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Iterative algorithm versus analytic solutions of the parametrically driven dissipative
quantum harmonic oscillator
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We consider the Brownian motion of a quantum-mechanical particle in a one-dimensional parabolic poten-
tial with periodically modulated curvature under the influence of a thermal heat bath. Analytic expressions for
the time-dependent position and momentum variances are compared with results of an iterative algorithm, the
so-called quasiadiabatic propagator path-integral algorithm. We obtain good agreement over an extended range
of parameters for this spatially continuous quantum system. These findings indicate the reliability of the
algorithm also in cases for which analytic results may not be available a priori.

PACS number~s!: 02.70.2c, 05.30.2d, 05.40.2a
I. INTRODUCTION

Exactly solvable systems have a special status among
physical models. Although oversimplified in many cases,
they may serve as a starting point for testing the reliability of
methods which can then be transferred to more realistic, but
only numerically solvable models. An important class of
such models are quantum systems coupled to a dissipative
environment and being driven by a time-dependent external
field @1#. A wide variety of physical phenomena have been
described by these kinds of models, e.g., electron @2# and
proton @3# transfer, tunneling processes of a macroscopic
spin @4#, hydrogen tunneling in condensed phases @5#, single
defect tunneling in mesoscopic quantum wires @6#, or tunnel-
ing of the magnetic flux in a superconducting quantum inter-
ference device @7#, to name but a few. Usually such dissipa-
tive quantum systems consist of a model Hamiltonian
bilinearly coupled to a bath of harmonic oscillators. Addi-
tional external time-dependent driving fields render the
mathematical solution even more difficult or even impos-
sible.
One of the few analytically tractable time-dependent dis-

sipative quantum systems is the parametrically driven har-
monic oscillator whose analytic solution was found by Zerbe
and Hänggi in Ref. @8#. A physical realization of this model
is the Paul trap @9#, which provides an oscillating quadrupole
potential for the enclosed ion. Furthermore, the parametri-
cally driven dissipative harmonic oscillator may serve as a
benchmark for approximation schemes which were devel-
oped for more general dissipative systems @10#. The interest-
ing feature is that the parametric driving induces a nontrivial
quasienergy spectrum @10#, in contrast to additive driving
where the quasienergy spectrum coincides with the spectrum
of the undriven system apart from a constant shift. This is
further corroborated by the fact that the solution of the para-
metrically driven linear oscillator can be utilized to obtain
solutions of certain nonlinear dynamical systems @11#.
Powerful approximative numerical procedures for simu-

lating dissipative and possibly time-dependent quantum sys-
tems are the Quantum Monte Carlo method @12# and the
quasiadiabatic propagator path-integral algorithm ~QUAPI!
developed by Makri and Makarov @13#. The former method
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works very well for problems involving path integrals in
imaginary time, however, the calculation of real time path
integrals is afflicted by the so-called sign-problem due to the
rapidly oscillating integrand. The QUAPI algorithm has been
applied to low dimensional dissipative systems such as the
driven spin-1/2-particle coupled to a harmonic oscillator bath
~driven spin-boson-system! @13# and to the driven double-
well potential in order to study quantum hysteresis and quan-
tum stochastic resonance @14,15#. Moreover, the QUAPI al-
gorithm has recently been used as a basis for a very efficient
memory equation algorithm for spin-boson-models @16#.
The purpose of this paper is to apply the QUAPI algo-

rithm to the parametrically driven harmonic oscillator and to
compare the results with the analytic solution from Ref. @8#.
While harmonic-oscillator systems are known to exhibit
some untypical features this is not the case with respect to
the QUAPI algorithm. Our results thus show that not only
intrinsically discrete models like the spin-boson-system but
also spatially continuous systems can be accurately de-
scribed by few energy eigenstates if the temperature is re-
stricted to a moderate regime. Most importantly, this is the
first work in which the numerical approximative QUAPI re-
sults are compared against analytic solutions of a spatially
continuous driven dissipative quantum system.
The paper is organized as follows: In Sec. II, we introduce

our model of the parametrically driven dissipative quantum
harmonic oscillator and briefly review the analytic solution
given in Ref. @8#. Section III is devoted to a short review of
the QUAPI method. The comparative main results are pre-
sented in Sec. IV, before we give the conclusions in Sec. V.

II. THE MODEL AND ITS ANALYTIC SOLUTION

In this section we briefly review the analytic solution of
the parametrically driven dissipative harmonic oscillator
from @8#. A quantum particle with mass M, position operator
x and momentum operator p moving in a one-dimensional
harmonic potential with periodically modulated curvature is
described by the Hamiltonian

HS~ t !5
p2

2M 1
M
2 @v0

21e cosVt#x2. ~1!

Following the common approach @1# to model the influence
5808 ©2000 The American Physical Society
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of the environment by an ensemble of harmonic oscillators,
the bath Hamiltonian HB ~including the interaction with the
system! is given by

HB5(
j
Hj~x!5(

j

1
2 F pj2m j

1m jv j
2S qj2 c j

m jv j
2 xD 2G ,

~2!

and the whole system is described by the Hamiltonian H(t)
5HS(t)1HB . In the case of a thermal equilibrium bath, it
turns out that its influence on the system is fully character-
ized by the spectral density

J~v !5
p

2 (
j

c j
2

m jv j
d~v2v j!. ~3!

With the number of harmonic oscillators going to infinity,
we arrive at a continuous spectral density. In the following,
we choose for the sake of definiteness a truncated Ohmic
spectral density, i.e.,

J~v !5Mgv f c~v ,vc!. ~4!

Here, g is the coupling strength to the heat bath and
f c(v ,vc) denotes a cutoff function which avoids unphysical
divergences due to high-frequency bath modes. For our cal-
culations, we consider two examples for the cutoff function:
~i! a smooth exponential cutoff

f c~v ,vc!5exp~2v/vc! ~5!

and ~ii! a step function

f c~v ,vc!5Q~vc2v ! ~6!

with cutoff frequency vc@v0 ,V ~see discussion given be-
low!.
We choose a factorizing initial condition of Feynman-

Vernon form @17# which means that at time t5t0, the full
density operator W(t0) is given as a product of the initial
system density operator rS(t0) and the canonical bath den-
sity operator at temperature T51/kBb , i.e.,

W~ t0!5rS~ t0!ZB
21 exp~2bHB

0 !, ~7!

where ZB
215Tr exp(2bHB

0 ) and

HB
05(

j

1
2 F pj2m j

1m jv j
2qj

2G . ~8!

By way of integrating out the bath degrees of freedom in Eq.
~2! one obtains the following one-dimensional Heisenberg
equation for the position operator x, i.e.,

ẍ~ t !1E
t0

t
ĝ~ t2t8!ẋ~ t8!dt81~v0

21e cosVt !x~ t !

5
1
M G~ t !2ĝ~ t2t0!x~ t0!, ~9!
with the friction kernel given by

ĝ~ t !5
2

MpE0
`

dv
J~v !

v
cos~vt !. ~10!

G(t) is a time-dependent fluctuating ~operator! force

G~ t !5(
j

c jS pj~ t0!m jv j
sin„v j~ t2t0!…1qj~ t0!cos„v j~ t2t0!…D ,

~11!

which contains the initial conditions of the bath and of the
particle’s position at time t0. The last term on the right-hand
side @proportional to x(t0)# in Eq. ~9! is the so-called initial
slip, caused by the specific choice ~7! of the initial condi-
tions.
Exploiting the thermal distribution of the bath one recov-

ers the usual connection @via J(v)# between the random and
the frictional forces of the bath in Eq. ~11! in the form of the
fluctuation-dissipation-relation, reading, t>t18

^G~ t !G~ t8!&b5Tr@ZB
21 exp~2bHB

0 !G~ t !G~ t8!#

5\L~ t2t8!, ~12!

L~ t !5
1
pE0

`

dv J~v !FcothS \vb

2 D cos~vt !2i sin~vt !G ,
~13!

where the subscript b indicates thermal averaging performed
with the canonical density operator for HB

0 defined in Eq. ~8!.
The response function L(t) will play an important role in the
numerical QUAPI algorithm.
It turns out @8# that for the description of the parametric

dissipative quantum oscillator the solution of the classical
deterministic limit (\→0,T→0) with vc→` plays a promi-
nent role. Thus, in Eq. ~9! the position operator x is replaced
by the classical coordinate x and * t0

t ĝ(t2t8) ẋ(t8)dt8 goes
over into g ẋ(t). Moreover, on the right-hand side of Eq. ~9!,
the fluctuations G(t) are zero and the initial slip is also omit-
ted, which can be achieved by either a somewhat different
choice of the initial conditions than in Eq. ~7! or by replacing
the coupling coefficients c j in Eq. ~2! by c jQ(t2t0

1) so that
HB and HB

0 from Eq. ~8! coincide at t5t0. For convenience
we furthermore introduce scaled quantities

t̃5
V

2 t , x̃~ t̃ !5AMV/2\xS t5 2 t̃
V

D , ṽ05
2
V

v0 ,

~14!

ẽ5
2

V2 e , g̃5
2
V

g , T̃5
2kB

\V
T , ṽc5

2
V

vc .

In the remainder of this paper, we exclusively use dimension-
less quantities but omit all the tildes for the sake of better
readability. In order to recover the dimensionful quantities,
one has to reintroduce tildes wherever it makes sense and
then exploit Eq. ~14!. By substituting x(t)5y(t)exp@2g(t
2t0)/2# we arrive at an undamped oscillator equation for y
which is the well-known Mathieu equation
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ÿ~ t !1S v0
22

g2

4 12e cos 2t D y~ t !50. ~15!

Its mathematical properties like stability and instability re-
gions in the parameter space are well known @18#. Neverthe-
less, there exists no closed analytic expression for the solu-
tion and the equation has to be integrated numerically. In the
following, we will need two linear independent solutions
F i(t), i51,2, of Eq. ~15! belonging to two different sets of
initial conditions

F1~ t0!50, Ḟ1~ t0!51,

F2~ t0!51, Ḟ2~ t0!50.

They can be determined numerically, e.g., by means of a
regular fourth-order Runge-Kutta integration of the Mathieu
equation ~15!.
Let us return to the dissipative quantum parametric oscil-

lator. The quantities of interest are the variances of the posi-
tion and the momentum operator, i.e.,

sxx~ t ![^x2~ t !&2^x~ t !&2,

sxp~ t ![
1
2 ^x~ t !p~ t !1p~ t !x~ t !&2^x~ t !&^p~ t !&, ~16!

spp~ t ![^p2~ t !&2^p~ t !&2.

Here, the quantum mechanical expectation value is under-
stood as usual as ^•&5Tr@r(t)•# . By determining the propa-
gator U(t ,t0)5T exp„2i* t0

t dt8 H(t8)/\… (T is the time or-
dering operator! for the driven dissipative system according
to @8#, the reduced density matrix r(t)5TrBath„U(t ,
t0)W(t0)U21(t ,t0)… can be calculated analytically. Here,
W(t0) denotes the full density operator at time t0 and TrBath
the trace over the bath degrees of freedom. Having obtained
the reduced density operator r(t), the quantum-mechanical
expectation values in Eq. ~16! can be evaluated. After some
algebra, we find for the dimensionless variances the expres-
sions

sxx~ t !5e2g(t2t0)H FF2~ t !2
g

2 F1~ t !G2sxx
0

12F1~ t !FF2~ t !2
g

2 F1~ t !Gsxp
0 1F1

2~ t !spp
0 J

1Sxx~ t !, ~17a!

sxp~ t !5
1
2ṡxx~ t !, ~17b!

spp~ t !5ṡxp~ t !1gsxp~ t !

1@v0
212e cos~2t !#sxx~ t !2Spp~ t !. ~17c!

Thereby, we have rectified @19# some minor misprints in @8#
and simplified the equations in @8# for sxp and spp . Here,
sxx
0 , sxp

0 , and spp
0 denote the initial variances of the un-

coupled system at time t5t0 which depend on the choice of
the initial state for the bare system HS(t0). The initial con-
ditions for Eqs. ~17! at time t5t0

1 are given by

sxx~ t0
1!5sxx

0 ,

sxp~ t0
1!52gsxx

0 1sxp
0 , ~18!

spp~ t0
1!5g2sxx

0 22gsxp
0 1spp

0 .

The discontinuity of the variances at time t0 is a well-known
consequence @1# of the initial slip term in Eq. ~9!; it is due to
the factorizing initial condition ~7!. The first terms in the
three equations ~17! possess the same form as in the classical
case. The specific quantum-mechanical features enter via the
functions Sxx(t) and Spp(t), which read

Sxx~ t !5
g

pE0
`

dv v f c~v ,vc! cothS v

2T D
3H F E

t0

t
ds G~ t ,s !expS g

2 ~ t2s ! D cos~vs !G 2
1F E

t0

t
ds G~ t ,s !expS g

2 ~ t2s ! D sin~vs !G 2J ,
~19a!

Spp~ t !5
g

pE0
`

dv v f c~v ,vc!cothS v

2T D E
t0

t
ds G~ t ,s !

3expS g

2 ~ t2s ! D cos@v~ t2s !# , ~19b!

where G(t ,s)5F1(t)F2(s)2F1(s)F2(t). While in Eq.
~19! a general form of the cutoff function f c(v ,vc) with
vc@v0 is kept, the analytic solution ~17! is based @8# on the
assumption of a strictly Ohmic classical dynamics (vc
→`) in Eq. ~10!. The consequence of this assumption is the
discontinuity at t5t0 in Eq. ~18! when the system-bath-
interaction is switched on instantaneously. A finite cutoff in
the spectral density J(v) in the damping kernel ~10! would
induce a smoothened time evolution of the variances ~17!
close to t5t0 on a time scale vc

21 .
The relations ~17!,~19! are evaluated by standard numeri-

cal methods. The efficiency is improved if one applies Flo-
quet’s theorem for the fundamental solutions F j(s). Then,
the periodic part of the Floquet solutions can be expanded in
a Fourier series and the integrations over the intermediate
times s in Eq. ~19! can be performed analytically. Finally, the
remaining v integrations and the sum over the Fourier
modes can be readily carried out.
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III. NUMERICAL SOLUTION WITH REAL-TIME
PATH INTEGRALS

In the following section, we recapitulate the essentials of
the QUAPI algorithm. Further details can be found in the
original works by Makri and Makarov @13#. In order to de-
scribe the dynamics of the system of interest it is sufficient to
consider the time evolution of the elements of the reduced
density matrix which reads in position representation

r~x f ,x f8 ;t f !5TrBath^x fP jq juU~ t f ,t0!W~ t0!

3U21~ t f ,t0!ux f8P jq j8&, ~20!

U~ t f ,t0!5T expH 2i/\E
t0

t f
H~ t8!dt8J .

Here, T denotes the chronological operator, W(t0) the full
density operator at the initial time t0 and TrBath the partial
trace over the harmonic bath oscillators q j . Due to our as-
sumption that the bath is initially at thermal equilibrium and
decoupled from the system, W(t0) becomes the product of
the initial system density operator rS(t0) and the canonical
bath density operator at temperature T, see Eq. ~7!. Then, the
partial trace over the bath can be performed and the reduced
density operator be rewritten according to Feynman and Ver-
non @17# as

r~x f ,x f8 ,t f !

5E dx0 dx08 G~x f ,x f8 ,t f ;x0 ,x08 ,t0!r~x0 ,x08 ,t0!,

~21!

with the propagator G given by

G~x f ,x f8 ,t f ;x0 ,x08 ,t0!

5E Dx Dx8 expH i
\

~SS@x#2SS@x8# !JFFV@x ,x8# .

~22!

SS@x# is the classical action functional of the system variable
x along a path x(t) and FFV@x ,x8# denotes the Feynman-
Vernon influence functional

FFV@x ,x8#5expH 2
1
\Et0

t f
dtE

t

t f
dt8@x~ t8!2x8~ t8!#

3@h~ t82t !x~ t !2h*~ t82t !x8~ t !#J , ~23!
with the integral kernel

h~ t !5L~ t !1id~ t !
2
pE0

`dv

v
J~v ! ~24!

and the autocorrelation function L(t) given in Eq. ~13!. As
usual, the restriction to paths that satisfy the boundary con-
ditions x0(t0)5x0 , x f(t f)5x f and similarly for x8(t) is un-
derstood implicitly in Eq. ~22!. Likewise, the dependence of
the density operator r in Eq. ~21! on the initial time t0 and on
rS(t0) has been dropped.
To make the equations numerically tractable, we dis-

cretize t f2t0 into N steps Dt , such that tk5t01kDt and split
the full propagator over one time step U(tk11 ,tk) in Eq. ~20!
according to the Trotter formula symmetrically into a system
and an environmental part:

U~ tk11 ,tk!'exp~2iHBDt/2\ !US~ tk11 ,tk!

3exp~2iHBDt/2\ !, ~25!

US~ tk11 ,tk!5T expH 2
i
\Etk

tk11
dt8 HS~ t8!J .

The symmetric splitting of the propagator in Eq. ~25! causes
an error proportional to Dt3. This error will be studied in
detail in Sec. IV below. The short-time propagator US of the
bare system is numerically evaluated by means of a Runge-
Kutta scheme with adaptive step-size control. Exploiting the
approximation ~25!, the propagator in the position represen-
tation now factorizes as

^xP jq juU~ tk11 ,tk!ux8P jq j8&

'^xuUS~ tk11 ,tk!ux8&)
j

^q jue2iHj(x)Dt/2\

3e2iHj(x8)Dt/2\uq j8&, ~26!

where the Hj(x) are defined in Eq. ~2!. By exploiting this
approximation and performing the partial trace over the bath
modes in Eq. ~20!, one recovers Eq. ~21!, but now with a
discretized version of the propagating function ~22!, i.e.,
r~x f ,x f8 ;t f !5E dx0 . . . E dxNE dx08 . . . E dxN8 d~x f82xN8 !d~x f2xN!

3^xNuUS~ t f ,t f2Dt !uxN21& . . . ^x1uUS~ t01Dt ,t0!ux0&^x0urS~ t0!ux08&

3^x08uUS
21~ t01Dt ,t0!ux18& . . . ^xN218 uUS

21~ t f ,t f2Dt !uxN8 &F FV
(N)~x0 ,x08 , . . . ,xN ,xN8 !. ~27!
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Here, F FV
(N)(x0 , . . . ,xN8 ) is the discrete Feynman-Vernon in-

fluence functional ~23! where the paths x(t) and x8(t) con-
sist of constant segments xk and xk8 , respectively, within
each time interval tk2 1

2 Dt,tk,tk1 1
2 Dt and can be rewrit-

ten in the form

F FV
(N)~x0 , . . . ,xN8 !5expH 2

1
\ (

k50

N

(
k85k

N

@xk82xk8
8 #

3@hk8kxk2hk8k
* xk8#J . ~28!

The coefficients $hk8k% are closely related to their continuous
time counterpart h(t) in Eq. ~24!. Their explicit form is
lengthy and not very illuminating for our purposes; their de-
tailed form can be looked up in Ref. @13#.
To make further progress, it is necessary to approximately

break the influence kernel F FV
(N)(x0 , . . . ,xN8 ) in Eq. ~28! into

smaller pieces. To this end, Makri and Makarov use the fact
@20,13# that the real part of the integral kernel LR(t) typically
exhibits a pronounced peak at t50, and quickly approaches
0 for t→6` . The decay to zero depends naturally on the
choice of the cutoff function f c(v ,vc), see Eq. ~4!. This
suggests the truncation of h(t) after a certain number K of
time steps Dt and, correspondingly, to neglect hk8k if k8
.k1K , i.e.,

F FV
(N)~x0 , . . . ,xN8 !')

k50

N

)
k85k

min$N ,k1K%

expH 2
1
\

@xk82xk8
8 #

3@hk8kxk2hk8k
* xk8#J . ~29!

In doing so, we approximate L(t) by zero for t.KDt , cf.
Eqs. ~13!,~24!. Of course, this truncation induces an error in
the final result which has to be handled with care. The error
becomes increasingly less important for increasing tempera-
tures since then, the bath-induced correlations fall off in-
creasingly faster. In other words, for higher temperatures the
width of the response function L(t) decreases. In the other
limit of decreasing temperature however, the number K of
relevant time intervals is increasing and in the limit of zero
temperature T50, it is well known @1# that the response
function L(t) falls off only algebraically for t→6` . Never-
theless, we will see that this approach allows to deal with
quite low temperatures and produces qualitative agreement
with analytic solutions.
The next goal is to approximate the spatially continuous

integrals in Eq. ~27! in terms of finite sums. To this end,
Makri and Makarov perform a transformation into a basis
given by the energy eigenstates ufm& of the bare system
Hamiltonian HS(tr) ~1!, but with the driving term clamped to
an appropriate but fixed reference time tr , i.e.,

HS~ tr!ufm&5Emufm&, m51,2, . . . . ~30!

Em denotes the energy eigenvalues of the static system
Hamiltonian HS(tr). In certain cases, symmetry properties
suggest the choice of an appropriate tr . Here, we choose the
unperturbed harmonic oscillator as a reference configuration.
This means for our choice of driving to use tr5p/4, so that
cos(2tr)50 in Eq. ~15!. Reintroducing now the thermal bath
but restricting ourselves to small-to-moderate temperatures
T, the thermal occupation of high energy levels Em is ex-
pected to be negligible. This argument suggests that the ufm&
provide a well adapted basis admitting a fast convergent
truncation scheme. In other words, we may approximately
project the dynamics onto the Hilbert subspace spanned by
the first few energy eigenstates ufm&, m51, . . . ,M , corre-
sponding to an approximate decomposition of the identity
operator I'(m51

M ufm&^fmu. Before doing so, we perform
one more unitary transformation within that M-dimensional
Hilbert space such that the position operator becomes diag-
onal @discrete variable representation ~DVR! @21##:

uum&5 (
m851

M

Rmm8ufm8&,

~31!
^umuxuum8&5xm

DVRdmm8 , m ,m851, . . . ,M .

Exploiting the approximate decomposition of the identity I
'(m51

M uum&^umu and the truncation of the bath-induced cor-
relations in Eq. ~29!, it is a matter of straightforward but
tedious manipulations—starting from Eq. ~27!—to arrive at
the final form of the QUAPI recursion scheme. In particular,
the integrals in Eq. ~27! turn into finite sums due to the
transformation ~31! into the DVR basis. We do not present
the detailed form here and refer the reader again to the origi-
nal literature @13#.
The above introduced restriction to a finite dimensional

subspace induces an error in the evaluation of the reduced
density matrix. However, as we will also discuss below, this
error behaves in a controlled way if the relevant parameters
such as the temperature and the damping are chosen in a
moderate regime. This means that for increasing temperature
increasingly more DVR states are necessary to describe the
dynamics appropriately. Note that in this regime however,
the number K of the relevant memory time steps is decreas-
ing. In the opposite limit of decreasing temperature, the num-
ber M of relevant basis states can be chosen rather small. In
this low-temperature limit the number K of memory time
steps can therefore be increased. Moreover, we note that the
restriction of the dynamics ~at long times! to the
M-dimensional Hilbert subspace is not allowed for systems
with an inherent diverging dynamics. This is also seen in our
example of the parametrically driven dissipative quantum
harmonic oscillator for a parameter choice in an instability
region of the Mathieu equation ~15!, see Sec. IV below.
The efficiency of the QUAPI algorithm is based on the

choice of the two free parameters M ~the number of basis
states! and K ~the length of the memory!. The numerical
objects that one has to deal with are arrays of size M 2K12

and M 2K. In practice, the calculations have been performed
on conventional IBM RS/6000 workstations ~43P-260 and
3CT!. The computation time for an iteration over a typical
time span @0,40# depends strongly on the chosen parameters.
It ranges from several milliseconds for M53,K52 ~program
size 7 MB! over several seconds for M53,K54 ~program
size 8 MB! up to several hours for M55,K54 ~program size
176 MB!. The strongly limiting factor is the program size
since the size of the arrays grows exponentially with K. E.g.,
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the parameter combination M54,K56 leads to too large
arrays and cannot be treated by standard programming tech-
niques. In practice, with the choice M56,K53 or M55,K
54, we already are at the upper limit of the QUAPI algo-
rithm.

IV. RESULTS

We proceed in reporting our results for the specific ex-
ample of the parametrically driven dissipative quantum har-
monic oscillator. With the reduced density matrix ~27! at
hand, we can calculate the variances ~16! within the QUAPI
algorithm and compare them with the analytic predictions
~17!,~19!. Most of the figures contain results for rather ex-
treme parameter values, e.g., low temperature and large driv-
ing amplitude, in order to show that the QUAPI algorithm
performs satisfactorily also in these limits. For more moder-
ate choices of the parameters, the agreement ~not shown!
between numerical and analytic results is much better.
Our main goal is to study the dependence of the variances

~16! on the QUAPI parameters M , K , and Dt . For finite M
and K, the deviation increases proportional to Dt3 due to the
Trotter splitting in Eq. ~25! with increasing Dt . For decreas-
ing Dt , the Trotter error decreases but the error made by the
memory truncation in Eq. ~29! starts to dominate since more
and more bath correlations are neglected. Thus, the overall
error increases again. In between there exists an ‘‘optimal
time step of least dependence,’’ where the quantities are least
sensitive to variations of Dt . This represents the ‘‘principle
of minimal sensitivity’’ for the optimal choice of the time
step Dt for the QUAPI algorithm ~see also @16#!. For M finite
and K→` , the result would be independent of Dt for small
Dt since the Trotter error would vanish and also the finite-
memory error would not exist.
The choice of M and K should be adapted to the chosen

bath parameters. In the case of no driving, if the temperature
is low, only few energy eigenstates are required, i.e., M may
be chosen small. However, low temperature induces long-
range bath correlations. Therefore, the memory length K has
to be assumed large. The opposite holds true in the other
limit of high temperature. In the case of driving, the number
M of basis states is more important compared to the undriven
case, since the variances oscillate strongly and higher lying
energy states are excited. The memory length K has to be
reduced instead if one is interested in the oscillation ampli-
tudes. However, for the mean value of the variances, the total
memory length K is again more important and should be
maximized ~see below!.
We shall choose two representative parameter sets for our

considerations. Since the memory in Eq. ~28! is truncated in
the QUAPI algorithm according to Eq. ~29!, the crucial pa-
rameters are the temperature T and the damping strength g .
The relatively high temperature T51.0 and the small damp-
ing g50.1 form the first parameter set (High temperature–
weak damping). For this choice, the numerical results are
expected to agree well with the analytic results because large
T suppresses the long-time memory contributions in Eq. ~28!
and additionally, a small g diminishes the influence of the
bath correlations ~12!. Our second parameter set is given by
T50.1,g51.0 (Low temperature–strong damping). In this
case, long-range bath correlations ~12! play a major role and
the truncation of them will induce an error which will be
larger than in the case of a high temperature and weak damp-
ing. For intermediate parameter regimes, we find no qualita-
tive differences.
In all our calculations, we set t050 and choose as the

initial state the ground state of the maximally curved ~i.e.,
v0
2→v0

212e) harmonic oscillator, i.e., rS(t050)5u0&^0u.
The corresponding initial variances in Eq. ~17! readily follow
as sxx

0 51/(2Av0
212e), sxp

0 50, and spp
0 5Av0

212e/2.
Our standard choice for the cutoff function will be the expo-
nential cutoff ~5!, if nothing else is stated. Furthermore, we
always choose the dimensionless curvature v051.0 in order
to have a rather small separation of the energy levels in the
undriven oscillator. This induces a high sensitivity on the
number M of basis states since the higher lying states are
then easily populated thermally or by driving induced tran-
sitions. The choice of a larger v0 would be more in favor of
the numerical algorithm.

A. High temperature–weak damping „no driving…

First, we consider the undriven case e50. Figure 1 de-
picts the results for a high temperature T51.0 and small
friction g50.1. Here and in the following, we use the dimen-
sionless quantities which have been introduced in Eq. ~14!.
Moreover, v051.0 and vc550.0. We find very good agree-
ment with the analytic solution for the variances. The initial
transient oscillations are reproduced and the asymptotic val-
ues for long times as well. The initial jump of sxp(t) @of Eq.
~18!# is still visible, while the jump of spp(t) is proportional
to g2 and is not visible on this plot.
To be able to study the dependence of the QUAPI algo-

rithm on the parameters M , K , and Dt we consider the
asymptotic values of the variances at long times. It is clear
from Eq. ~19! that sxp(`)50, so we focus in Fig. 2 on the
two nontrivial variances sxx(`) and spp(`). The qualitative

FIG. 1. Time dependence of the variances sxx(t), sxp(t), and
spp(t) for the undriven dissipative quantum harmonic oscillator
(e50,v051.0) with bath parameters T51.0, g50.1, and an expo-
nential cutoff Eq. ~5! with vc550.0. In all the figures, we have
used dimensionless quantities according to Eq. ~14!. The solid lines
depict the analytic results ~17!, while the dashed lines represent the
numerical solution obtained by the QUAPI algorithm with M
55,K54,Dt50.2. The asterisks mark the initial variances sxx

0

5spp
0 50.5 and sxp

0 50.
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dependence of both variances on the time step Dt is always
similar: The deviation increases with increasing Dt due to
the error proportional to Dt3 in the Trotter splitting in Eq.
~25!. For decreasing Dt , this error decreases and the ‘‘finite-
K’’-error takes over. The relevant Dt value on which we
focus in the following is the one for which the numerical
result varies the least, i.e., the minima in the curves in Fig. 2
~‘‘principle of minimal sensitivity’’ @16#!.
The left column of Fig. 2 confirms that for a fixed

memory length Dt•K , a smaller time step Dt induces a
smaller Trotter-error whereas the finite-K-error remains
roughly the same. While for a fixed M ~left column in Fig. 2!

FIG. 2. Asymptotic values of the position ~upper row! and mo-
mentum ~lower row! variances sxx(`) and spp(`), respectively, as
a function of the time step Dt and different combinations of the two
QUAPI parameters M ~number of basis states! and K ~number of
memory time steps! for the undriven dissipative quantum harmonic
oscillator (e50,v051.0) and heat bath parameters T51.0, g
50.1, and vc550.0 with exponential cutoff Eq. ~5!. For the left
column figures, the number M of basis states is fixed to M55 and
the memory length K is varied, while for the right column figures, K
is fixed to K53 and M is varied. Interconnected symbols: solutions
obtained by QUAPI. Horizontal solid line: analytic result ~17!.

FIG. 3. Same as Fig. 1, but for the parameters T50.1,g51.0.
Here, the QUAPI parameters are M53,K56,Dt50.2 ~dashed line!
and M55,K54,Dt50.2 ~dashed-dotted line!.
QUAPI tends to underestimate the analytic result as K in-
creases, a fixed K and growing M ~right column! leads to an
opposite trend, suggesting that indeed the analytic result will
be approached best when both M and K become large ~at a
plateau Dt value tending towards zero!.

B. Low temperature–strong damping

1. No driving

Figure 3 depicts the time dependence of the variances in
satisfactory agreement with the analytic result. The initial
jumps of sxp(t) and of spp(t) are more pronounced in this
strong damping case since the jumps are proportional to g
and g2 @see Eq. ~18!#. The deviations in the transient behav-
ior are due to the assumption of a strictly Ohmic classical

FIG. 4. Same as Fig. 2, but for the bath parameters T50.1,g
51.0.

FIG. 5. Time dependence of the variances sxx(t), sxp(t), and
spp(t) for the parametrically driven dissipative quantum harmonic
oscillator with v051.0 and a small driving amplitude e50.1. The
bath parameters are T50.1, g51.0, and vc550.0 @exponential cut-
off Eq. ~5!#. The QUAPI parameters are M53,K56,Dt50.2
~dashed line! and M55,K54,Dt50.25 ~dashed-dotted line!. The
asterisks mark the initial variances sxx

0 50.45, spp
0 50.55, and sxp

0

50.
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dynamics ~infinite cutoff vc) in the analytic solution, see the
discussion at the end of Sec. II. They become more pro-
nounced for low temperatures and strong friction because
this assumption induces deviations in the short-time evolu-
tion of the variances on a time scale vc

21 . The bath-induced
long-range memory at this low temperature carries the devia-
tions over the whole range of the transient dynamics. The
fact that the memory length K is decisive for this low tem-
perature is confirmed by the dashed-dotted line.
The dependence of the asymptotic values sxx(`) and

spp(`) on the QUAPI parameters is shown in Fig. 4. The

FIG. 6. Time-averaged asymptotic values of the position ~upper
row! and momentum ~lower row! variances s̄xx(`) and s̄pp(`),
respectively, versus time step Dt for different combinations of the
QUAPI parameters M and K, small driving amplitude e50.1 and
bath parameters T50.1,g51.0,vc550.0 @exponential cutoff Eq.
~5!#. For the left column figures, the number M of basis states is
fixed to M55 and the memory length K is varied, while for the
right column figures, K is fixed to K53 and M is varied. The
oscilllator frequency is v051.0.

FIG. 7. Same as Fig. 5, but for the strongly driven case e
50.5. Here, the QUAPI parameters are M54,K54,Dt50.25
~dashed line! and M55,K54,Dt50.25 ~dashed-dotted line!. The
asterisks mark the initial variances sxx

0 50.35, spp
0 50.71, and sxp

0

50.
number M of basis states is not so important, while the
memory length K is decisive. Again, the analytic prediction
is correctly approached when both M and K are increased.

2. With driving

Figure 5 demonstrates for a small driving amplitude rea-
sonable agreement with the analytics. The long-memory pa-
rameter set with K56 hits best the asymptotic mean value,
but the oscillation amplitudes and frequencies are obtained
best by the choice of a large M55. In comparison to the
undriven case (e50) the time averaged variances are almost
unchanged ~Figs. 4 and 6! while the time-resolved behavior
~Figs. 3 and 5! displays notable differences.
Figure 7 depicts the time evolution for the relatively large

driving amplitude. As expected, for strong driving, a large
number M of basis states are required to describe the oscil-
lations correctly. The averaged asymptotic values s̄xx(`)

FIG. 8. Same as Fig. 6, but for the strongly driven case e
50.5.

FIG. 9. Time dependence of the position variance sxx(t) for a
parameter set where the classical dynamics is unstable, i.e., e
50.5,g50.1. The temperature is T51.0 and vc550.0 @exponential
cutoff Eq. ~5!#. The QUAPI parameters are M55,K54,Dt50.25.
The asterisk marks the initial variance sxx

0 50.35. The oscillator
frequency is v051.0.
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and s̄pp(`) are plotted in Fig. 8. Since the strong driving
mixes high-energy eigenstates, the results are considerably
more sensitive to the choice of M than for weak driving ~Fig.
6 upper right panel!. However, the same argumentation ap-
plies like in the undriven case ~see Fig. 4!. Considering the
rather extreme parameters ~small level-spacing, strong driv-
ing, low temperature, strong damping! the agreement with
the analytic results is still satisfactory.

C. Diverging dynamics and dependence on the cutoff vc

Figure 9 shows sxx(t) for parameters belonging to an
instability region of the Mathieu oscillator ~15! @18#, i.e., the
variances for the driven quantum harmonic oscillator diverge
for long times. Since the QUAPI algorithm is restricted to a
~finite! M-dimensional Hilbert subspace it cannot reproduce
such an asymptotic divergence.
The last issue we address is the dependence of the dynam-

ics on the cutoff parameter vc and on the explicit shape of
the cutoff function ~5!,~6!. First, we keep an exponential cut-
off but choose a smaller cutoff frequency vc . It is well
known @1# that for the ~undriven! quantum harmonic oscilla-
tor spp(`) diverges with vc , while sxx(`) is asymptoti-
cally independent of vc . In Fig. 10, we choose the ‘‘worst’’
case ~i.e., low temperature and strong damping! without driv-
ing and decrease the cutoff to vc510.0. Compared to Fig. 3,
the value of sxx(`) is indeed practically unchanged while
spp(`) has notably decreased.
Figure 11 shows results for a steplike cutoff ~6!. First, we

observe that mainly the short-time behavior of the relaxation
process is affected. Clearly, QUAPI with its restriction to
only a few energy eigenstates cannot reproduce the transient
high-frequency oscillations of spp(t). Second, we note that a
steplike cutoff affects the decay of the response function
L(t) from Eq. ~13! for t→` . The real/imaginary part of L(t)
decays qualitatively like an algebraically damped cos/sin
function. While this might suggest a strong dependence of
the QUAPI results on the memory length, we actually find a
rather weak dependence since the agreement between nu-
meric and analytic results in Fig. 11 is not considerably

FIG. 10. Time dependence of the variances sxx(t), sxp(t), and
spp(t) for a small cutoff frequency vc510.0 @exponential cutoff
Eq. ~5!#, v051.0, e50, g51.0, and T50.1. Here, the QUAPI
parameters are M55,K54,Dt50.30. The asterisks mark the initial
variances sxx

0 5spp
0 50.5 and sxp

0 50.

worse than in Fig. 3. This means that the memory truncation
in Eq. ~29! is in fact not very sensitive to the choice of the
cutoff function f c(v ,vc) as long as one is not interested in
the detailed short-time behavior.

V. CONCLUSIONS

We have studied the dependence of the QUAPI algorithm
on its three numerical parameters, namely the time step Dt ,
the number M of basis states, and the memory length K. As
a test system, we have used the analytically solvable dissi-
pative quantum harmonic oscillator and its parametrically
driven generalization. The comparison shows a decent agree-
ment of the approximative numerical result with the analytic
solution, even in the case with driving. This means that a
spatially continuous system can be described reasonably well
by taking only a few basis states and a finite memory length
into account. For low temperatures and weak-to-moderate
driving, the number M of basis states has to be chosen small
and the memory length K large, while in the opposite regime
of high temperature, M has to be large but K may be chosen
small. In both cases, satisfactorily large M and K values are
still numerically feasible. For strong driving, the deviations
increase but the QUAPI results are still in qualitative agree-
ment with the analytic predictions.
Our findings demonstrate the reliability of the QUAPI al-

gorithm even in driven, spatially continuous systems and not
only in finite, discrete dissipative quantum systems such as
the spin-boson-system. Therefore, the QUAPI algorithm may
become a standard procedure for simulating open quantum
systems in the presence of a class of time dependent, not
necessarily periodic driving fields. This technique is espe-
cially interesting for the study of decoherence in interacting
two-level-systems processing quantum bits. There, the quan-
tum gate operation prescribes the time dependence of the
external control fields which may exhibit a complex nonpe-
riodic time dependence.
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FIG. 11. Same as Fig. 3, but for a steplike cutoff Eq. ~6! with
vc550.0. Parameters are v051.0, e50, T50.1, and g51.0. The
QUAPI parameters are M55,K54,Dt50.25. The asterisks mark
the initial variances sxx
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