath coupling (g = 0.05d0, r = O.ldo), see the dashed-dotted line, yields an
oscillatory decay towards equilibrium ux(t + co) = 0, whose envelope is made
visible by the connecting solid line. Next we switch on the cw-laser control field.
As a main result we find that the decoherence becomes considerably slowed
down-following closely the isolated driven dynamics. This enhanced recovery
of coherence for the dissipative driven dynamics is made visible to the eye by the
connecting weakly decaying and oscillating envelope. This surprising result is
rooted in the following facts: the dissipative, non-driven dynamics experiences a
most effective dissipation. This is due to the resonant coupling at 62 = do of the
two-level atom to bath with the effective spectral density in (18) which peaks at
w = 52. In contrast, the strong driving now dresses this level spacing, and moves it
out of resonance with the lossy cavity mode. This results in a considerable slow
down of driven decoherence for ux(t) .

The decoherent dynamics of the y component, u,,(t), is qualitatively similar to
ux(t). It is depicted in figure 2 (b) for the same choice of parameters.

The population difference az(t)  is shown in figure 2(c). For the isolated two-
level dynamics, uz(t) remains constant at zero (dashed line) since the system is in
an equally weighted superposition of two eigenstates, yielding an obvious zero
population difference. In the presence of the cw-laser control field, the driven
dynamics (dotted line) yields a finite oscillation of population difference. This
deviation from zero also reflects the deviation from the corresponding rotating
wave solution (being identically zero for this preparation). Nevertheless, this
driven dynamics still exhibits an approximate periodicity that closely coincides
with the Rabi value 6 2 ~  = A0/2.

The undriven, dissipative relaxation to equilibrium (dashed-dotted line) pro-
ceeds with temperature T = 0 almost completely towards the ground state with
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Figure 2. Time-dependence of the expectation values (a) ux(t), (b) ay(t) and ( c )  uz(t)
for the two-level atom initially prepared in an equally weighted superposition of the
energy eigenstates, i.e. ux(t = 0) = 1, uy(t = 0 )  = oz(t = 0) = 0. Shown are four
cases: (1) no driving (s = 0), zero system-cavity mode coupling (g = 0) (dashed line),
(2) with resonant driving (s = do, W L  = do), but zero coupling (g = 0) (dotted line),
(3) zero driving (s = 0), but with finite coupling (g = 0.0540, r = 0.ldo) (dashed-
dotted line) and (4) with resonant driving (s = do, W L  = do) and with coupling
(g = O.OSdo, r = 0.ldo) (full line). The temperature is chosen to be T = 0 and the
cavity-mode frequency is set to Q = do. As a guide for the eye, we mark the
envelope of the decaying oscillations by solid lines in (a) and (b).

corresponding maximal population difference oZ(t 4 cm) M 1. Owing to the  coup-
ling to the cavity mode performing zero point oscillations, the value of 1 is not fully
reached. T h e  driven, dissipative relaxation (solid line) to the time periodic
asymptotic state exhibits oscillations around zero-following initially (up  to
dot M 50) closely the driven coherent dynamics. I n  view of Floquet theory for
the long-time limit of the time-periodic generalized Bloch-Redfield equations in
(21), this asymptotic periodicity matches in the long-time limit the frequency of
driving, i.e. WL = do (not depicted).
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Figure 3. Time-dependence of the expectation values (a) ux(t), (b) uY(t) and (c )  oa(t)

for the two-level atom initially prepared in the ground-state, i.e. ux(t = 0) =
uy(t = 0 )  = 0,  a,(t = 0) = 1. Similar to figure 2 four cases are depicted: (1) no
driving (s = 0), isolated two-level system (g = 0) (dashed line with filled squares m),
(2) with resonant driving (s = do, W L  = do), no dissipation (g = 0) (dotted line), (3)
no driving (s = 0), with dissipation (g = 0.05d0, r = 0.ldo) (dashed-dotted line with
asterisks *) and (4) with resonant driving (s = do, WL = do) and with dissipation
(g = 0.0540, r = 0.ldo) (full line). The temperature is chosen to be T = 0 and and
the cavity-mode frequency is set to a = do.

3.4. Controlling the decoherence from the atom ground state
T o  answer the question whether the proposed control scheme works as well in

the opposite limit of an initial state which is an eigenstate we next choose the
ground state as the initial preparation, i.e. we use a x ( t  = 0) = ay(t = 0) = 0,
a z ( t  = 0) = 1. T h e  remaining parameters are taken to be the same as in the
previous subsection 3.3.

Figure 3 (a)  shows the decoherent dynamics for a x ( t ) .  Since the chosen initial
state is an eigenstate of the isolated two-level system no dynamics is exhibited
(note the filled squares on the line at zero in the figure). This  situation remains
unaltered in the presence of a dissipative coupling of the quantum system, as
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indicated by the asterisks on the line at zero. At zero temperature the system at
weak dissipation remains essentially in its ground state. Upon switching on the
driving with no coupling to the lossy cavity present, the driven two-level dynamics
exhibits a Rabi-like quasiperiodic, oscillatory behaviour (dotted line). This non-
periodic behaviour is rooted in the deviation of the full Floquet dynamics from a
rotating wave prediction. With our strong driving strength we a priori cannot
expect good agreement with the corresponding rotating wave approximation. The
coupling to the lossy cavity mode damps this quasiperiodic behaviour, following
for short times the driven isolated dynamics (see solid line), before settling down to
asymptotic, long-time oscillations at the frequency of driving WL = do with a finite,
but strongly reduced amplitude (not depicted).

The decoherent dynamics of the y component, u,,(t), is again qualitatively
similar to that of u x ( t ) .  It is presented in figure 3 (b )  for the same set of coupling
and driving parameters.

Finally, the time evolution of the population difference u Z ( t )  is depicted in
figure 3 (c). Clearly, the isolated dynamics from a prepared initial ground state
remains constant at u z ( t )  = 1 (filled squares). The  driven dynamics of the two-
level system exhibits strong non-detuned Rabi oscillations at frequency SZR = d0/2
between -1 and 1 (dotted line). In this case the rotatating wave prediction (not
depicted) actually yields surprisingly good qualitative agreement with the exact
dynamics.

The case of no driving (s = 0) but with a coupling to the bath (g = 0.0540,
r = 0.ldo) shows again a trivial dynamics. It relaxes in this case of weak
dissipation with a small relaxation rate towards a slightly reduced constant value
close to 1 (indicated by the asterisks).

The case with resonant driving (s = do, W L  = do) switched on and simul-
taneous coupling to the lossy cavity mode (with g = 0.05d0, r = O.ldo), exhibits
damped Rabi oscillations (solid line); it eventually settles down in the asymptotic
long-time limit to periodic asymptotic oscillations at twice the Rabi frequency and
amplitude smaller than 1 (not depicted).

4. Conclusions
In this work we have investigated the possibility to control the time evolution

of a two-level atom by time-dependent external, periodic control forces. We have
demonstrated that the coherent dynamics of the system can be brought to an
almost perfect standstill by choosing the ratio of driving amplitude s and driving
frequency WL at a zero of the Bessel function JO(S /WL)  (coherent destruction of
tunnelling). For an initially prepared quantum superposition of states all three
components u;, i = x, y ,  z,  and therefore the entire density matrix j can be locked
simultaneously. For the initially prepared ground-state, the x component, ux, can
be stabilized; the other two components, a,, and us, however, depict strong (non-
Rabi) oscillations.

In the presence of decoherence in a lossy cavity we illustrate that the atomic
states can be dressed by a time-dependent force which moves the atom and the
cavity mode out of resonance. As a consequence, decoherence becomes strongly
suppressed. We have illustrated this effect for two different initial preparations of
the atom: (i) for a quantum superposition of states we show that the decoherence
can be suppressed efficiently. (ii) The second preparation uses the ground-state
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wave function of the isolated system. In that case the decoherence may also be
slowed down, but the decohering dynamics never approaches the initial state
again.

These findings put the idea across that the method can be used to bring back
the state of the atom close to its initial preparation. For case (i) of a superposition
state as initial state the decoherent dynamics of the x and y components, ux and u,,,
are similar to the undriven dynamics of the isolated two-level system (qubit). Even
the z component, a,, of the driven dissipative dynamics matches at distinct
instants of time the undriven non-dissipative dynamics. For the second case (ii)
of the ground state as initial state this idea, however, seems to fail for the z
component, a,.

T o  summarize, our proposed scheme for controlling the coherent and deco-
herent dynamics of a two-level atom works very well for initially prepared
quantum superpositions of states. This presents good news for the manipulations
of quantum bits (two-level systems) being in a superposition of states. It is this
very feature which makes quantum computation interesting and superior to
classical computation.
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