
PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Nonlinear stochastic resonance: The saga of anomalous output-input gain
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We reconsider stochastic resonance ~SR! for an overdamped bistable dynamics driven by a harmonic force
and Gaussian noise from the viewpoint of the gain behavior, i.e., the signal-to-noise ratio ~SNR! at the output
divided by that at the input. The primary issue addressed in this work is whether a gain exceeding unity can
occur for this archetypal SR model, for subthreshold signals that are beyond the regime of validity of linear
response theory: in contrast to nondynamical threshold systems, we find that the nonlinear gain in this con-
ventional SR system exceeds unity only for suprathreshold signals, where SR for the spectral amplification
and/or the SNR no longer occurs. Moreover, the gain assumes, at weak to moderate noise strengths, rather
small ~minimal! values for near-threshold signal amplitudes. The SNR gain generically exhibits a distinctive
nonmonotonic behavior versus both the signal amplitude at fixed noise intensity and the noise intensity at fixed
signal amplitude. We also test the validity of linear response theory; this approximation is strongly violated for
weak noise. At strong noise, however, its validity regime extends well into the large driving regime above
threshold. The prominent role of physically realistic noise color is studied for exponentially correlated Gauss-
ian noise of constant intensity scaling and also for constant variance scaling; the latter produces a character-
istic, resonancelike gain behavior. The gain for this typical SR setup is further contrasted with the gain
behavior for a ‘‘soft’’ potential model.

PACS number~s!: 05.40.2a, 05.45.2a, 02.50.Ey, 02.60.Cb
I. INTRODUCTION

Stochastic resonance ~SR! characterizes a cooperative
phenomenon wherein the addition of a small amount of noise
to an input driving signal can optimally amplify the output
response. Generically the phenomenon occurs in nonlinear
stochastic classical and quantum systems which possess a
kind of metastability such as a potential barrier, a fixed
threshold, or, more generally, a statistical distribution of
level-crossing features. An introductory overview of this
most challenging phenomenon can be found in Refs. @1,2#
while a comprehensive survey is provided in Ref. @3#. As
such, the SR effect plays a prominent role in such diverse
scientific areas as sensory biology, signal information and
detection, or in conventional physical and chemical nonlin-
ear noisy systems that are externally perturbed by periodic or
aperiodic forces. Given the three features of ~i! nonlinearity,
~ii! a weak information carrying signal, and ~iii! a source of
noise, the response of the system generically undergoes a
nonmonotonic signal transduction behavior as a function of
increasing noise intensity: the response typically displays
one or sometimes more maxima as a function of noise inten-
sity, hence the term ‘‘stochastic resonance.’’ Typical quanti-
fiers for SR in the case of time-periodic input signals are the
spectral power amplification ~SPA! @4,5# and/or the signal-
to-noise ratio ~SNR! @6#. For more general inputs, such as
nonstationary, stochastic, and wideband signals, the adequate
SR quantifiers are information-theoretic measures @7# such as
the mutual information, the information distance, or the rate
of information gain, to name but a few @8#. For signal detec-
tion systems, the effect of SR on detection performance is
quantified by signal detection statistics such as the probabil-
ity of detection and probability of a false alarm, which are
often plotted against each other to form a curve known as the
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receiver operating characteristic ~ROC! @9#.
Throughout this work we shall concentrate on conven-

tional SR setups that are fed by a harmonic input signal
A0 cos(Vt1f). The main question to be addressed with this
work is the saga that relates the behavior of the gain G, i.e.,

G5
Rout

R in
~1!

between the output Rout and the R in to the strength of the
signal input A0 and the noise characteristics such as its in-
tensity and its strength of color. For weak signals it follows
from a straightforward application of linear response theory
@5,6,10–12# that the gain cannot exceed unity @13#.

Recently, there has been considerable interest in the re-
sponse of threshold systems ~or static nonlinearities!,
wherein the SR effect also occurs, but bears a very strong
resemblance to ‘‘dither,’’ a connection that was recently
quantified by Gammaitoni @14#. In contrast to dynamical sys-
tems, for SR occurring in these nondynamical threshold sys-
tems such as in a level-crossing detector @15# or SR in the
generalized two-threshold system as characterized by a static
nonlinearity @16#, which are all driven by periodic,
rectangular-shaped pulses s(t) of short duration, it has been
demonstrated @15,16# that the gain can indeed exceed unity
for moderate to strong subthreshold pulses. For a smooth
harmonic input passing through a soft limiter, given by a
nonhysteretic rf superconducting quantum interference de-
vice ~SQUID! loop, a gain exceeding unity has been ob-
served as well @17#. Therefore, it seems likely that the gain
can exceed unity at no risk if only the response is beyond the
regime of vality of linear response. The challenge to be ad-
dressed with this work is to settle this very issue for the most
conventional SR setup: namely, a harmonically driven, over-
6155 ©2000 The American Physical Society
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damped dynamics in a symmetric double well. The regime of
nonlinear response for this archetypal SR system has been
addressed previously from the viewpoint of nonlinear spec-
tral amplification, Rout @4,5# and the corresponding phase lag
of the nonlinear response @18,19#, its universal weak noise
SR behavior @20–22#, its switching and dynamic trapping
behavior for suprathreshold and near-threshold driving
strengths @23#, or the control of SR @24# by the relative phase
of a harmonic mixing signal @25#. Also, an SNR gain exceed-
ing unity has been briefly studied for an overdamped particle
in a ‘‘soft’’ ~nonquartic! double-well neuron potential driven
by a suprathreshold sine wave plus bandpass-filtered noise
~see Fig. 11 in @26#!; however, a detailed study of SNR gain
behavior with delta- or exponentially correlated noise has not
yet been put forward. Our objective here is to fill this very
gap with a systematic study. In particular, we want to inves-
tigate whether a gain exceeding unity generically occurs in
conventional SR setups for subthreshold signals that exhibit
nonlinear SR, or whether it requires strong suprathreshold
signals. Thereby, the role of linear response theory will be
reinvestigated quantitatively as a function of increasing sig-
nal strength. Moreover, we will research the role of noise
color for the gain behavior.

II. ARCHETYPAL MODEL FOR SR

We start by considering the most common SR situation,
namely, an overdamped dynamics driven by white Gaussian
noise in a symmetric, quartic bistable double well. In terms
of rescaled variables ~see @27# for details! the dimensionless
driven dynamics obeys the Langevin equation

ẋ5x2x31A0cos~Vt1f !1A2Dj~ t !, ~2!

with j(t) being Gaussian white noise with correlation
^j(t)j(s)&5d(t2s) and f an arbitrary, fixed phase of the
coherent drive. The deterministic driven dynamics in Eq. ~2!
loses its global bistable character when the driving strength
A0 exceeds the threshold value A0>ATªA4/27'0.3849.

This archetypal driven bistable dynamics generally yields
a nonlinear response: its asymptotic time-periodic expecta-
tion reads in terms of the complex-valued spectral weights
M n @3,27#

^x~ t !&as5 (
n52`

`

M n exp@ i n~Vt1f !# . ~3!

The correlation function of the driven stochastic process
x(t), averaged over both the noise j(t) and the uniformly
distributed phase f , obeys, in the asymptotic long-time limit,
the time-homogenous result

^^x~ t1t !x~ t !&&ªK~t !5Knoise~t !1Kas~t !, ~4!

wherein the asymptotic part denotes the oscillatory long-time
limit, i.e.,

Kas~t !52(
n51

`

uM nu2cos~nVt !. ~5!

The power spectral density ~PSD! of the time-homogeneous
correlation K(t) is defined as
K~v !ªE
2`

`

exp~2ivt !K~t !dt . ~6!

Hence, the total integrated input power of the cosine drive
accordingly is 2p(A0

2/2)5pA0
2. The spectral amplification h

@5# is then given by the ratio of the integrated power of the
asymptotic power spectrum Kas(v) of the two d-function
weights located at 6V and the total input power, yielding

h5
4puM 1~A0 ,V !u2

pA0
2

5S 2uM 1~A0 ,V !u
A0

D 2. ~7!

The SNR’s are defined as follows: In terms of the power
spectrum of the output x(t), i.e., Knoise(v5V)
ªKnoise(V;A0 ,D), and the power spectrum of the input
noise J(v)52D we obtain for the output SNR

Rout5
4puM 1~A0 ,V !u2

Knoise~V;A0 ,D !
, ~8!

while the input SNR reads

R in5
pA0

2

J~V !
5

pA0
2

2D . ~9!

The quantity of interest, namely, the SNR gain in Eq. ~1!, is
thus given by the result

G5
J~V !4puM 1~A0 ,V !u2

pA0
2Knoise~V;A0 ,D !

, ~10!

which clearly does not exceed unity as the driving strength
approaches zero ~linear response limit!. Because we consider
mainly the nonlinear driving regime, these expressions are
difficult to evaluate by analytical means. An analytical evalu-
ation is possible for the adiabatic driving regime; its explicit
evaluation requires, however, the need of numerics. There-
fore, we stick to a full nonlinear numerical evaluation
throughout the remaining parts of this paper. Some details of
the numerical scheme are summarized in the Appendix.

III. GAIN FOR WHITE GAUSSIAN NOISE DRIVEN SR

We start our SNR gain comparison with the white noise
driven overdamped dynamics in Eq. ~2!. In Fig. 1 we depict
the power spectrum of the output noise background, i.e.,
Knoise(v) in Eq. ~4!, for a weak driving amplitude ~linear
response limit! A050.1AT and a strong driving amplitude
A0510AT . We note that at frequencies near the driving fre-
quency v5V50.1 and below, the noise power spectral den-
sity undergoes a drastic reduction with increasing driving
strength. This already suggests that the increase in SNR gain
is mainly controlled by the behavior of the noise power spec-
trum, considering that the spectral amplification h exhibits a
decreasing behavior versus increasing driving strength A0
@3,5#.

For subthreshold driving, probing the double well at very
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low noise would require impractically long simulation times
due to the exponential time required to escape a well or reach
equilibrium, preventing us from observing the asymptotic
long-time result ~4!. Thus, we have limited our simulations
to D.0.04. In a simulation or experiment with D much be-
low this value, one would see single-well ~intrawell! behav-
ior only.

The main result of the SNR gain is depicted with Fig. 2
for an angular driving frequency set at V50.1. The overall
behavior of the SNR gain remains qualitatively robust for
smaller driving frequencies ~not shown!. The thick solid line
in this two-dimensional contour plot of the scaled driving
ratio A0 /AT and scaled dimensionless noise intensity D
marks the separation line between a gain below unity and a
gain above unity. Most importantly, we note that the gain
does not exceed unity for subthreshold signals. Within the
considered parameter range of driving strength and noise in-
tensity the gain reaches a maximal value around 1.20 on the
peninsula corresponding to large driving strengths and large
noise intensities. This behavior occurs in a parameter regime
wherein no SR behavior for strong suprathreshold signals
occurs. In contrast, the SNR gain assumes minimal values
G*0.08 at low noise and around threshold driving
A0'AT and below. The nonlinear gain above unity is thus
controlled by the quartic nonlinearity in the bistable poten-
tial. The behavior of this nonlinear gain regime is contrasted
with Fig. 3, which depicts the SNR gain behavior for a pure
quartic well. This monostable x4 potential does not exhibit
SR; its gain reaches from a minimum near G'0.7 to maxi-
mal values along a diagonal band increasing from G
'1.24 at high noise to G'1.29 at low noise. Note that the
peninsula in Fig. 2 with a gain exceeding unity is ruled by
this very monostable nonlinearity.

FIG. 1. The output noise power spectrum Knoise(v), for weak
driving amplitude A050.1AT ~top! and strong driving amplitude
A0510AT ~bottom!. The angular driving frequency is V50.1 in
Figs. 1–11.
FIG. 2. Contour plot of the SNR gain G in ~1! for the conven-
tional SR setup in ~2! versus noise intensity D and relative signal
amplitude A0 /AT . The gain is minimal near and below threshold
driving and weak noise D<0.1; it exceeds unity only for strong
suprathreshold driving signals.

FIG. 3. Contour plot of the gain behavior versus noise intensity
D and relative signal amplitude A0 /AT in absence of bistability, i.e.,
the gain in a pure quartic well. In this case, both the spectral am-
plification and Rout are monotonically decreasing functions versus
increasing noise intensity ~no SR behavior!. The regime of SNR
gain exceeding unity for the bistable Duffing dynamics is clearly
dominated by the quartic nonlinearity.
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Some details of the gain behavior are made explicit with
the cuts taken at fixed noise intensity ~see Fig. 4! and fixed
driving strength ~see Fig. 5!. The results in Fig. 4 depict the
typical behavior of gain versus relative driving strength
A0 /AT at weak to small to moderate to large noise intensity.
Generally, the gain behavior is distinctively nonmonotonic.
A characterisitic feature is that for weak noise intensity the
gain assumes a minimal value near and below threshold driv-
ing strengths. This situation is mirrored for the behavior of
SNR gain versus noise intensity D in Fig. 5.

Next we shall elucidate in detail the nonlinear response
behavior for the spectral amplification h and the regime of
validity of linear response per se. The signal amplification h
is shown in Fig. 6. We note that, for small driving strength,
the spectral amplification exhibits the by now typical SR
behavior. Interestingly enough, this SR behavior persists
even for suprathreshold driving ~note the dotted line in Fig.
6!; the dynamical SR behavior ~at V50.1) ceases to exist,
however, for driving strengths exceeding roughly A0
*1.2AT , and decreases in amplitude for slower ~adiabatic!
driving ~angular! frequencies, saturating around A0'AT .

Of particular interest is the question of the regime of va-
lidity of linear response theory. We research this issue by
computing, as a function of A0, the ratio of full nonlinear
SNR gain G(A0) to the SNR gain at a very small driving
strength, GLR5G(0.1585AT). The results are depicted in

FIG. 4. The gain for the SR setup in Eq. ~2! versus the relative
signal amplitude A0 /AT for four different noise intensities: D
50.042 88 ~solid line!, D50.3678 ~dotted line!, D50.9976
~dashed line!, and D59.976 ~dot-dashed line!.

FIG. 5. Gain behavior for the white Gaussian noise driven, over-
damped bistable Duffing dynamics versus noise intensity D at four
different signal strengths: A0 /AT50.1585 ~solid line!, A0 /AT51
~dotted line!, A0 /AT55.012 ~dashed line!, and A0 /AT525.12 ~dot-
dashed line!.
Fig. 7. For weak noise ~solid curve!, we find large deviations
from the linear response prediction. This is so because the
condition for linear response theory, namely, that the signal
be weak compared to the noise intensity, is now violated.
Note, however, that the regime of linear response at moder-
ate to strong noise extends to large driving strengths well
above threshold ~see dashed and dot-dashed lines!.

IV. ROLE OF NOISE COLOR

The case of white Gaussian noise presents an idealization
which in many physical situations is not exactly realized. It
is thus of importance to address the correction in the re-
sponse to white noise, when the noise is colored. Several
methods and approximations have been developed over re-
cent years to investigate both numerically and analytically
the role of finite noise correlation times, i.e., noise color; see
Ref. @28# for a recent comprehensive review. For an over-
damped dynamics driven by Gaussian, exponentially corre-
lated noise—i.e., Ornstein-Uhlenbeck ~OU! noise of constant
intensity ~thus possessing a proper white noise limit!—the
increase of noise color ~i.e., increasing the correlation time!
tends to decrease the SR effect @3#. This result has repeatedly
been demonstrated via analog simulations @29#, analytical

FIG. 6. Spectral amplification h versus noise intensity D for the
SR setup in Eq. ~2! for four different signal strengths: A0 /AT
50.1585 ~solid line!, A0 /AT51 ~dotted line!, A0 /AT55.012
~dashed line!, and A0 /AT525.12 ~dot-dashed line!. Note that the
bell-shaped SR behavior still exists at the threshold driving AT
'0.3849.

FIG. 7. Testing linear response: ratio of gain as a function of A0
to gain at a fixed, small value of amplitude (0.1585AT), for four
different noise intensities: D50.04 288 ~solid line!, D50.079 24
~dotted line!, D50.1464 ~dashed line!, and D50.9976 ~dot-dashed
line!.
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theory @30#, experiments @31#, and also by Monte Carlo
simulations @32#. In contrast, inertial effects and certain other
noise color characteristics can, in fact, also enhance the SR
phenomenon @3,30,33#. Here, we shall focus on the SNR
gain behavior when the dynamics is driven by Gaussian, ex-
ponentially correlated noise.

A. Gain for constant intensity OU noise

The corrections to the white noise limit are modeled by an
OU noise y(t) of constant intensity scaling. This implies an
overdamped dynamics of the form

ẋ5x2x31A0cos~Vt1f !1y~ t !,
~11!

ẏ52
y
tc

1
A2D

tc
j~ t !.

This OU noise y(t) therefore possesses the following corre-
lation:

^y~ t !y~s !&5
D
tc

exp~2ut2su/tc!, ~12!

which does approach the case of white noise studied in the
preceding section as tc→0. The input power spectrum
J(v) reads explicitly

J~v !5
2D

11v2tc
2 . ~13!

The gain behavior is depicted in Fig. 8 at a noise correlation
time set at tc512.11. The role of strong noise color clearly
has a dramatic effect on the overall behavior of the gain.

FIG. 8. Contour plot of the SNR gain for OU noise driven SR as
a function of constant intensity D and relative signal amplitude
A0 /AT . The angular driving frequency is set at V50.1 and the
noise correlation time is held fixed at tc512.11.
Most importantly, the separation line giving unity gain ~note
the thick line in Fig. 8! now extends down to very weak
noise intensities D. The maximum in gain is also increased to
a value G'1.62. This enhancement of gain, however, does
not occur uniformly. Figure 9 depicts the ratio of the corre-
sponding gain values at tc512.11 and the white noise case.
The gain can both be enhanced and suppressed over the
white noise case, depending on the intensity of noise D and
the signal strength.

In Fig. 10 we plot SNR gain versus tc for several D
values and A05AT . With constant intensity scaling, SNR
gain appears to decrease monotonically with tc . This is in
clear contrast to the constant variance case discussed next.

B. Gain for constant variance OU noise

In this subsection we address the case of OU noise driven
SNR gain with a different noise scaling for y(t), namely, the
case of OU noise of constant variance scaling: it reads

ẏ52
y
tc

1
A2D
Atc

j~ t !, ~14!

yielding for the noise correlation the form

^y~ t !y~s !&5Dexp~2ut2su/tc!, ~15!

FIG. 9. Gain ratio GR versus signal strength A0 /AT between the
gain taken at a noise color of tc512.11 ~constant intensity scaling!
and the gain taken at white noise tc50. Here D50.3678 ~solid
line!, D50.9976 ~dotted line!, and D59.976 ~dashed line!.

FIG. 10. Gain for OU noise driven SR with constant intensity
scaling @see Eq. ~12!# versus noise correlation time tc at different
constant noise intensities D. Here D50.2 ~solid line!, D50.5 ~dot-
ted line!, D51 ~dashed line!, and D55 ~dot-dashed line!. The
signal strength is at threshold A0 /AT51.
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which approaches a vanishing white noise limit, i.e., Dexp
(2ut2su/tc)→2Dtcd(t2s) as tc→0.

Although this situation formally consists of a mere sub-
stitution of the noise intensity of the form D→Dtc , it im-
plies different physics. For example, this scaling for OU
noise has been shown to be capable of exhibiting resonance
activation for the escape rate @34,35#; i.e., the rate exhibits a
bell-shaped behavior versus increasing noise color. Since SR
in the linear response limit is controlled by this very rate @3#,
we now expect a differing role of noise color for the spectral
amplification and the SNR gain as well. Indeed, Fig. 11 ex-
hibits the predicted bell-shaped, resonancelike ~!! depen-
dence of the SNR gain on tc , in contrast to the monotoni-
cally decreasing behavior seen with constant intensity
scaling ~Fig. 10!.

V. GAIN FOR A ‘‘NEURON’’ MODEL

In this section we consider a model with a so-called
‘‘soft’’ potential. We again have a double-well potential, but
in this case the potential grows as x2 rather than x4 for large
x. For signal amplitudes and/or noise intensities that are large
compared to the barrier height, we will essentially have mo-
tion in a parabola; i.e., we recover the linear response behav-
ior.

The Langevin equation reads

Cẋ52
x
R1J tanh~x !1A0cos~Vt1f !1A2Dj~ t !.

~16!

Such a form can describe an ~isolated! element of an elec-
tronic neural network, where x is the neuron’s membrane
potential, C is the input capacitance, R is the transmembrane
resistance, and J is a self-coupling coefficient @36#.

Figure 12 illustrates the SNR gain behavior for this
model. As in the white noise driven Duffing model ~2!, the
gain may exceed unity for suprathreshold driving only ~note
the island in Fig. 12 with G'1.19). For very strong suprath-
reshold driving, however, the gain approaches unity. Under
strong driving, the potential is dominated by its quadratic

FIG. 11. Gain for OU noise driven SR with constant variance
scaling @see Eq. ~14!# versus noise correlation time tc at different
constant noise intensities D. Here D50.02 ~solid line!, D50.05
~dotted line!, D50.1 ~dashed line!, and D50.5 ~dot-dashed line!.
The signal strength is at threshold A0 /AT51.
term, and we approach linear system behavior. The SNR
gain, as we have defined it, must then necessarily approach
unity.

VI. CONCLUSIONS AND OUTLOOK

In the present work we have concentrated on SNR gain,
rather than other performance measures such as signal detec-
tion statistics or information-theoretic measures. For the ar-
chetypal SR setup we find—in contrast to the nondynamical
threshold systems in @15–17#—that the SNR gain does not
exceed unity for subthreshold signals. Moreover, the gain
assumes rather small values for near-threshold or subthresh-
old driving strengths with weak noise. The gain does exhibit
a very interesting feature as a function of increasing noise
color: while this gain is monotonically decreasing for
Ornstein-Uhlenbeck noise color of constant intensity scaling
~thereby assuming a proper white noise limit!, with increas-
ing noise correlation time it does exhibit, in clear contrast, a
resonancelike behavior for constant variance scaling. The lat-
ter feature reflects the resonant activation phenomenon @35#
that occurs only for this form of Gaussian exponentially cor-
related noise. Generically, the SNR gain in these dynamical
models of SR exceeds unity only for suprathreshold signals
where the SR phenomenon in amplification and/or SNR is
lost. Our results with suprathreshold sinusoidal driving refute

FIG. 12. Contour plot of the SNR gain G in Eq. ~1! for the SR
setup in Eq. ~16! versus noise intensity D and relative signal ampli-
tude A0 /AT . The gain is minimal near and below threshold driving
and weak noise D<50; it exceeds unity only for suprathreshold
driving signals. The gain at weak to moderate signal and noise is
similar to the bistable Duffing oscillator in Eq. ~2!. In contrast, the
suprathreshold gain behavior differs distinctly from the quartic
double well: it saturates towards unity for strong suprathreshold
driving. Other parameter values are V51.225, C51, R50.018 69,
and J5216. For these parameter values, the deterministic switching
threshold is AT5116.6.
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a recent conjecture that exceeding unity gain requires nonsi-
nusoidal driving @15, third reference#.

We remark that an output-input SNR gain exceeding unity
does not necessarily imply, e.g., that the performance of an
optimal detector on the SR system’s output would exceed its
performance on the input; however, the SNR does often cor-
relate well with the performance of commonly used subop-
timal detectors @9#. Furthermore, a high SNR is relevant in
many applications not involving transduction of information
through the SR system: e.g., generating a high-power, low-
noise, monochromatic wave.

While the class of input signals considered in this work is
amenable to the use of the SNR as an adequate measure of
the system response, more complicated signals should, in
general, have their responses characterized by more general
measures, e.g., the mutual information or a distance measure
of the ‘‘separation’’ of output probability densities in the
presence and absence of the signal. The choice of measure is
also predicated by the signal processing task at hand ~detec-
tion or estimation, for instance!; e.g., for detection, the mini-
mum achievable probability of error can be expressed in
terms of various information-theoretic distance measures
~see, e.g., Robinson et al. @8#!.

The construction of the ‘‘optimal’’ detector or filter for a
given signal processing application might be a nontrivial task
in general; however, it is at least clear that the SNR, as
commonly defined in the SR literature, is not the optimal
response measure for systems subject to complex signals. In
fact, this SNR should be invoked only when the signal fea-
ture occurs primarily in a single narrow peak in the input or
output power spectral density; this is usually the case only
for a continuous time-sinusoidal input signal. The dramatic
differences in SNR gain predicted, for example, by the ‘‘ge-
neric’’ systems discussed in this work and the threshold de-
tectors subject to finite-width periodically separated input
pulses @15,16# can, in fact, be attributed to the ~somewhat
questionable! choice of SNR as the measure characterizing
the response in those works, where gains much higher than
unity have been observed.

Stochastic resonance is a sophisticated effect that, clev-
erly applied to an a priori nonlinear device, can improve its
response, particularly to a subthreshold signal in noise. For
such input signals, a better response can generally be ob-
tained by lowering the threshold ~in this case, the potential
barrier! between the stable states than by adding noise; how-
ever, threshold lowering may be difficult to achieve in some
cases. This approach has been applied in some physical sys-
tems, most notably in systems characterized by static nonlin-
earities where the ~in this case nondynamical! SR effect
more closely resembles dithering @14,17#. Neural networks
are thought to use the internal noise as a ‘‘tuning’’ param-
eter, cooperatively adjusting thresholds and internal param-
eters to achieve the best possible response, given the noise
levels already present. A recent model @37# attempts to cap-
ture some of these features, notably ‘‘adaptation,’’ in an
electronic ‘‘fuzzy’’ neural network that mimics a noisy non-
linear system whose dynamics are unknown. The fuzzy sys-
tem tunes its ‘‘if-then’’ rules in response to samples from the
response of the dynamical system and, effectively, learns the
SR effect which it then uses to help itself converge to the
dynamical system’s characterization more rapidly. In net-
works, the response can also be enhanced by ~linear or non-
linear! coupling through an array-enhanced stochastic reso-
nance ~AESR! effect @38#; the response will, of course, differ
depending on whether the noise is uncorrelated from element
to element or is instead ‘‘global’’ in character.

Stochastic resonance will not, however, improve the per-
formance of an already optimal detector ~e.g., an ideal
matched filter—in this case, a single bin in the fast Fourier
transform of the system output—for the detection of time-
sinusoidal signals embedded in Gaussian noise!; in the past,
a failure to recognize this simple truth has led to a consider-
able amount of confusion in the literature. An exception @39#
occurs when one considers a signal processing scenario with
a nonlinear sensor connected to an optimal detector that is
subject to a noise floor, e.g., from the ambience or the mea-
surement and readout electronics, as happens quite often in
practice. In this case noise added to the sensor or input signal
can, in fact, enhance signal detectability, displaying a SR
effect with the maximal response occurring for a value of the
added noise intensity that depends on the noise floor. This is
a result of the fact that the noise floor destroys the ‘‘invert-
ibility’’ of the system or, alternatively viewed, renders an
otherwise optimal detector suboptimal. Adding noise then
helps overcome the noise floor via the amplification effect of
SR.
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APPENDIX: NUMERICAL TECHNIQUES

The general numerical method we use for solving a sys-
tem of stochastic differential equations ~SDE’s! is the
‘‘equivalent Heun scheme.’’ Provided certain symmetry con-
ditions hold, this scheme has a ‘‘local’’ ~i.e., one-step! accu-
racy of O(h3), where h is the size of the time step and a
‘‘global’’ ~arbitrary number of steps! accuracy of O(h2)
@40#. If, as in our case, the noise term is independent of the
system state ~i.e., additive noise!, then the aforementioned
symmetry conditions are automatically satisfied; further-
more, the equivalent Heun scheme in this case reduces to the
simpler Euler-Maruyama scheme.

The time step h must be chosen small enough to ensure
numerical stability. This becomes an issue for large signal
and/or noise, particularly in the Duffing case due to the pres-
ence of an x3 term in the Langevin equation. For the Duffing
and neuron simulations we used time steps of h50.007 670
~8192 time steps per driving period! and 0.005 008 ~1024
time steps per driving period!, respectively.

We use the Box-Muller algorithm @41# to generate the
required Gaussian random deviates ~white Gaussian noise!.
To generate OU ~colored! noise, we include in our system of
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stochastic differential equations a white noise driven
Ornstein-Uhlenbeck equation.

The numerically generated time series solutions must be
windowed and Fourier transformed. The frequency resolu-
tion is inversely proportional to the window time length ~i.e.,
the number of time series points per window!, so it must be
chosen large enough to provide sufficient frequency resolu-
tion around the driving frequency. We typically set the win-
dow length equal to 32 periods of the driving signal, result-
ing in a fundamental response exactly ‘‘centered’’ in the
33rd bin of the discrete Fourier transform ~DFT! ~the first bin
is dc!. Given our choices of h above, this implies 218 points
per Fourier transform for the Duffing simulations and 215 for
the neuron.

The window length should also be chosen long enough so
that the simulation reaches equilibrium. In a double-well sys-
tem with subthreshold driving, this puts a definite practical
limit on the minimum value of the noise intensity D. For
simulations involving colored noise, the window length
should also be much greater than the noise correlation time.

Before performing the DFT, the data may be multiplied
by a windowing function to help reduce ‘‘leakage’’ to neigh-
boring bins of any strong, narrow peaks that do not fall pre-
cisely in the center of a frequency bin. However, in the mod-
els studied here, the peaks occur at the driving frequency and
its multiples. By choosing the driving frequency to be cen-
tered in one of the frequency bins, we can eliminate leakage
without using a windowing function.

We estimate the power spectrum by computing the aver-
age of the magnitude squared of the DFT’s of many win-
dows’ worth of time series data ~after discarding the first
window’s worth of data to skip over the start-up transient!.
We use the fast Fourier transform @41# to compute the DFT
efficiently.
Typically we average 2048 windows’ worth of data to
allow us to estimate SNR’s with errors of significantly less
than 1 dB. Our contour plots are typically evaluated at 256
parameter space points. Such large computations necessitate
using many processors in parallel. Each processor can be
assigned the task of computing the result at one point in
parameter space. Alternatively, all the processors can be
given the task of computing the result at the same point in
parameter space, but with less averaging and with each pro-
cessor using a unique random number generator seed. The
final result is then obtained by averaging over the results
obtained by each processor. Current parallel supercomputers
such as the Cray T3E, SGI Origin 2000, or IBM SP can
compute one such contour plot in several hours’ time if 64
processors are employed. Since very little interprocessor
communication is required, networks of workstations may
also be employed instead of supercomputers.

The values obtained for each frequency bin represent the
power contained in that bin; i.e., they correspond to the in-
tegral of the power spectral density ~PSD! over the width of
the bin. We defined our SNR’s ~8! and ~9! as signal power
divided by the noise PSD. To obtain our numerical SNR
estimate, note that the total power in the driving frequency
bin equals the signal power plus noise power. We estimate
the noise power in the driving frequency bin by considering
the power in the nearby bins above and below the driving
frequency bin ~excluding bins very close to the driving fre-
quency bin!. We can either average them or fit a Lorentzian.
We subtract this estimated noise power from the total power
in the driving frequency bin to obtain the signal power. We
divide the estimated noise power by the bin width to obtain
an estimated noise PSD; the signal power is then divided by
the so-obtained noise PSD to obtain an SNR that agrees with
our definition.
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