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1. Introduction

A wealth of basic research work to investigate
open quantum systems has been put forward in
recent years and applied to numerous applications
in the fields of chemistry and physics [1-4]. A
prominent example with ever increasing activity
addresses the problem of charge transfer in a dis-
sipative environment. There exist numerous mod-
els in the literature designed to describe electron
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(or proton) transfer [2]. A particularly appealing
approach is based on the familiar spin-boson
model [1] which provides a pragmatic, yet still re-
alistic formulation for the physics of a dissipative
donor—acceptor electron transfer (ET) [2].

Often, the dissipative influence of the environ-
ment allows for a semiclassical description, while at
the same time the full quantum nature of the elec-
tron dynamics must be accounted for. Such a type
of the mixed quantum-classical description is
presently very much on vogue [5-11]. The literature
offers several such methods, but at the same time
providing no guide of how to single out a most
useful and advantageous approximation scheme.
In this work we compare two popular such
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approaches. The Zusman approach, introduced in
Section 3, and the nonlinear Langevin model,
presented in Section 4, are not solely restricted to
describe ET in condensed phases; these provide a
generic scheme to model a few level system coupled
to a dissipative oscillator. As such these two
schemes carry the potential for even broader ap-
plications in modeling the dynamics of open
quantum systems.

2. Electron transfer model

Let us consider the following archetypal Ham-
iltonian
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which is widely used to describe the ET processes
in condensed media [2,12]. In Eq. (1), 6, := |1){1|—
|2)(2] and 6, := [1)(2]| + |2)(1]| are the pseudo-spin
operators expressed via the localized donor, |1),
and acceptor, |2), states; 1 is the 2 x 2 unity
matrix. Furthermore, the diabatic electronic states
Vi2(X) constitute the Born—-Oppenheimer poten-
tials for the nuclear (reaction coordinate) motion.
We consider in this work the standard harmonic
oscillator potentials

Vi(%) = dmags?,

Va(%) = ymag (& — x0)” — o, .
where x, is the spatial displacement between the
two shifted parabolic surfaces, and ¢ is the energy
distance between the minima. For convenience, the
donor well 7;(x) is centered on the coordinate or-
igin. The curvature of the two wells is assumed to
be equal and is characterized by wy. Moreover, the
potential curves are often characterized by the so-

called reorganization energy
E, = imwjx;. (3)

The connection between the various parameters is
illustrated with Fig. 1. Furthermore, the electronic
states can generally be time dependent, due to the
presence of a time-dependent electric field & (¥).

Fig. 1. The diabatic reactant J; and the product }, energy
surfaces presented by harmonic functions of the reaction co-
ordinate x (cf. Eq. (2)). The bias ¢, is the difference between the
energy minima of the surfaces. E; denotes the reorganization
energy, and x* is the point of intersection at which the ET takes
place. The curvature of the wells is characterized by wg. The
curved arrow indicates relaxation along the reaction coordinate
and the horizontal arrows indicate the tunnelling-assisted
crossing motion.

This time dependence can be accounted for in
the dipole approximation as Vj»(%,¢) := Vi (%) —
c_z’al‘zc«?;(t). Note that the diabatic electronic dipole
moments 51'1‘2(92) should generally depend on the
reaction coordinate x. However, we consider the
corresponding dependences as a higher order ef-
fect, and put consequently d :=d(0), ds:=
d, (x0). Moreover, we assume that the reaction
coordinate has no associated charge or dipole
moment. These very same assumptions are com-
monly made also in recent works on laser driven
ET [13-16]. In these models one neglects any direct
influence of the external field on the reaction co-
ordinate dynamics. The electronic coupling 4 in
Eq. (1) induces the electronic transitions between
the diabatic electronic states (ET). We consider
this coupling in the Condon approximation, i.e.,
its dependence on the reaction coordinate is ne-
glected.

The reaction coordinate with the effective mass
m and momentum p represents some distinctive
nuclear degree of freedom (e.g., a collective vib-
rational mode of protein) which is strongly cou-
pled to the ET [2]. The effect of the remaining
molecular nuclear degrees of freedom and of the
surrounding on the reaction coordinate can be



described on the phenomenological level as a
friction term. Microscopically, friction is taken
into account in Eq. (1) by the bilinear coupling of
the reaction coordinate to thermal bath of har-
monic oscillators at frequencies w; and masses m;
[17,18]

f?—lZ 2 szJrciA2 (4)
B=75 A\ m m;w; | X; m,»a),?x .

This coupling can be characterized by the bath
spectral density J(w) = (n/2) Y, (c/miw;)d(w —
;) [1]. In the continuum limit we choose the
smooth ohmic form J(w) = nwexp(—w/w.) with
the frequency cutoff w. — oo [18] and a phenom-
enological friction coefficient #.

The reaction coordinate dynamics often allows
for a (semi) classical treatment. This approxima-
tion is well justified when the temperature 7T is
sufficiently high such that the characteristic time of
thermal fluctuations tr = %/(nkgT) is much less
than the characteristic time scales for the reaction
coordinate dynamics, i.e., Tt < T3 = min{wal,m /
n}. At T =300 K, tr ~ 8 fs, and with the vibra-
tions obeying wy < 25cm™! =~ 4.7 x 10"2s7! the
reaction coordinate dynamics can be treated
semiclassically. Especially, this approximation is
valid at room temperatures for solvents where 7 is
typically of the order of several picoseconds. Our
goal in this work is to compare two common, al-
though very different ways of doing the semiclas-
sical approximation in the ET dynamics described
by the Hamiltonian (1).

3. Zusman equations

The first approach to the above stated problem
utilizes the reduced density matrix method. In a
first step, the master equation for the reduced
density matrix p of the “electron + reaction coor-
dinate” system is derived in the coordinate repre-
sentation. This task can be accomplished using
either the real-time path integral approach [12], or
by the cumulant expansion method [19]. The re-
sulting master equation reads within the semi-
classical approximation of the bath [12,23]:
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& p0) =~ (0, p0)] — 5 (5[5, (0,
)| (5)

where [4,B]:=AB — BA and [4,B|, := AB+ BA
denote the commutator and the anticommutator
of two arbitrary operators, 4 and B, respectively
(note that p and Hy commute). In Eq. (5) the
dissipative part has the well-known Caldeira—
Leggett form [18]. In the absence of external
driving, this equation has been derived in Ref. [12].
Note that the external driving does not affect the
dissipative part in Eq. (5). This latter approxima-
tion is fully consistent with the classical approxi-
mation for the thermal bath, where the thermal
random forces are approximated by the Gaussian
uncorrelated (white) noise (see below). In the next
step, Eq. (5) is rewritten in terms of the Wigner
function [24,25]

pd) =5 [ o exp(ipd /)
x Xk - X/, (©)

where W (x,p,t) is a 2 x 2 matrix. This transfor-
mation is used to mimic the approach to the
classical limit, namely the Wigner function repre-
sents the probability density function (PDF) in the
phase space (x, p) in the limit # — 0. Then, keeping
only terms of leading order in z (& — 0) Eq. (5)
results in a hybrid of quantum Bloch equation and
the classical Fokker—Planck equation (cf. Refs.
[12,23]). Finally, we assume a sluggish reaction
coordinate dynamics, i.e., it is strongly over-
damped, with y =#/m > w, (while still obeying
y < kT /h). In this limit the dynamics of the re-
action coordinate momentum p is not of relevant
interest; it thus can be integrated over. In the basis
of localized states, |i), i = 1,2 we have

%mnzlw@%wgm (7)

o0

where (...);; := (il(...)|j). For large times ¢ > ™'
the equations of motion for p;;(x, #) can be obtained
by the method of an inverse friction expansion [26].
To leading order in y~! the distribution for the
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reaction coordinate momentum p at any space
point x is assumed to be Maxwellian, i.e.
1
V2mmksT
x exp(—p*/2mkyT)py;(x,1). (8)

The final semiclassical equations are Smoluchow-
ski-like, reading [23]

VVij(xyp7 t) =
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Jr%[Vl(x) — Va(x) + €(t)]py (x, 7).
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Here, the time-dependent electric field influence is
contained in the function

e(t) = (dr —dy) - E(2). (10)
In Eq. (9) we have introduced the two Smolu-
chowski operators

0 /0 1 ©
L =D—(—+——N
! 6x<6x+kBT Ox 1(x)),
0/0 1 0
%, —Da(aﬁ-]@—Talfz(x)),
which describe a diffusion dynamics on the energy
surfaces ¥j(x) and J5(x), respectively. Moreover,
the operator ¥ = (% + %,)/2 describes the dif-
fusion on the averaged potential. The macroscopic
diffusion constant D is connected with the phe-

nomenological friction coefficient # and the tem-
perature T by the Einstein relation

(11)

T T
p_ el _ kT

= (12)

The diagonal elements p,; (x,?) and p,,(x,?) can be
interpreted as the PDF for the reaction coordinate
position x when the electron is situated at the

donor or acceptor site, respectively. The external
driving force €(¢) in Eq. (9) can be understood as a
time-dependent modulation of the energy gap ¢
between the minima of the two potential surfaces.
The specific form of this modulation is defined by
the time dependence of the driving field &(¢),
which is arbitrary. In this work we confine our-
selves, however, to the periodic drive

e(t) = écos(Qr) (13)

with angular frequency Q and (scaled) amplitude €.
Furthermore, the ET process is described by the
evolution of the reduced density matrix

A= [ avp o) (14)

We are interested in the following in the time
evolution of the donor population Py;(¢) and the
acceptor population P(¢), respectively.

In the absence of external driving, Eq. (9) have
been established first by Zusman in 1980 [27]. In
the field-free case, they have been analyzed in nu-
merous works, notably in Refs. [12,27,28]. The
most appealing and striking feature of the Zusman
equations is that they are nonperturbative in the
electronic coupling strength 4, thus these allow for
the unifying treatment of both the adiabatic and
the nonadiabatic limits of the ET process. In the
related analytical treatments the regime of suffi-
ciently small electronic couplings 4 < E; has been
investigated. Especially, it has been shown that an
increase of the friction strength # leads to the
crossover from the nonadiabatic (lowest order in A)
to the adiabatic (independent of A) regime of ET.
It is worth noting here that, per se, the Zusman
equations are not restricted to the regime 4 < E,.
The limit of large electronic coupling, 4 ~ E;, or
A > E, can be investigated numerically, but pre-
sents a challenge for the analytical treatment. A
less known and seemingly problematic peculiarity
is that these equations may violate the positive
definiteness condition of the quantum evolution of
the electronic subsystem, i.e., the matrix P;(¢) may
cease to be (semi)positively defined at small initial
times [29]. This peculiarity, however, does not
matter in practice because it happens only on the
small time scale of thermal fluctuations ¢ < 71 [30]



where the Markovian equations themselves are,
strictly speaking, no longer valid. This feature does
not present a real surprise since it is inherent also
in the Caldeira-Leggett form of the dissipative
operator in Eq. (5) [19-22]. The fact that the vio-
lation of the positivity of quantum evolution on
the time scale of 7t does not present a decisive
criterion has been discussed previously in the lit-
erature [19,31-33].

Recently we performed a prime analysis (both
numerical and analytical) of the generalized Zus-
man equations (9) in the presence of strong peri-
odic driving. The results of this analysis are
detailed elsewhere [23]. Here, we summarize our
results for the nonadiabatic limit of ET. Within
the parameter regime 4 < {E;, \/2E./i/t} (where
t=1yp/w} is the relaxation time of the over-
damped reaction coordinate), fast periodic driving
Q> I'na, and for an initially thermally equili-
brated reaction coordinate the ET can be charac-
terized by

P]](t) :PH(OO) + (1 7P11(OO)) eXp(erA t).
(15)

Eq. (15) predicts an exponential decay with a total
rate constant I'na = ki, + kya given by the sum
of forward and backward nonadiabatic rates [23],

A7 [ 28 . Ot
+ __ QN —
kNA_2h2/() dtJ()(hQ s1n2>
ErT — €0
xcos(h(l e ):th>
2E kg T
xexp( r;I;B r[(1 —e‘/f)r—t]>. (16)

These rates present in fact the golden rule result in
the lowest order 4, being generalized to include the
periodic field influence [23]. At long times the
(averaged) asymptotic limit Py;(c0) = k™ /[T + k7]
is assumed. In the absence of driving, this sta-
tionary value is defined by the Boltzmann relation
Py1(00)/Py(00) = exp(—ey/kgT), obeying the nor-
malization condition Py (¢) + Px(f) =1, i.e.,

Py (c0) :% [1 — tanh (ZEET)} (17)
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4. Langevin approach

Because the Zusman equations present an an-
alogue of the Smoluchowski-like equations we
pose the question: does there exists an equivalent
formulation in terms of SDEs (Langevin ap-
proach)? To answer this challenge we start from
the Heisenberg equations of motion for the Hamil-
tonian (1) and integrate over the thermal bath
variables (see, e.g., Refs. [1,3,4,17]). The final re-
sult reads

%MO _ _%(6(1) + V(%) — V()6 (1),
%&V(t) —%Aﬁz(t) +%(e(t> + V()
— 1a(%))6x(1),
o) = %A&y@,mj—;f(t) (18)
+ % ;(Vl(x) + 1A(%))
% %(Vl@ — (%)) (1)
[0 Sy ar 1 éo,

where 77(1) =2 [[¥ dwJ(w)cos(wt)/w is the fric-
tional memory kernel, and

&) = — Z ¢ lﬁf(o) sin(w;t)

m;Q;

+ ()E,-(O) + C,;fi()?) cos(w,.t)] (19)

denotes the operator-valued random force. Pro-
vided that the initial distribution of {;(0),%;(0)} is
characterized by the shifted equilibrium density
matrix of the bath py = exp(—Hg/ksT)/Z, the
random force £(¢) obeys a Gaussian statistics and
is fully characterized by the autocorrelation func-
tion [1]

i =" [0 coth (5 ) costan)

I

—1sin (cot)} dow. (20)
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In the considered limit that w, — oo, the ohmic
friction is memoryless, i.e., 7j(¢) = 256(¢), and the
quantum correlation (20) acquires the form

EOEO)y ~ 2 1% T, 1)
T (14 iwt)
where
1 | 1
f() =2 llzsmhz(t/ﬁ)] (22)

is a function that assumes a Dirac J-function
in the (high-temperature) limit tp =7%/(nkgT)
— 0. In Eq. (21), the first (complex-valued) term
corresponds to the zero-temperature contribu-
tion and shall be neglected in our following
(semi)classical approximation. Moreover, within
the same approximation f(¢) can be replaced by
0(#). Then, the dissipative part of the quantum
Langevin equations (18) precisely corresponds to
the Caldeira—Leggett form of the dissipative op-
erator within the master equation description (5).
Furthermore, let us assume that the reduced
density matrix p,., of the whole system is initially
factorized, i.e., p,(0) = p4(0) ® pg, where p(0)
is the initial reduced density matrix of the
“electron + reaction coordinate” system. We are
interested in the stochastic Langevin-like equa-
tions of motion for the observables o,(f) =
Trs(p,(0)6,(¢)) when additionally the semiclassical
limit for the reaction coordinate and the bath
degrees of freedom is invoked. In doing so, we
encounter terms like Try(p,(0)a6;(¢)F(x(¢))), where
F is a function of x. In the spirit of a semiclassical
approximation, we use a decoupling approxima-
tion, i.e., Try(p,6;(0)F(%(¢))) =~ ¢;(¢)F(x(¢)). This
mean-field type of approximation has commonly
been used in the theory of the Davydov soliton
[34] and in the related field of the so-termed
nonlinear dimer (see, e.g. Ref. [35] and references
therein). It presently enjoys, with various modifi-
cations, an increasingly popular revival in the
literature [5-7]. Performing all these approxi-
mations we obtain in the overdamped limit the
result
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where & (¢) is a classical Gaussian white noise with
the autocorrelation function (&(¢),€(0),)p =
2nkTo(t). One might expect that Eq. (23) corre-
sponds to the Langevin counterpart of the Zusman
equations (9). This, however, is not the case. An
appealing feature of Eq. (23) is that the evolution
of the electronic reduced density matrix

P) = 5 (i + 3 &m<au<r>>g>,

=x,y,2

obtained by the averaging of Eq. (23) over sto-
chastic realizations is positive on the whole time
scale of the ET. Therefore, no negative populations
can emerge in principle. This can be deduced from
the fact that the length of the stochastic Bloch
vector &(t) = [ox(t),0,(t),0.(t)] is conserved, i..,
a*(t) = a;(t) + 0,(¢) + o2(t) = 1. Put differently,
the stochastic dynamics of pseudo-spin happens
on the Bloch sphere of unit radius. Since
(0,): < (02). it follows that 3>, (o, ()); < 1, ie.
the length of the averaged Bloch vector cannot
grow with time. The latter condition is equivalent
to the (semi)positivity of the density matrix P;;(¢)
[36]. This prominent feature makes it clear without
further analytical insights that Eq. (23) cannot
represent the Langevin counterpart of the Zusman
equations (9).

We next specify Eq. (23) for the case of para-
bolic potentials in Eq. (2). Performing the coor-
dinate shift y = x — x¢/2, we end up with
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. 1 5 capable to reproduce correctly (in a limiting case)
oe(t) = - 7 (60 () + mogxoy (t))ay(t), the behavior of the rates. The inclusion of the re-
. 1 1 action field in Eq. (24) thus appears to present a
ay(1) = _%AGZ(I) T 7 (eo + (1) step forward beyond the SLA description.
+ maRxoy(t)) o (2), (24) Let us clarify next whether the inclusion of the
| reaction force in Eq. (24) indeed provides the
6.(t) = % Ao, (1), correct asymptotic behavior of the populations. In
1 1 Appendix B we derive (in the absence of driving)
() =—=y(t) — 2—xoaz(t) + V2Dy (1), the following exact result
T T
1 fol zlo(zk“?M) exp (ﬁ’j,) sinh( ;’;‘]T)dz
Pll (OO) = E 1— 1 ) > £ e ) (25)
Jo Io(m\/l —z > exp (4,;BT) cosh <2kgr) dz

wherein y(¢) is white Gaussian noise with corre-
lation, (x(¢)x(¢))s = 6(¢t — ¢). A close inspection of
Egs. (24) reveals (after the rotation ¢, — g,
o, — 0., and a corresponding scaling of the vari-
ables) that the nonlinear SDEs (24) present nothing
but the generalization of Eq. (2.7) in Ref. [35] to
the case of a nonzero and time-dependent bias:
€ # 0, €(t) # 0. The set of equations (24) is fully
equivalent to the equations derived recently in Ref.
[8], cf. Appendix A. An appealing feature of Eq.
(24) is the presence of the reaction force term
proportional to o, in the equation for j(¢). This
latter term accounts for the back force acting from
the pseudo-spin 1/2 on the thermal bath. If we
were to neglect this term, we obtain a stochastic
Liouville equation description, where the classical
random force that accounts for the thermal bath
influence, is added into the Hamiltonian, i.e.,
€0 — € + mwxoy(t). In this latter case, the last
equation in Eq. (24) generates the Ornstein—
Uhlenbeck process with the autocorrelation time
©=1/(mw}) and with a root mean square noise
amplitude (rms) of +/2E/kgT (in energy units).
Such Langevin-like equations which correspond to
a stochastic Liouville approach (SLA) have been
used for the problem of proton transfer in former
work by Morillo and Cukier [9,10]. A drawback of
this SLA is that it yields an asymptotic equipop-
ulation of the energy levels, ie. Pj(o0) =
Py(00) = 1/2 [37]. However, it has been shown in
Ref. [9,10], that this SLA Langevin description is

where Iy(z) is the modified Bessel function. In the
prominent limiting case that 4 < {E,,kgT}, the
result in Eq. (17) is obviously correct, while Eq.
(25) provides in this limit incorrect results (see the
numerical examples given below). It thus appears
that, by making the above semiclassical mean-field
decoupling approximation we implicitly approxi-
mated the quantum dynamics of the spin S =1/2
with the classical spin dynamics. In conclusion, the
Zusman equations (9) are more accurate in de-
scribing the quantum dynamics; to capture the
back action force correctly within the Langevin-
like description one needs to go beyond the mean-
field decoupling approximation used in Eq. (24).
The challenge to obtain a fully equivalent Lange-
vin description thus still remains.

5. Numerical results and discussion

Let us test these preliminary conclusions nu-
merically. The ET process within the considered
model can be characterized by the following phe-
nomenological parameters: (i) the electronic cou-
pling 4; (ii) the static energy bias ¢; (iii) (medium’s)
reorganization energy E;; (iv) (medium’s) auto-
correlation time 7, and (v) the temperature 7. We
have performed our analysis with the following set
of parameters being typical for a nonadiabatic ET
regime: A4 =10cm™!, E, =500 cm™!, t=1 ps,
and T = 300 K. The static bias ¢, was varied from
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€0 = 0 (symmetric transfer), through ¢y = 500 cm ™!

(activationless ET), towards ¢, = 800 cm™' (in-
verted regime of ET). Note that the parameters
were deliberately chosen to justify a classical bath
dynamics. In this limit, the bath dynamics is slow
on the time scale characterized by the tunneling
frequency 4 of the two-level system, ie., /1=

\/ € + A*/h. For the symmetric situation (¢y = 0),

we have At ~ 4 being intermediate between the fast
and the slow bath limits. For the activationless and
the inverted regime we obtain the proper slow bath
limit, because At > 1. The reasons for such a choice
are twofold. First, the quasiclassical approxima-
tion leading to Eq. (24) is assumed to be well suited
for the slow bath limit [5-7] and we would like to
check this general assertion in our particular case
of a strong coupling to the bath. Second, with the
discussed choice of parameters we make it clear
that the so-called slow bath limit should not be
confused with the adiabatic limit of ET, although
both limits do overlap. In all considered cases, the
resulting ET-dynamics is very close to the non-
adiabatic ET-limit, being well described with the
golden rule rates (cf. Figs. 2 and 3).

The numerical technique for the solution of
Zusman equations (9) is detailed in Ref. [23]. We
remark here, however, that we have started always
from an initial preparation where the electron is
fixed on the donor and the reaction coordinate is
relaxed to the thermal quasi-equilibrium under this
constraint. The Monte Carlo simulations for Eq.
(24) have been performed with the wunitary Euler
algorithm (see Appendix C). A nice feature of this
algorithm is that it conserves the length of the
Bloch vector for a given stochastic trajectory. In
other words, the unitary character of the stochastic
pseudo-spin evolution on the Bloch sphere is pre-
served at all times. The initial conditions have been
matched to correspond to those for the Zusman
equations, i.e., 0,(0) =1 and x(0) was sampled
from the Gaussian probability density, p[x(0)] ~
exp(—mwix(0)’/(2kgT)). To obtain convergent,
averaged results, we did run 10*-10° stochastic
trajectories for each considered case.

Fig. 2 depicts the results of our comparison for
the case without external driving. For symmetric
ET (cf. Fig. 2a), the numerical solution of Zusman

equation (full line) is in a very good agreement
with the analytical result given by Eq. (15) with the
golden rule rate (16). The Langevin equations (24)
predict slightly different results. These results also
allow for a fit with only one single-exponential
relaxation term. The corresponding rate differs by
15% from the one given numerically by the Zus-
man equations. The agreement is nevertheless fair.
For the activationless case (Fig. 2b) and for the
inverted regime (Fig. 2c), however, the situation
changes drastically. For the considered parameters
the golden rule and the Zusman equations are
again in good agreement; in contrast, the Lange-
vin-like equations (24) fail badly. The asymptotic
value Pj(co) obtained from the Langevin equa-
tions (24) coincides very well with the analytical
prediction in Eq. (25). This agreement provides a
successful check of the consistency of our Lange-
vin numerics. Nevertheless, this asymptotic value
differs drastically from the corresponding predic-
tion of the Zusman theory, or equivalently the
golden rule result. Even worse is the finding that
also the dynamics are reproduced incorrectly. In-
stead of a single-exponential decay, the Langevin
dynamics of Eq. (24) predict a bi-exponential dy-
namics with two equally weighted rates. Similar
results on the breakdown of mean-field decoupling
approximation have been stated in Ref. [8].
Moreover, our findings are consistent with an
earlier observation [22] that the theory of Lindblad
type [36] has also a problem with the asymptotic
long time behavior. The similarity between the
considered mean-field Langevin approach and the
Lindblad theory is that both the methods conserve
positivity of the quantum evolution on the whole
time scale of the dissipative dynamics.

Next we demonstrate that the switch-on of a
strong periodically varying driving field drastically
improves the applicability of the Langevin ap-
proach in Eq. (24). We performed the calculations
with the following field parameters: an angular
frequency of Q =500 cm~! and with the field
strength ¢ = 1400 cm~'. Although the asymptotic
populations are still incorrect, the ET dynamics is
now much better described by Eq. (24) as com-
pared to the undriven case (cf. Fig. 3). Thus, in the
driven case the description with Eq. (24) may be-
come fair even if these fail in the limit of an adi-
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Fig. 2. Relaxation of the donor population Py;(¢) versus time 7 for the symmetric (a), activationless (b), and the inverted (c) regimes of
ET in the absence of external driving. The used set of parameters is as follows: T = 300 K, £, = 500cm™', 4 = 10cm™", 7 = 1 ps. The
numerical solutions of the Zusman equations (9) are compared with both the golden rule results, cf. Egs. (15)—(17), and the results of
stochastic simulations of Eq. (24). The golden rule rates are: (a) I'na = 0.0286 (ps™); (b) I'na = 0.0283 (ps™'); (¢) I'na = 0.0212 (ps™!).
In the case of Eq. (9), the equilibrium population P;; (o) is correctly reproduced by Eq. (17). In addition, the one-, or two-exponential
fit to the results of stochastic simulations is depicted. These are explicitly given by: (a) Pi;(¢) = 0.5[1 4+ exp(—0.03187)]; (b)
Pyi(f) = 0.29 + 0.355[exp(—0.0510¢) + exp(—0.0136¢)]; (c) P11 (z) = 0.21 4 0.395[exp(—0.0356¢) + exp(—0.0055¢)]. The asymptotic value

in this fit is taken from Eq. (25).

abatic, or even a vanishing external driving. Note
also that the validity of the golden rule description,
i.e. the nonadiabatic ET-transfer regime, is im-
proved in strong periodic fields [23]. In view of this
fact, the improvement of the mean-field approxi-
mation in strong periodic fields presents indeed a
surprise.

One should also emphasize that the failure of
Eq. (24) for the nonadiabatic ET-transfer regime
does not mean that the discussed method of doing

the semiclassical approximation is generally in-
valid. On the contrary, this kind of approximation
appears to be justified in the limit of a strong
electronic coupling limit, where 4 becomes com-
parable to, or greater than E, [8]. We emphasize
here that in the derivation of Zusman equations
neither a restriction on the relation between 4 and
E., nor any additional approximations like the de-
coupling approximation has been invoked. These
equations are also correct in the limit £, < 4. To
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1

€ = 1400 cm™'. The golden rule rates are: (a) I'na = 0.0173 (ps™!); (b) I'na = 0.0162 (ps™!); (¢) I'na = 0.0152 (ps~!). The results of the
stochastic simulations can be fitted by single-exponential dependences in all considered cases: (a) Py;(7) = 0.5[1 + exp(—0.0163¢)]; (b)
Py (f) = 0.535 4 0.465 exp(—0.0154¢); (c) Py (¢) = 0.5[1 4+ exp(—0.0163¢)]. Panel (b) depicts the inversion of populations due to the

externally applied periodic field, i.e., Py;(c0) > 1/2.

demonstrate this remarkable fact we performed
our numerics for the special set of parameters used
in Ref. [8] (in units of 7i/7): 4 = 1, kT = 2, ¢, = 0.
E. was varied among three values: (a) £, = 0.2, (b)
E.=0.5 and (¢) E, =1.0. The reason for this
special choice is that for these parameters good
agreement has been found in Ref. [§] between the
behavior of the populations within the stochastic
description in Eq. (24) and those achieved with the
tensor multiplication scheme of Makri and
Makarov [40,41]. The latter results can be used as
a benchmark here. The results of our stochastic
simulations and the numerical integration of
Zusman equations are depicted with Fig. 4. In the

case (a) the agreement is remarkable indeed. The
data set in (c) also demonstrates good agreement.
Even for the case (b), where some discrepancy
occurs, a decisive conclusion about which of two
schemes (Zusman vs. Langevin approach) is closer
to the tensor multiplication scheme is not really
possible.

Moreover, it is worth noting that the behavior
of the g,(¢) component of pseudo-spin is not given
accurately by Eq. (24) (cf. Ref. [8]). Thus, the
whole density matrix Py(¢) is not reproduced cor-
rectly by the stochastic Langevin approach in Eq.
(24)! We presume that the Zusman equations (9)
do not suffer from this drawback.
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Fig. 4. Dependence of the donor population Py;(¢) on time # for the field-free symmetric case studied in Ref. [7]. The parameters are
given in units of 7i/t: A = 1, kyT = 2, ¢y = 0. The reorganization energy E, was varied among the three values: (a) E; = 0.2, (b) E; = 0.5
and (c) £, = 1.0. The transition from coherent to incoherent behavior is well captured both by Zusman equations and Eq. (24).

6. Conclusion

With this work we primarily have performed a
detailed comparison between two familiar, al-
though very different approaches in order to im-
plement the semiclassical approximation for the
sluggish reaction coordinate dynamics of a charge
transfer dynamics. These two schemes relate to a
generalization of the Zusman approach and the
nonlinear semiclassical Langevin dynamics. In
doing so, we have considered both an undriven ET
dynamics and a time-periodic ET-manipulation
via external, generally strong electric fields. We
demonstrate that both methods yield good agree-
ment for the description of a symmetric ET. In

contrast, however, the semiclassical nonlinear
SDE method fails to describe the ET dynamics
when a strong static bias is present. The inclusion
of a strong time-periodic field ET-manipulation
appears to cure the Langevin scheme, providing
reasonable good agreement between both routes.
Nevertheless, the Zusman approach is advanta-
geous when applied to the high-temperature,
semiclassical regime of an ET-dynamics. An in-
triguing problem however remains: What is the
best scheme to correct (improve) the dynamics of
the reaction field? In doing so, one must go beyond
the tractable mean-field decoupling approxima-
tion. This challenge surely presents no easy task.
The overall positively defined evolution of the
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whole electron reduced density matrix displayed
by Egs. (23) and (24) seems appealing; this prop-
erty is not necessarily guaranteed at initial short
times with the Zusman equations. It should be
kept in mind, however, that nonMarkovian effects
then play an increasingly important role as well.
Nevertheless, given the possibility to improve the
simple decoupling approximation the second route
with correspondingly amended nonlinear Lange-
vin equations deserves future considerations.
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Appendix A. Equivalence of different representa-
tions of nonlinear Langevin equations

In this appendix we show the equivalence of our
Eq. (24) and Eqgs. (29)—(32) in Ref. [8]. To this end
we simply recast the dynamics of y(¢) in Eq. (24)
into three parts with y(¢) = »1(¢) + (f) + 30 (2),
where:

() = =n (1) /v + V2Dy(0) (A.1)
with the initial condition y,(0) = 0. Moreover,
(1) = =xa(1) /7 = x00:(2)/(27) (A2)
with the initial condition y,(0) = 0, and

Jo(t) = =n(1)/7 (A-3)

with the initial condition yy(0) = x(0) —x/2. In
Eq. (A.3), x(0) denotes the initial position of the
reaction coordinate. The case x(0) = 0 used in our
calculations corresponds to the case of a non-
equilibrium solvent preparation in Ref. [8] (the
case o = 1 therein). The case x(0) = x,/2 corre-
sponds to the equilibrium solvent preparation

(o« = 0) in Ref. [8]. Eq. (A.3) is trivially integrated
and our y(¢) represents in Egs. (29) and (30)
of Ref. [8] a transient contribution to the energy
bias, i.e., ¢g — € + y(¢), which reflects the initial
preparation effects. The advantage of the (y,
W, )-representation in Ref. [8] is that it allows to
interpret the corresponding set of equations as
nonlinear equations driven by an external noise
(Ornstein—Uhlenbeck process, cf. Eq. (A.1)) with-
out any feedback onto the noise source. However,
in order to perform the numerics our compact set
(24) appears to be more convenient.

Appendix B. Calculation of equilibrium populations

In this appendix we give the derivation of Eq.
(25). First, using standard manipulations [36] we
recast the Langevin equations (24) into their
Fokker—Planck counterpart, i.e.,

aP(Gm 0y, 0x,), t)
ot

[eo + €(2) + mwéxoy]

h 0
X (aya_gx - O'xa)P(UXa Ty, Ox, Vs 1)

St —

1 0 0
“Alo.——¢,— |P
+h <O’Zaay Uyao_z> (O—xvo—yvo—xvyat)

1o, 1
AL CAL AL A
2

0
+Da_y2P(o-xao'yvo'x7y7t)' (Bl)

Here, P(o,0,,0,,y,t) is the time-dependent PDF
in the space (o, 6,, g, y). The equilibrium solution
to Eq. (B.1) in the absence of driving [e(¢) = 0]
reads

Peq(o-xa Gy, Gxay)

:(gexp(

1
~ %7 (4o, + (€ + mapxey)o.

+ mwgyzoa(oi +@+ai-1). (B2
It can be verified by the direct substitution (%

denotes here the normalization constant). The re-
duced PDF for the spin subspace
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Qeq(o_xao—yao—x) = / Peq(Ux,nyﬂxvy) dy (B3)
is obtained from Eq. (B.3). Furthermore, let us
change in Eq. (B.3) to the angular variables:
g, =rcosfl, o,=rsin0sing, o, =rsin0cose.
Then, the value » = 1 is fixed by the d-function in
Eq. (B.2). The reduced PDF in the probability
space defined by two angular variables on the
Bloch sphere then reads

TCkBT 1
- 0
E. % exp ( T [60 cos

1
—3E cos? 0 + Asin 0 cos (j)]) sin 0.

Qeq(gv ¢) =

(B.4)

From Eq. (B.4) one can calculate all averaged spin
projections (o,(c0)).. In particular, for the z-
component of the pseudo-spin —1<z:=0.=
cos 0 <1 we integrate over ¢ to obtain the corre-
sponding marginal PDF. It reads

I(z) =

Z2 ZE€,
Io(ﬁ\/l —zz) exp (ﬁ‘BT — ZkBOT)
2 fy 1o (5 VI=2) exp (457 ) cosh (527 ) d
(B.5)

By virtue of Eq. (B.5) the result in Eq. (25) follows
readily.

Appendix C. Unitary Euler algorithm

In this appendix we present the unitary Euler
algorithm used in our calculations. For the sake of
convenience, let us change to the dimensionless
representation of Eq. (24). By use of the scaling for
the time 7 = ¢/t and for the reaction coordinate
q = y/mw}/ksT, as well as the dimensionless pa-
rameters a = At/h, b = \/2EkgT1/h, c(t) = [eo+
e()]t/h, qo = \/E:/(2ksT) we obtain

6:(f) = —[e(?) + bg (D))o, (1),
6,(1) = [¢e(D) + bq(D)]ox(f) — ac- (D),
GZ(;) = ao’y(z)v

§(7) = —q() — q00-(7) + V27(D)

(C.1)
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In the following we suppress the ““tilde” over ¢ and
rewrite Eq. (C.1) in the vector form

d 5 o
&U(t) ZH(q(l‘),t)G(t), (C2)
4(t) = —q(t) — qoo-(F) + V2x(),
where
R 0 —c(t)—bgq(t) O
H(q(t),t) = | c(t) + bq(2) 0 —a
0 a 0
(C.3)

The well-known stochastic Euler algorithm
amounts to the solution of Eq. (C.2) with the
simplest algorithm

G(t+ At) = G(t) + H(q(t), )3 (1) At,

q(t+ At) = q(t) — [g(2) + qoo=(D)] At + V2 Arw(r),
(C.4)

where w(¢) is the zero-mean random Gaussian
variable with unit variance [38]. Note that the first
equation in Eq. (C.4) violates conservation of the
length of Bloch vector. Thus, the time step A must
be chosen sufficiently small, in order to make such
numerical error negligible during the fotal time of
propagation.

In the spirit of deterministic unitary algorithms
[39] one can choose another discretization scheme
and to replace the first equation in Eq. (C.4) with

Gt + Ar) = exp (ﬁ(q(t), 0) At)&(t). (C.5)

Then, the length of the Bloch vector is conserved
at each step of integration. The proposed algo-
rithm thus preserves the positivity of the averaged
pseudo-spin evolution, thereby being of advanta-
geous numerical use. Clearly, our unitary sto-
chastic Euler algorithm outperforms the standard
Euler scheme. With respect to the numerical effi-
ciency, it is comparable with the second order
Heun algorithm [38], but being preferable in view
of its inherent unitary physical features.
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