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Stochastic dynamics of time correlation in complex systems with discrete time
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In this paper we present the concept of description of random processes in complex systems with discrete
time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference
non-Markov equations for time correlation functions ~TCFs!. We have introduced the dynamic ~time depen-
dent! information Shannon entropy S i(t) where i50,1,2,3, . . . , as an information measure of stochastic
dynamics of time correlation (i50) and time memory (i51,2,3, . . . ). The set of functions S i(t) constitute the
quantitative measure of time correlation disorder (i50) and time memory disorder (i51,2,3, . . . ) in complex
system. The theory developed started from the careful analysis of time correlation involving dynamics of
vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihi-
lation of time correlation ~or time memory! in details. We carry out the analysis of vectors’ dynamics employ-
ing finite-difference equations for random variables and the evolution operator describing their natural motion.
The existence of TCF results in the construction of the set of projection operators by the usage of scalar
product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-
Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic
equations for discrete TCFs and memory functions ~MFs!. The solution of the equations above thereof brings
to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities
for detecting the frequency spectra of power of entropy function S i(t) for time correlation (i50) and time
memory (i51,2,3, . . . ). The results obtained offer considerable scope for attack on stochastic dynamics of
discrete random processes in a complex systems. Application of this technique on the analysis of stochastic
dynamics of RR intervals from human ECG’s shows convincing evidence for a non-Markovian phenomemena
associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing
healthy from pathologic data sets based in differences in these non-Markovian properties.

PACS number~s!: 02.50.Wp, 05.20.Gg, 05.40.2a, 05.45.Tp
I. INTRODUCTION

Manifold methods are successfully used in statistical
physics for the description of distinctive characteristics of
chaotic dynamics of complex systems @1–26#. Nevertheless,
three vexing features which are difficult to yield a detailed
and strict analysis are available in complex systems. Among
them: nonstationarity, nonlinearity, and nonequlibrium phe-
nomena. Furthermore, the significant peculiarities of com-
plex systems are directly related to the discretness of time of
object-subject registration response @9,14,15,17,24#. Non-
Markov and long-range statistical memory effects also play
the leading part in the complex systems behavior
@7–9,17,27–33#.

However, the discretness of time while considering the
complex systems has not been taken into account until now,
although it is discretness that is the most commonly encoun-
tered feature of real objects/subjects. On the other hand, the
memory and time long-ranging effects are paramount. As a
rule the state developed is complicated by the fact that the
real complex systems are of nonphysical nature. Therefore,
the direct methods of statistical physics derived from Hamil-
tonian formalism, exact equations of motion and Liouville’s
equation are not applicable in this case to its theoretical
analysis. Meanwhile the real existence of complex systems
in time and space generates a reliable evristic basis for the
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modeling in terms of the time discretness, memory and time
long-range effects.

The present article is dedicated to statistical consideration
of a discretization in temporary changes of complex systems
of a substantial nature on the basis of the first principles. In
Sec. II we briefly outline general definitions and proposals
used to form the stochastic dynamics of discrete time se-
quences, and in Sec. III we suggest the geometrical presen-
tation of stochastic dynamics of time correlation. Introduc-
tion of projection operators, splitting of equation of states
vectors and matrix presentation of Liouville’s quasioperator
for the statistical description of random processes with dis-
crete time are reported in Sec. IV, and introduction of the set
of orthogonal random variables as well as construction of
infinite chain of finite-difference non-Markov kinetic equa-
tions for discrete TCF are framed in Sec. V. A pseudohydro-
dynamic description of random processes is provided in Sec.
VI, where the relative merits of this approach are set forth. In
Sec. VII we define Shannon dynamical ~time dependent! en-
tropy for time correlation and time memory in complex sys-
tems. Aplication of technique on the analysis of stochastic
dynamics of RR intervals from human ECG’s are discussed
in Sec. VIII. In Sec. IX we present the discussion and con-
clusions of the results obtained and possible opportunities for
the experimental data processing.

II. BASIC ASSUMPTIONS AND DEFINITIONS

Following Gaspard @15# we consider a random process
such as a sequence of random variables defined at successive
6178 ©2000 The American Physical Society
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times. We shall denote the random variable by

X5$x~T !,x~T1t !,x~T12t !, . . . ,x~T

1kt !, . . . ,x~T1tN2t !%, ~1!

which corresponds to signal during the time period t5(N
21)t where t is time interval of signal discretization. The
mean value ^X&, fluctuations dx j , absolute (s2) and relative
(d2) dispersion for a set of random variables ~1! can be
easily found by

^X&5
1
N (

j50

N21

x~T1 jt !, ~2!

x j5x~T1 jt !, dx j5x j2^X&, ~3!

s25
1
N (

j50

N21

dx j
2 , ~4!

d25
s2

^X&2
5

1
N (

j50

N21

dx j
2

H 1
N (

j50

N21

x~T1 jt !J 2 . ~5!

The abovementioned values determine the statical ~indepen-
dent from time! properties of the system considered. The
normalized time correlation function ~TCF! @1–3,7–9# de-
pending on current time t5mt ,N21>m>1 can be conve-
niently used for the analysis of dynamic properties of com-
plex systems

a~ t !5
1

~N2m !s2 (
j50

N212m

dx~T1 jt !dx„T1~ j1mt !….

~6!

TCF usage means that developed method is just for complex
systems, when correlation function exist. In forthcoming pa-
pers we intend to apply developed method for discrete ran-
dom processes analysis in complex systems in practical psy-
chology, cardiology ~for the development of diagnosis
method of cardiovascular diseases!, financial and ecological
systems, seismic phenomena, etc. The properties of TCFs
a(t) are easily determined by Eq. ~6!

lim
t→0

a~ t !51, lim
t→`

a~ t !50. ~7!

We have to recognize that the second property in Eq. ~7! is
not always satistifed for the real systems even with arbitrary
big values of time t or number (N21)5t/t . Taken into
account fact that the process is discrete, we must rearrange
all standard operation of differentiation and integration
@34,35#

dx
dt → Dx~ t !

Dt 5
x~ t1t !2x~ t !

t
,

E
a

b
x~ t !dt5 (

j50

n21

x~Ta1 jt !Dt5t (
j50

n21

x~Ta1 jt !5nt^X&,
b2a5c , c5tn . ~8!

The first derivative on the right is recorded in Eq. ~8!. The
second derivative on the right is also derived easily,

d2x~ t !

dt2
→ Dx

Dt S Dx
Dt D

5t22$@x~ t12t !2x~ t1t !#2@x~ t1t !2x~ t !#%

5t22$x~ t12t !22x~ t1t !1x~ t !%. ~9!

Now let us proceed to the description of the dynamics of the
process. For real systems values x j5x(T1 jt) and dx j
5dx(T1 jt) result from the experimental data. Thus we can
introduce in Shannon’s manner @17# the evolution operator
U(T1t2 ,T1t1) in as follows (t2>t1):

x~T1t2!5U~T1t2 ,T1t1!x~T1t1!. ~10!

For brevity let us present Eq. ~10! in the form

x~ j !5U~ j ,k !x~k !, j>k , j ,k50,1,2, . . . ,N21.
~11!

The time operator of one step shift t along a discrete trajec-
tory is conviniently considered by means of two nearest val-
ues x(t1t) and x(t)

x~ t1t !5U~ t1t ,t !x~ t !. ~12!

Owing to Eqs. ~10!–~12! a formal equation of motion is de-
rivable for any xP(x0 ,x1 ,x2 , . . . ,xN21)

dx
dt → Dx~ t !

Dt

5t21$x~ t1t !2x~ t !%

5t21$U~ t1t ,t !21%x~ t !. ~13!

Let us consider Eq. ~13! in terms of x j

Dx j~ t !
Dt 5

x j11~ t1t !2x j~ t !
t

5t21$U~ t1t ,t !21%x j~ t !

and then introduce a Liouville’s quasioperator L̂ as follows:

dx
dt 5

Dx~ t !
Dt 5iL̂~ t ,t !x~ t !,

L̂~ t ,t !5~ it !21@U~ t1t ,t !21# . ~14!

Now in accordance with Refs. @15,16# let us present a set of
values of random variables dx j5dx(T1 jt), j50,1, . . . ,N
21 as a k-component vector of system state

Ak
0~0 !5~dx0 ,dx1 ,dx2 , . . . ,dxk21!

5@dx~T !,dx~T1t !, . . . ,dx„T1~k21 !t…# .

~15!

Now we can introduce the scalar product operation
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^A•B&5 (
j50

k21

A jB j ~16!

with or without indication of obvious time dependence of
vectors A and B, respectively, in the set of vectors Ak

0(0)
and Am1k

m (t) where t5mt and

Am1k
m ~ t !5$dxm ,dxm11 ,dxm12 , . . . ,dxm1k21%

5$dx~T1mt !,dx„T1~m11 !t…,dx„T

1~m12 !t…, . . . ,dx„T1~m1k21 !…t%.

~17!

A number k,N21 determines the vectors’ dimension. The
functions ~4!,~5! can be expressed in terms of scalar product
~16!

s25
1
N ^AN

0
•AN

0 &5N21$AN
0 %2,

d25
N21^AN

0
•AN

0 &

^X&2.

A k- component vector Am1k
m (t) displaced to the distance t

5mt on the discrete time scale can be formally presented by
the time evolution operator U(t1t ,t) as follows:

Am1k
m ~ t !5U~T1mt ,T !Ak

0~0 !

5$U@T1mt ,T1~m21 !t#U@T1~m21 !t ,T

1~m22 !t#•••U~T1t ,T%Ak
0~0 !. ~18!

The normalized TCF in Eq. ~6! can be rewritten in a more
compact form by means of Eqs. ~17!,~18! (t5mt is discrete
time here!

a~ t !5
^Ak

0
•Am1k

m &

^Ak
0
•Ak

0&
5

^Ak
0~0 !•Am1k

m ~ t !&

^Ak
0~0 !2&

. ~19!

Replacement of Eq. ~6! by Eq. ~19! is true if the numbers
k,N21 satisties the condition

s2>k21(
j51

k21

dx j
2 or s25 lim

k→`

k21(
j50

k21

dx j
2 . ~20!

The condition of quasistationarity of processes under consid-
eration

Uda~T ,t !
dT U!Uda~ t !

dt U, ~21!

serves the other criterion of validity for such replacement.
The TCF a(T ,t) in Eq. ~21! is viewed on a time scale ~point
T) at the distance t from the zero point. Such vector notion is
very helpful for the analysis of dynamics of random pro-
cesses by means of finite-difference kinetic equations of non-
Markov type.
III. GEOMETRICAL NOTION OF STOCHASTIC
DYNAMICS OF TIME CORRELATION

First of all let us consider the projection operation in the
set of vectors for different system states. It is easy to intro-
duce it employing the above scalar product ~16!. Then it is
necessary to introduce vectors A5Ak

0(0) and B
5Am1k

m (mt). Using Fig. 1 and simple geometrical notions
we can demonstrate the following relations in terms of these
symbols:

~1 ! ^A•B&5uAu•uBucos q , cos q5a~ t !,

~2 ! B5Bi1B' ,

~3 ! Bi5uBucos q
A

uAu
5

A
uAu

uBua~ t !, uBiu25uAu2$a~ t !%2,

~4 ! uB'u5uBusin q5uBu$12@a~ t !#%1/2, ~22!

where symbol uAu denotes the vector A length. Geometrical
distance R(A,B) between two vectors A and B can also be
found:

R~A,B!5$uA2Bu2%1/25H (
j50

k21

~Aj2Bj!
2J 1/2

.

Using the latter and taking into account Eqs. ~6!, ~19! we can
find

R@Ak
0~0 !,Am1k

m ~ t !#5$uAm1k ,'
m ~ t !u2%1/2

5A2uAm1k
m ~ t !u$12a~ t !%1/2.

The equation above immediately shows that the distance is
determined by the dynamics of evolution of correlation pro-
cess. Owing to the property ~7! the following relation
limt→`R„Ak

0(0),Am1k
m (t)…5A2ks2, where s2 is the vari-

ance can be developed. With regard to Eq. ~22! the correla-
tion decay in limit t→` may result in complete annihilation
of parallel component of state Am1k

m (t) vector. Then the state
of the system at the moment t→` is entirely determined by
the perpendicular component Am1k ,'

m (t) of the full vector
Am1k
m (t).

FIG. 1. Simple geometrical notion on vectors, their scalar prod-
uct and normalized TCF of random variables.
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It follows from Eqs. ~22! that in the set of state
$Ak

0(0),Am1k
m (t)% vectors at different values of t, m, and k,

TCF of random processes a(t) plays a crucial role as an
indicator of two interrelated states of a complex system. One
of them deals with the creation of correlation and is specified
by the Bi component, whereas the second one is related to
the annihilation of correlation and determined by the compo-
nent B' . It results in the fact that in the limit of great t
→` the following relation:

lim
t→`

Am1k ,i
m ~ t !50, lim

t→`

Am1k ,'
m ~ t !5Am1k

m ~ t ! ~23!

is immediately fulfilled in correspondence with to Bogol-
ubov’s @36# principle of correlation attenuation.

From the physical point of view this fact means that TCF
a(t) represents two interrelated states determined by creation
and annihilation of correlation. Hence it follows that such
consideration must be given to both processes in an explicit
form for stochastic dynamics of random processes’ correla-
tion.

IV. SPLITTING OF EQUATION OF VECTORS MOTION
AND LIOUVILLIAN’S MATRIX PRESENTATION

It is obvious from Eq. ~22! that TCF a(t) is originated by
projection of vector Am1k

m (t) ~18!, where time t5mt on the
initial vector of state Ak

0(0) @see, for example, formula ~19!#.
The following construction of projection operator:

PAm1k
m ~ t !5Ak

0~0 !
^Ak

0~0 !Am1k
m ~ t !&

^uAk
0~0 !u2&

5Ak
0~0 !a~ t ! ~24!

results from here. It is turn projection operator P from Eq.
~24! has the following properties

P5
uAk

0~0 !&^Ak
0~0 !u

^uAk
0~0 !u2&

, P25P , P512P ,

P25P , PP50, PP50. ~25!

A pair of projection operators P and P are idempotent and
mutually supplementary. Figure 1 shows that projector P
projects on the direction Ak

0(0), whereas the orthogonal op-
erator P transfers all vectors to the orthogonal direction.

Let us consider quasidynamic finite-difference Liouville’s
Eq. ~14! for the vector of fluctuations

D

Dt Am1k
m ~ t !5iL̂~ t ,t !Am1k

m ~ t !. ~26!

The vectors Am1k
m (t) generate the vector finite-dimensional

space A(k) with scalar product in which @according to Eqs.
~24!,~25!# the orthogonal projection operation @37,38# is ex-
pressed by

A~k !5A8~k !1A9~k !, Am1k
m ~ t !PA~k !,

A8~k !5PA~k !, A9~k !5PA~k !5~12P !A~k !.
~27!
Operators P and P split Euclidean space A(k) into two
mutually-orthogonal subspaces. This permits to split dynami-
cal equation ~26! into two equations within two mutually
supplementary subspaces @38–40# as follows:

DA8~ t !
Dt 5iL̂11A8~ t !1iL̂12A9~ t !, ~28!

DA9~ t !
Dt 5iL̂21A8~ t !1iL̂22A9~ t !. ~29!

In the equations above we crossout for short space elements
indices A ,A8 and A9 and matrix elements arguments L̂ i j ,
L̂ i j5P iL̂P j , P15P , P25P512P , i51,2. In line with
Refs. @39,40# we write down Liouville’s operator in matrix
form

L̂5S L̂11 L̂12

L̂21 L̂22
D ,

L̂115PL̂P , L̂125PL̂P ,
~30!

L̂215PL̂P , L̂225PL̂P .

Operators L̂ i j act in the following way: L̂11 from A8 to A8,
L̂22 from A9 to A9, L̂21 - from A8 to A9, and L̂12 operates
from A9 to A8.

To simplify Liouville Eqs. ~28!,~29! we exclude the irrel-
evant part A9(t) and construct closed equation for relevant
part A8(t). For this purpose let us solve Eq. ~29! step by
step:

D

Dt $Am1k
m ~ t !%95iL̂21$Am1k

m ~ t !%81iL̂22$Am1k
m ~ t !%9.

~31!

Considering Eq. ~8! we arrive at finite-difference solution of
this equation in the following form:

DA9~ t !
t

5t21@A9~ t1t !2A9~ t !#5iL̂21A8~ t !1iL̂22A9~ t !,

~32!

A9~ t1t !5$11itL̂22%A9~ t !1itL̂21A8~ t !. ~33!

Applying Eqs. ~32!, ~33! we find

A9~ t12t !5~11itL̂22!
2A9~ t !1~11itL̂22!$itL̂21A8~ t !%

1$itL̂21%A8~ t1t !, ~34!

for m52 and

A9~ t13t !5~11itL̂22!
3A9~ t !1~11itL̂22!

2$itL̂21A8~ t !%

1~11itL̂22!$itL̂21A8~ t1t !%

1$itL̂21A8~ t12t%, . . . , ~35!

for m53, respectively. In general case we find
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A9~ t1mt !5$11itL̂22%
mA9~ t !1 (

j50

m21

$11itL̂22%
j

3$iL̂21A8~ t1~m212 j !t !% ~36!

for the arbitrary number of m steps. Then after the substitu-
tion of right side of Eq. ~36! for Eq. ~28! we obtain the
closed finite-difference kinetic equation for the relevant parts
of vectors

D

Dt A8~ t1mt !5iL̂11A8~ t1mt !1iL̂12$11itL̂22%
mA9~ t !

2L̂12 (
j50

m11

$11itL̂22%
jtL̂21

3A8@ t1~m212 j !t# . ~37!

To simplify this equation, let us consider the idempotentity
property, and then determine (0<k<m21)

A9~ t !50, $11itL̂22%
kA9~ t !50. ~38!

Transfering from vectors Am1k
m in Eq. ~37! to a scalar value

of TCF a(t) by means of suitable projection we come to the
closed finite-difference discrete equation for the initial TCF

Da~ t !
Dt 5iv0

(0)a~ t !2tV0
2 (
j50

m21

M 1~ jt !a~ t2 jt !. ~39!

Here V0 is the general relaxation frequency whereas fre-
quency v0

(0) describes the eigenspectrum of the Liouville’s
quasioperator L̂

v0
(0)5

^Ak
0~0 !L̂Ak

0~0 !&

^uAk
0~0 !u2&

, V0
25

^Ak
0L̂12L̂21Ak

0~0 !&

^uAk
0~0 !u2&

.

~40!

Function M 1( jt) in the right side of Eq. ~39! is the first
order memory function

M 1~ jt !5
^Ak

0~0 !L̂12$11itL̂22%
jL̂21Ak

0~0 !&

^Ak
0~0 !L̂12L̂21Ak

0~0 !&
, M 1~0 !51.

~41!

Equation ~39! alongside with Eqs. ~40!,~41! present first or-
der discrete non-Markov kinetic equation for the discrete
time correlation function a(t). However, our consequent step
will be to perform a further generalization of discrete TCF
analysis and to obtain finite-difference equation for the first
order memory function M 1( jt) and so on.

V. INTRODUCTION OF THE SET OF ORTHOGONAL
RANDOM VARIABLES AND CONSTRUCTION
OF INFINITE CHAIN OF FINITE-DIFFERENCE

NON-MARKOV KINETIC EQUATIONS
FOR DISCRETE MEMORY FUNCTIONS

The discrete memory function M 1( jt) ~41! in Eq. ~29! is
in its turn the normalized TCF, evolution of which is defined
by the deformed ~compressed! Liouvillian (L̂ (0)5L̂)
L̂ (1)5L̂22
(0)5L̂225~12P !L̂~12P ! ~42!

for a new dynamical variable B (1)5iL̂21Ak
0(0). Thus, we can

completely repeat for M 1( jt) the whole procedure within
Eqs. ~24!–~41!, and obtain the following non-Markov kinetic
equation for the normalized TCF. The infinite chain of equa-
tions for the initial TCF and memory functions of increasing
order results from multiple repetition of similar procedure.

However, this chain of equations can be obtained differ-
ently, i.e. much shorter and less costly. For this purpos let us
employ the method developed earlier for the physical Ham-
ilton systems with the continuous time in Refs. @40,41#.
Moreover the lack of Hamiltonian and the time discretness
must be taken into account.

Let us remember that natural equation of motion ~14! is
the finite-difference Liouville’s equation

D

Dt x~ t !5iL̂x~ t !, ~43!

where the Liouville quasioperator is

L̂5L̂~ t ,t !5~ it !21$U~ t1t ,t !21%. ~44!

Succesively applying the quasioperator L̂ to the dynamic
variables Am1k

m (t) (t5mt , where t is a discrete time step!
we obtain the infinite set of dynamic functions

Bn~0 !5$L̂%nAk
0~0 !, n>1. ~45!

Using variables Bn(0) one can find the formal solution of
evolution Eq. ~43! in the form

Am1k
m ~mt !5$11itL̂%mAk

0~0 !5(
j50

m m!~ it !m2 j

j!~m2 j !! Bm2 j
0 ~0 !.

~46!

However, a similar form of dynamic variables is deficient.
That is why we prefer the use the orthogonal variables as
vectors Wn given below. Employing Gram-Schmidt orthogo-
nalization procedure @42# for the set of variables Bn(0) one
can obtain the new infinite set of dynamical orthogonal vari-
ables, i.e., vectors Wn

^Wn*~0 !,Wm~0 !&5dn ,m^uWn~0 !u2&, ~47!

where the mean ^•••& should be read in terms of Eqs. ~16!–
~18! and dn ,m is Kronecker’s symbol. Now we may easily
introduce the recurrence formula in which the senior values
Wn5Wn(t) are connected with the juniour values

W05Ak
0~0 !, W15$L̂2v0

(0)%W0 ,
~48!

Wn5$L̂2v0
(n21)%Wn212Vn21

2 Wn22 , n.1.

Here we used the equation, given earlier in Eq. ~40! for num-
ber n50

v0
(n)5

^WnL̂Wn&

^uWnu2&
, Vn

25
^uWnu2&

^uWn21u2&
, ~49!
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where Vn is the general relaxation frequency, and frequency
v0

(n) completely describes the eigenspectrum of Liouville’s
quasioperator L̂ ~44!. Now the arbitrary variables Wn may be
expressed directly through the inital variable W05Ak

0(0) by
means of Eq. ~48!

Wn5U L̂2v0
(0) V1 0 ••• 0

V1 L̂2v0
(1) V2 ••• 0

0 V2 L̂2v0
(2)

••• 0

0 0 0 ••• L̂2v0
(n21)

U
3W0 . ~50!

The physical sense of Wn variables ~vectors of state! can be
cleared up in the following way. For example, in the con-
tinuous matter physics, the local density fluctuations may be
considered as initial variables. So the local flow density, en-
ergy density and energy flow density fluctuations are the
dynamic variables Wn where numbers n>1. The careful us-
age of the abovementioned variables within the long-wave
limits creates the basis for the condensed matter theory in
hydrodynamic approximation. The set of the orthogonal vari-
ables ~48! @see also Eq. ~47!# can be connected with the set
of projection operators. The later projects the arbitrary dy-
namic variable ~i.e., vector of state! Y on the corresponding
vector of the set

Pn5
uWn&^Wn*u

^uWnu2&
, Pn

25Pn , Pn512Pn ,

Pn
25Pn , PnPn50,

~51!
PnPm5dn ,mPn , PnPm5dn ,mPn , PnPn50.

Let us take into consideration the fact that both sets ~45! and
~50! are infinite. If we execute the operations in the Euclid-
ean space of dynamic variables then the formal expressions
~51! must be understood as follows:

PnY5Wn
^Wn*Y&

^uWnu2&
, YPn5Wn*

^YWn&

^uWnu2&
. ~52!

Now according to Eqs. ~28!–~30!,~51!,~52! we can introduce
the following notation for the splitting of the Liouville’s qua-
sioperator into the diagonal (L̂ ii

(n)) and nondiagonal (L̂ i j
(n))

matrix elements with iÞ j , n>1:

L̂ (n)5Pn21L̂ (n21)Pn21 ,

L̂05L̂ ,L̂ i j
(n)5P i

(n21)L̂P j
(n21) , i , j51,2,

P1
(n)5Pn , P2

(n)5Pn512Pn . ~53!

For example, we come to the following equations:

L̂22
(0)5L̂05L̂ , L̂22

(n)5Pn21Pn22•••P0L̂P0•••Pn22Pn21 .
~54!
for the second diagonal matrix elements. Successively apply-
ing projection operators Pn and Pn for the discrete equation
~43! in the set of normalized TCF (t5mt)

M n~ t !5
^Wn@11itL̂22

(n)#mWn&

^uWn~0 !u2&
~55!

we obtain the infinite hierarchy of connected non-Markov
finite-difference kinetic equations (t5mt)

DM n~ t !
Dt 5iv0

(n)M n~ t !2tVn11
2 (

j50

m21

M n11~ jt !M n~ t2 jt !,

~56!

where v0
(n) is the eigen and Vn is the general relaxation

frequency as follows:

v0
(n)5

^Wn*LnWn&

^uWnu2&
, Ln5L22

(n) , Vn
25

^uWnu2&

^uWn21u2&
.

A set of functions M n(t) ~55!,~56! except n50

M 0~ t !5a~ t !5
^Ak

0~0 !•Am1k
m ~ t !&

^uAk
0~0 !u2&

, t5mt

can be considered as functions characterizing the statistical
memory of time correlation in the complex systems with
discrete time. The initial TCF a~t! and the set of discrete
memory functions M n(t) in Eq. ~56! are of crucial role for
the further consideration. It is convenient to rewrite the set of
discrete kinetic Eqs. ~56! as the infinite chain of coupled
non-Markov discrete equations of nonlinear type for the ini-
tial discrete TCF a~t! ~ discrete time t5mt everywhere!

Da~ t !
Dt 52tV1

2 (
j50

m21

M 1~ jt !a~ t2 jt !1iv0
(0)a~ t !,

DM 1~ t !
Dt 52tV2

2 (
j50

m21

M 2~ jt !M 1~ t2 jt !1iv0
(1)M 1~ t !,

~57!
DM 2~ t !

Dt 52tV3
2 (
j50

m21

M 3~ jt !M 2~ t2 jt !1iv0
(2)M 2~ t !.

These finite-difference Eqs. ~56! and ~57! are very similar to
famous Zwanzig’-Mori’s chain ~ZMC! of kinetic equations
@43–45#, which plays the fundamental role in modern statis-
tical physics of nonequilibrium phenomena with the smooth
time. It should be noted that ZMC’s are true only for the
physical quantum and classical systems with smooth time
governed by Hamiltonian. Our finite-difference kinetic equa-
tions ~56!, ~57! are valid for complex systems lacking Hamil-
tonian, the time being discrete and the exact equations of
motion being absent. However, the ‘‘dynamics’’ and ‘‘mo-
tion’’ in the real complex systems are undoubtedly abundant
and are immediately registered during the experiment. The
first three of those Eqs. ~57! in the whole infinite chain ~56!
form the basis for the quasihydrodynamic description of ran-
dom processes in complex systems.
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VI. A PSEUDOHYDRODYNAMIC DESCRIPTION
OF RANDOM PROCESSES IN COMPLEX SYSTEMS

At first let us find the matrix elements L̂ i j of complex
systems Liouvillian’s quasioperator. Employing Eqs. ~24!,
~25!,~30!,~53!,~54! we successively found

iL̂11
(0)5P

a~t !2a~0 !

t
5a8~0 !P , ~58!

iL̂21
(0)5$t21@U~ t1t ,t !21#2a8~0 !%P , ~59!

iL̂12
(0)5P$t21@U~ t1t ,t !21#2a8~0 !%, ~60!

iL̂22
(0)5iL̂2i$L̂11

(0)1L̂12
(0)1L̂21

(0)%

5t21@U~ t1t ,t !21#2t21P$U~ t1t ,t !21%

2t211$U~ t1t ,t !21%P1a8~0 !P . ~61!

A diagonal matrix element L̂22
(0) is the part of ‘‘compressed’’

evolution quasioperator, which in its turn is equal to

11itL̂225U~ t1t ,t !1ta8~0 !P2$P ,U~ t1t ,t !21%1 ,
~62!

where the anticommutator of appropriate operator is desig-
nate by the brackets $A ,B%15AB1BA . One can see from
Eq. ~62! that the ‘‘compressed’’ evolution operator differs
from the natural operator U(t1t ,t) because of the presence
of contributions, associated with the first and the following
derivatives of TCF the initial TCF a(t).

The large-scale presentation of the memory function
M 1(t) is suitable mostly for practical applications. Using
Eqs. ~58!–~61!,~41!,~54! we also find the succession of the
first five points of discrete functions M 1( jt) where j
51,2,3,4 and

M 1~0 !51, M 1~t !5$1/a9~0 !%$a9~t !22ta8~0 !a9~0 !%.
~63!

The ‘‘Gaussian’’ behavior of TCF at the zero point t50

a8~0 !5
^Ak

(0)~0 !$Ut21%Ak
(0)~0 !&

^uAk
0~0 !u2&

50

should be taken into account in the subsequent discussion. It
is proved accurately and connected directly with the orthogo-
nality property of dynamical variables ~47!–~50!. It gives us
an opportinity to simplify the memory function formula as
follows:

M 1~0 !51, M 1~t !5H a9t

a9~0 !
J ,

M 1~2t !5H 1
a9~0 !

J $a9~2t !22ta9~0 !a8~t !1t@a9~0 !#2%,
M 1~3t !5H 1
a9~0 !

J $a9~3t !2ta8~2t !a9~0 !

22ta9~t !a8~t !1t2a9~t !a9~0 !1ta8~t !a9~0 !%,

M 1~4t !5H 1
a9~0 !

J $a9~4t !2ta8~3t !a9~0 !

2ta8~2t !a9~t !1ta8~2t !a9~0 !2ta9~t !a8~2t !

~64!
1t2@a9~t !#22ta9~t !a8~t !1t2a9~t !a~t !a9~0 !

2t2a~t !@a9~0 !#2%.

Further presentation the following values M i( jt) ~numbers
j>5) constitute the extremely complicated combinatory
problem. As analysis of Eqs. ~64! shows second derivative’s
behavior

M 1~ jt !>H 1
a9~0 !

J a9~ jt ! ~65!

contributes mainly into functions M 1( jt).
Now let us move to practical realization of Eqs. ~57!,

forming a basis of pseudohydrodynamic description of cor-
relation dynamics. Thus using orthogonal dynamic variables
~47!, ~48!,~50!, we immediately obtain

Ŵ05Ak
0 ,

Ŵ15$L̂2v0
(0)%Ŵ05L̂Ŵ05~ it !21~Ut21 !Ak

0~0 !,

Ŵ25L̂Ŵ12V1
2Ŵ0

5$L̂22V1
2%Ŵ0

5~ it !22$Ut21%2Ak2V1
2Ak

0 ,
~66!

Ŵ35L̂Ŵ22V2
2Ŵ1

5L̂~ L̂22V1
2!Ŵ02V2

2L̂Ŵ0

5$L̂32~V1
21V2

2!L̂%Ŵ0

5$~ it !3@Ut21#32~ it !21~V1
21V2

2!~Ut21 !%Ak
0 .

Simple relation for the eigenfrequencies and general relax-
ation frequencies

v0
(n)5

^ŴnL̂Ŵn&

^uŴnu2&
50, Vn

25
^uŴnu2&

^uŴn21u2&
, V1

25ua (2)~0 !u,

V2
25

a (4)~0 !2@a (2)~0 !#2

ua2~0 !u
,

~67!

V3
25

a (6)~0 !22a (4)~0 !~V1
21V2

2!2~V1
21V2

2!2a (2)~0 !

a (4)~0 !2@a (2)~0 !#2
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should be taken into consideration here. The orthogonal vari-
ables Ŵn in Eq. ~66! can be easily rearranged as follows:

Ŵ05Ak
0 , Ŵ152i

d
dt Ak

052i
D

Dt Ak ,

Ŵ25H d2

dt2
1V1

2JAk
(0)5H S D

Dt D
2

1V1
2JAk

0 ,

~68!

Ŵ35iH d3

dt3
1~V1

21V2
2!
d
dtJAk

0

5iH S D

Dt D
3

1~V1
21V2

2!
D

DtJAk
0 .

Those formulas ~68! have considerable utility inasmuch as
they permit to see the structure of formation of orthogonal
variables and junior orders memory functions for the num-
bers n51,2,3. Equations ~64!,~67!,~68! open up new fields of
construction of quasikinetic description of random processes
$Ak

0(0),Am1k
m (mt)%. By analogy with hydrodynamics the

variables Ŵ0 , Ŵ1 , Ŵ2, and Ŵ3 in Eq. ~68! play the role
similar to that of the local density, local flow, local energy
density, and energy flow. It is clear that this is only formal
analogy and the variables Ŵn do not possess any physical
sense. However, such analogies can be helpful in revealing
of the real sense of orthogonal variables.

To describe pseudohydrodynamics we have to use the set
of first three discrete kinetic Eqs. ~57! with frequences V i

2

(i51,2,3) derived from Eqs. ~67!. It is essential that all fre-
quences V i

2 are connected straightly with the properties of
the initial TCF a(t) only. The latter can be easily derived
directly from the experimental data @45–47#. Thus the sys-
tem of Eqs. ~57! has considerable utility for the experimental
investigations of statistical memory effects and non-Markov
processes in complex systems.

Among them it seems to us that one could propose more
physical interpretation of the different terms in the right side
of the three Eqs. ~68!. For example, term 2iDA/Dt is simi-
lar to a dissipation, D2A/Dt2 is similar to an inertia, and
V2A(t) is similar to a restoring force. Third derivative
D3A/Dt3 is the finite-difference generic form of the
Abraham-Lorenz force corresponding to dissipation feed-
back due to radiative losses @see, for instance, formula ~3! in
Ref. @48# for a recent experimental evidence in frictional
systems#.

VII. SHANNON ENTROPY FOR THE TIME
CORRELATION AND TIME MEMORY IN COMPLEX

SYSTEMS

According to the results in Sec. VI, the information mea-
sure for the description of random processes in complex sys-
tems can be expressed not only via TCF, but also by means
of the certain set of time memory functions. To accomplish
that let us return to Sec. III in which we presented the geo-
metrical picture of stochastic dynamics of correlation. In a
line with Shannon @17# in case of discrete source of informa-
tion we were able to determine a definite rate of generating
information, namely, the entropy of the underlying stochastic
information by introduction fidelity evaluation function
n@P(x ,y)# . Here the function P(x ,y) is the two-dimensional
distribution of random variables (x ,y) and

n@P~x ,y !#5E E dxdyP~x ,y !r~x ,y !, ~69!

where the function r(x ,y) has the general nature of the ‘‘dis-
tance’’ between x and y. As pointed by Shannon @17# the
function r(x ,y) is not a ‘‘metric’’ in the strict sense, how-
ever, since in general it does not satisfy either r(x ,y)
5r(y ,x) or r(x ,y)1r(y ,z)>r(x ,z). It measures how un-
desirable it is according to our fidelity criterion ~69! to re-
ceive y when x transmitted. According to Shannon @17# any
evolution of fidelity must correspond mathematically to the
operation of a simple ordering of systems by the transmis-
sion of a signals within the certain tolerance. According to
Shannon @17# the following is simple example of fidelity
evaluation function

n„P~x ,y !…5^„x~ t !2y~ t !…2&. ~70!

In our case it is convenient to consider the initial vector
Ak

0(0) as a variable x and the final vector Am1k
m (t) at time

t5mt for a variable y. The distance function r(x ,y) @17#

r~x ,y !5
1
TE0

T
dt$x~ t !2y~ t !%2 ~71!

is the most commonly used measure of fidelity.
Taking into accout Eqs. ~69!,~71! and the results in Sec.

III as the fidelity function one can use the following function
of geometrical distance:

n~P„Ak
0~0 !,Am1k

m ~ t !…!52ks2$12a~ t !%, ~72!

where distance function is

r„Ak
0~0 !,Am1k

m ~ t !…5R2
„Ak

0~0 !,Am1k
m ~ t !…. ~73!

According to Ref. @17# partial solution of the general maxi-
mizing problem for determining the rate of generating infor-
mation of a source can be given using Lagrange’s method
and considering the following functional:

E E H P~x ,y !ln
P~x ,y !

P~x !P~y !
1mP~x ,y !r~x ,y !

1n~x !P~x ,y !J dxdy , ~74!

where the function n(x) and m are unknown. The following
equation for the conditional probability can be obtained by
variation on P(x ,y)

Py~x !5
P~x ,y !

P~y !
5B~x !exp$2lr~x ,y !%. ~75!

This shows that with best encoding the conditional probabil-
ity of a certain cause for various received y, Py(x) will de-
cline exponentially with the distance function r(x ,y) be-
tween values the x and y in problem. Unknown constant l is
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defined by the required fidelity, and function B(x) in the
case of continuous variables obeys the normalization condi-
tion

E B~x !exp$2lr~x ,y !%dx51. ~76!

Since the distance function r(x ,y) ~71! is dependent only on
the vectors difference r(x ,y)5r(x2y), we get a simple so-
lution for the special case B(x)5a

Py~x !5a exp$2lr~x2y !%5a exp$2c@12a~ t !#%
~77!

instead of Eq. ~75!. Constants a and l result from the cor-
responding normalizing condition and in accordance with the
required fidelity. From the physical point of view the basic
value of solution ~77! is directly related to the occurence of
the TCF a(t). Therefore,the solution ~77! describes the state
of the system with certain level and scale of correlation.

Now let us employ Shannon’s solution for continuous
variables ~75!, ~77! and pass to simplified discrete two-level
description of the system. Then let us consider the condi-
tional probability ~77! which describes the state on time axis
at the moment t5mt as corresponding to the creation of
correlation. Whereas the other state at the fixed moment t
5mt which accounts for the state with the absence ~annihi-
lation! of correlation will exist. Let us introduce two prob-
abilities ~see Fig. 2!, which will fit normalizing condition

P1~ t !1P2~ t !51, P1~ t !5Pcc~ t !, P2~ t !5Pac~ t !,

Pcc~ t !1Pac~ t !51. ~78!

In the case of two levels Shannon entropy

S52(
i51

2

P i ln P i ~79!

increases at full disorder and takes its limiting value

lim
t→`

S5 lim
t→`

S~ t !5ln 2. ~80!

To find unknown parameters a and c in two-level description
~creation and annihilation of correlation! in Eq. ~75! we
should take into account normalization condition, principle
of entropy increase ~80! at t→` and of entropy extremality
~presence of minimum! at full order when the following re-
lationship: limt→oa(t)51 is true for the TCF. We obtained
the following equation:

FIG. 2. Scheme of simplified two-lewel description of a com-
plex systems state. Two probability Pcc(t) and Pac(t) decsribes a
stochastic processes of creation ~existence! and annihilation ~decay!
of time correlation.
lim
t→0

S~ t !52$a ln a1~12a !ln~12a !%50

for the parameters a and c (c>0, 0<a<1) having regard to
these requirements. Among two solutions (a151, a250)
only the first one (a151) has physical sense. Two probabili-
ties calculated by means of Eq. ~77! will satisfy conditions
~78!, ~80!

P1~ t !5Pcc~ t !5exp$2~ ln 2 !@12a~ t !#%, ~81!

P2~ t !5Pac~ t !512exp$2~ ln 2 !@12a~ t !#%. ~82!

respectively. In accordance with two-level description it
would be convenient to deal with two dynamic channels of
entropy @creation (cc) and annihilation (ac)# of correlation
~see Fig. 2!

Scc~ t !5~ ln 2 !$12a~ t !%exp$2~ ln 2 !@12a~ t !#%, ~83!

Sac~ t !52$12exp@2~ ln 2 !„12a~ t !…#%

3ln$12exp@2~ ln 2 !„12a~ t !…#%. ~84!

The probabilities obtained are in the line with full dynamic
~time dependent! information Shannon entropy

S0~ t !5Scc~ t !1Sac~ t !

5ln 2$12a~ t !%exp$2~ ln 2 !@12a~ t !#%

2„12exp$2~ ln 2 !@12a~ t !#%…

3ln„12exp$2~ ln 2 !@12a~ t !#%…. ~85!

The entropy introduced in to Eqs. ~83!–~85! characterized a
quantitative measure of disorder in the system related to cre-
ation and annihilation of dynamic correlation. The probabi-
listic and entropy channels ~81!–~84! possess the following
asymptotic behavior:

if a(t)→1,

P1~ t !5Pcc~ t !>11~ ln 2 !@a~ t !21# ,

P2~ t !5Pac~ t !> ~ ln 2 !@12a~ t !# ,

Scc~ t !>2$11~ ln 2 !@a~ t !21#%ln$11~ ln 2 !@a~ t !21#%,

Sac~ t !>2~ ln 2 !@12a~ t !#ln$ln 2@12a~ t !#%,

S0~ t !>2$11~ ln 2 !@a~ t !21#%ln$11~ ln 2 !@a~ t !21#%

2ln 2@12a~ t !#ln$~ ln 2 !@12a~ t !#%

and if a(t)→0,

P1~ t !5Pcc~ t !> 1
2 $11~ ln 2 !a~ t !%, ~86!

P2~ t !5Pac~ t !> 1
2 $12~ ln 2 !a~ t !%,

Scc~ t !>2 1
2 $11~ ln 2 !a~ t !%ln$ 1

2 @11~ ln 2 !a~ t !#%,

Sac~ t !>2 1
2 $12~ ln 2 !a~ t !%ln$ 1

2 @12~ ln 2 !a~ t !#%,
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S0~ t !>2 1
2 $11~ ln 2 !a~ t !%ln$ 1

2 @11~ ln 2 !a~ t !#%

2 1
2 $12~ ln 2 !a~ t !%ln$ 1

2 @12~ ln 2 !a~ t !#%.

Subsequent boundary conditions result from the equations
above in terms of Bogolubov’s principle of attenuation of
correlation ~7! as follows:

lim
t→0

Pcc51, lim
t→0

Pac~ t !50, ~87!

lim
t→0

Scc~ t !50, lim
t→0

Sac~ t !50, lim
t→0

S0~ t !50, ~88!

lim
t→`

Pcc~ t !5
1
2 , lim

t→`

Pac5
1
2 ,

lim
t→`

Scc~ t !5 lim
t→`

Sac~ t !5
ln 2
2 , lim

t→`

S0~ t !5ln 2. ~89!

It is conditions ~87! that give us an opportunity to present
two different states associated with the creation (cc) ~in the
time moment t50, Pcc51) and annihilation (ac) @at the
point t50, Pac(0)50# of correlation. Owing to discretness
of the TCF a(t) all functions Pab , Sab as well as S0(t)
(a5a ,c; b5c) are discrete in the real complex systems.

The results obtained in Sec. VI permit us to present the set
of entropies for the states connected with the set of orthogo-
nal variables W i and set of memory functions M i(t)
5$M 1(t),M 2(t),M 3(t), . . . %. In analogy with Eqs. ~81!–
~89! these functions describe non-Markov and memory ef-
fects in the system under discussion

P1
M i~ t !5PcM i

~ t !5exp$2ln 2@12M i~ t !#%, ~90!

P2
M i~ t !5Pam i

~ t !512exp$2~ ln 2 !@12M i~ t !#%, ~91!

S i~ t !5~ ln 2 !@12M i~ t !#exp$~ ln 2 !@12M i~ t !u%

2$12exp@2~ ln 2 !~12M i!#%

3ln$12exp@2~ ln 2 !~12M i!#%, ~92!

where i51,2,3. Four corresponding entropies S0(t),
S1(t),S2(t), and S3(t) and their power frequency spectra are
available from the set of four time functions @TCF a(t) and
three memory functions M 1(t), M 2(t), M 3(t)#. Equations
~81!–~92! are of great value because they allow us to esti-
mate stochastic dynamics of the real complex systems with
discrete time. As a matter of principle the first three memory
functions M i(t)(i51,2,3) are easy to find via Eq. ~57!. Us-
ing dimensionless parameter «15t2V1

2 and solution of the
first finite-difference Eq. ~57! we can calculate the discrete
function M 1( jt) at the points j50,1,2, . . . , as follows:

M 1~0 !51, M 1~t !52a~2t !1«1
21$a~2t !2a~3t !%,

M 1~2t !52$a~2t !M 1~t !1a~3t !%1«1
21$a~3t !2a~4t !%,
M 1~3t !52$a~2t !M 1~2t !1a~3t !M 1~t !1a~4t !M 1~0 !%

1«1
21$a~4t !2a~5t !%,

•••M 1~mt !52 (
j50

m21

M 1~ jt !a$~m112 j !t%

1«1
21@a$~m11 !t%2a$~m12 !t%# .

~93!

In the general case solving the chain of Eqs. ~55!,~57! we can
find the recurrence relations between the memory functions
of junior and higher orders in the following form:

M s~mt !52 (
j50

m21

M s~ jt !M s21@~m112 j !t#

1«s
21$M s21@~m11 !t#2M s21@~m12 !t#%,

«s5t2Vs
2 , s51,2,3, . . . . ~94!

The relations obtained allow us to derive straightly the nec-
essary memory functions M s(t) of any order s51,2, . . .
from experimental data using the registered TCF a(mt)
@46,47#. Relaxation frequencies V i

2 , i51,2,3, . . . , given in
Eq. ~94! are available to experimental registration. Thus, it is
fair to say that the applications of Eq. ~94! will open up fresh
opportunities for detailed study of statistical properties of
correlations in the complex systems. The very fact of exis-
tence of finite-difference Eqs. ~55!,~57! enables us to develop
any functions directly from the experiment. Therefore, the
availability of discretness permits to enhance substantially
the capability to get information for the complex systems’
state.

In conclusion let us show the equations, which character-
ize the rate of entropy production. It is obvious from condi-
tions ~87!–~89! as well as Eqs. ~81!–~85! that the rate of
entropy growth ]S/]t within the interval (0,`) takes differ-
ent sign values and is determined by the entropy behavior in
the channels of creation and annihilation of correlation

]S0

]t 5S ]S1
(0)

]t D 1S ]S2
(0)

]t D 5S ]Scc~ t !
]t D1S ]Sac~ t !

]t D ,

~95!

]S1
(0)~ t !
]t 52~ ln 2 !a8~ t !exp$2~ ln 2 !@12a~ t !#%

3$12~ ln 2 !@12a~ t !#%, ~96!

]S2
(0)~ t !
]t 52~ ln 2 !a8~ t !exp$2~ ln 2 !@12a~ t !#%

3$11ln@12exp@2~ ln 2 !~12a~ t !#%, ~97!

]S0~ t !
]t 5~ ln 2 !a8~ t !exp$2~ ln 2 !@12a~ t !#%

3$ln$12exp@2~ ln 2 !„12a~ t !…#%1ln 2@12a~ t !# .

~98!



6188 PRE 62RENAT YULMETYEV, PETER HÄNGGI, AND FAIL GAFAROV
FIG. 3. Phase-time portrait in orthogonal vari-
ables (W0 , W2) plain @see formulas ~66!,~68! for
fourth group of patients#: healthy ~a!, patient with
rhythm driver migration ~b!, patient after myocar-
dial infarction ~c!, and patient after MI with sub-
sequent SCD ~d!. As a matter of fact we utilized
dimensionless variables W0 /t and W2 /t21.
The derivatives a8(t) and S08(t) here should be read in terms
of Eqs. ~8!,~13!. Since the derivative a8(t) is finite within the
whole time interval (0,`): ua8(t)u,c , ~where c is positive
constant! the rate of entropy growth obeys the following
boundary conditions:

lim
t→0

S ]S0

]t D50, lim
t→`

S ]S0

]t D50. ~99!

Formulas ~95!–~99! are useful for the discussion of the ex-
perimental data. Close inspection of these equations shows
that the behavior of derivative (]S0 /]t) is described in many
respects by the function a8(t)5t21@a(t1t)2a(t)#, which
is in its turn can be obtained from the time series observed.
Relations analogous to Eqs. ~95!–~99! are easily available
for the sequence of memory functions M i(t) ~55! as well.

VIII. APPLICATION ON ANALYSIS OF STOCHASTIC
DYNAMICS OF RR INTERVALS IN HUMAN ECG’S

Let us use the stochastic dynamics of RR intervals from
human ECG’s to illustrate some practical value of the ap-
proach developed. It is well known @24,26,49–60# that the
statistical analysis of related dynamics allows the reliable
quantitative characteristics of the human cardiovascular sys-
tem states and trusty diagnostics of the various heart diseases
@61–65#.

Most investigators into heart rate dynamics have empha-
sized continuous functions, whereas the heart beat itself is in
a crucial respect a discrete event. We present here experi-
mental evidence that by considering this quality, the behav-
ior of RR intervals may be appreciated as a result of discrete
dynamics. To demonstrate effectiveness of non-Markovian
approach we only take four typical particular cases from the
whole the set of experimental data @66#, which are available
at our disposal. They are related to the case of healthy man
~a!, patient with a rhythm driver migration ~b!, patient after
myocardial infarction ~MI! ~c!, and patient after myocardial
infarction ~MI! with subsequent sudden cardial death ~SCD!
~d!. Following standard medical practice, each from 112 per-
son had an age, sex, and disease status matched pair serving
as the control.

Results of our calculations, based on formulas of the
theory and presented in previous sections, are shown on Figs.
3–8. It is necessary to mark that as a matter of convenience
all variables and functions in a Figs. 3–8 are submitted in
dimensionless form. Frequency v everywhere is indicated in
terms of units of 2p/t . The orthogonal variables W0 and W2
in a Fig. 3 are written in units of t and t21, respectively.
Frequency spectra m0(v), m1(v), and m2(v) in Figs. 4–6
are figured in terms of units of t2. Values e1(v) and e2(v)
in Figs. 7, 8 are dimensionless values. Figure 3 shows phase
trajectories, obtained for four different groups of patients in
the orthogonal variables (W0 ,W2) plane. Let us remind our-
selves, that in correspondence with formulas ~64!, ~68! the
variable W0 presents RR intervals fluctuations, and W2 is the
second orthogonal variable and due to Eq. ~68! is combina-
tion of an inertia force minus a restoring force. These vari-
ables have dimensions t and t21, respectively, where t
5^lRR& is the average value of the RR interval in time se-
quence. The set of characteristic parameters is collected in
Table I. Let us mention the strong difference of numerical
value of the first general relaxation frequency V1 frequency
for four different groups of patients. Figures 4 –6 show
power frequency spectra for three different time functions for
typical patients from four different groups. Figure 3~a! cor-
responds to a strange attractor, Fig. 3~b! corresponds to
quasi-periodic motion, Fig. 3~c! 3~d! demonstrate the obvi-
ously expressed correlation of phase variables W0 and W2.
Although the frequency v is measured in units of 2p/t and
power in t2, respectively. Figure 4 shows the power spec-
trum of TCF fluctuations of RR intervals. The data, shown in
Figs. 5, 6 are correspondingly related to power spectra of
first and second memory functions. The functions themselves
are calculated from formulas ~57!, ~68!, and ~94!.

Figures 7, 8 require special explanation. They show fre-
quency spectra of first two points e1(v) and e2(v) of statis-
tical spectra of non-Markovity parameter ~NMP! e i , where
i51,2, . . . . A presentation of the NMP spectrum was intro-
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FIG. 4. Frequency spectrum of power m0(v)
for TCF of fluctuation of RR intervals for fourth
patient groups: healthy ~a!, patient with rhythm
driver migration ~b!, patient after myocardial in-
farction ~c!, and patient after MI with subsequent
SCD ~d!. The schedule is submitted in dimen-
sionless units. The frequency is marked in terms
of units of (2p/t), the function m0(v) is figured
in units of t2.
duced earlier in Refs. @67,68# and was then used in statistical
physics of liquids @69,70#. Close to that given in Refs.
@67,68# definitions of non-Markovity were developed later in
Refs. @71–74#. In comparision with Refs. @67–69# here we
generalize NMP conception for frequency dependent case

e i~v !5H m i21~v !

m i~v ! J 1/2

,

where i51,2, . . . , and m i(v) is power frequency spectrum
of ith level.

As is shown by Yulmetyev et al. in articles @67–70# NMP
value of e i allows us to obtain a quantitative estimate of
non-Markovity effects and statistical collective memory in
random changes of experimentally measured data. Parameter
e i allows us to divide all processes in three important cases
@67–70#. Markovian processes correspond to e@1, while
quasi-Markovian processes correspond to situation with e
.1. The limit case e;1 describes non-Markovian pro-
cesses. In this case the time scale of memory processes and
correlations ~or junior and senior memory functions! coin-
cide with each other.

From Figs. 3–8 one can easily obtain sharp differences
between four groups of patients for all types of frequency
spectra. For instance, frequency spectrum of TCF power for
healthy @Fig. 4~a!# is almost reproduced in NMP e1(v) spec-
trum given in Fig. 7~a!. Also it is slightly deformed in the
spectra of first @Fig. 5~a!# and second @Fig. 6~a!# memory
functions and is strongly transformed in NMP e2(v) spec-
trum @Fig. 8~a!#. Sharp peak in the vicinity of the point with
v;0.125 f.u., being characteristical for the patient ~b!, is
seen in the power spectrum of first and second MF’s @Fig.
5~b!, 6~b!#. However, for other spectra of type b @for ex-
ample, Figs. 6~b!, 7~b!, 8~b!# quite complicated structure ap-
FIG. 5. Frequency spectrum of power m1(v)
for the first MF M 1(t) for fourth patient groups:
healthy ~a!, patient with rhythm driver migration
~b!, patient after myocardial infarction ~c!, and
patient after MI with subsequent SCD ~d!. The
schedule is submitted in dimensionless units. The
frequency is marked in terms of units of (2p/t),
the function m1(v) is figured in units of t2.
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FIG. 6. Frequency spectrum of power m2(v)
for the second MF M 2(t) for fourth patient
groups: healthy ~a!, patient with rhythm driver
migration ~b!, patient after myocardial infarction
~c!, and patient after MI with subsequent SCD
~d!. The schedule is submitted in dimensionless
units. The frequency is marked in terms of units
of (2p/t), the function m2(v) is figured in units
of t2.
pears. Frequency spectrum of type ~c!, which is characteristic
for IM, contains two sharply expressed spectral peaks nearly
the frequencies, approximately 0.2 and 0.4 f.u. on the back-
ground of low intensity white noise. These peaks are con-
served in the spectra of first @Fig. 5~c!# and second @Fig. 6~c!#
MF. In NMP spectra e i(v), e2(v), complicated structure of
spectral lines also appears. In characteristic case of patient
with SCD frequency spectra of type ~d! everywhere contain
sharp peaks close to frequency 0.25 f.u. We would like to
mention that all frequency spectra ~5, 6, 7, and 8! are per-
suasive for strongly expressed non-Markovity for time
change of RR intervals.

Figures 7~a!-7~d! and 8~a!–8~d! shows, that all values of
NMP e1(v) and e2(v) lie in small interval of values ~0–30!.
This fact convincingly tell us about characteristic statistic
memory and noticeable non-Markovity effects in statistical
dynamics of RR intervals from human ECG’s. Obtained re-
sults on non-Markovian properties of temporal behavior of
RR intervals justify significant and characteristic differences
in data for all four groups of patients. We hope that the use
of non-Markovian dynamics in the spirit of developed theory
will incorporate development of more precise estimate of the
state of cardiovascular systems for healthy as well as for
more careful diagnostics of different patients.

IX. DISCUSSION

The present paper deals with two interrelated important
results. The first one is connected with the establishment of
the chain of finite-difference non-Markov kinetic equations
for the discrete TCF. In this case the state of complex sys-
tems at the definite level of correlation is described by two
vectors constructed over the strict determined rules. It is
natural finite-difference equation of motion, being the pecu-
FIG. 7. Frequency spectrum of the first point
in the statistical spectrum on non-Markovity pa-
rameter e1(v) for fourth patient groups: healthy
~a!, patient with rhythm driver migration ~b!, pa-
tient after myocardial infarction ~c!, and patient
after MI with subsequent SCD ~d!. The schedule
is submitted in dimensionless units. The fre-
quency is marked in terms of units of t2.
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FIG. 8. Frequency spectrum of the second
point in the statistical spectrum on non-
Markovity parameter e2(v) for fourth patient
groups: healthy ~a!, patient with rhythm driver
migration ~b!, patient after myocardial infarction
~c!, and patient after MI with subsequent SCD
~d!. The schedule is submitted in dimensionless
units. The frequency is marked in terms of units
of t2.
liar analog of Liouville equations for the initial dynamic
variables which are of particular interest for our analysis. In
the subsequent discussion we employ the strict deduced
mathematical fact of the existence of the normalized TCF.
Due to the operation of scalar product the availability of TCF
makes it possible to introduce the projection operators in the
space of vectors of states. Those projection operations and
matrix elements of Liouville’s quasioperator ensure the split-
ting of natural equations of motion and then they are solved
in the closed finite-difference form. Using Gram-Schmidt or-
thogonalization procedure we find an infinite set of the or-
thogonal dynamic random variables. This allows us to obtain
the whole infinite chain of finite-difference kinetic equations
for the initial discrete TCF. These equations contain the set
of all memory functions characterizing the complete spec-
trum of non-Markov processes and statistical memory effects
in the complex system. The presence of discretness and the
very fact of the existence of finite-difference structure en-
able, in principle, to find all memory functions solving suc-
cessively kinetic equations for the TCF. Parameters of these
equations can be easily obtained from the experimentally
registered TCF. In chaotic dynamics of complex systems the
TCF above plays the role similar to that of the statistical
integral in equilibrium statistical physics.
Another important result of our work is the dynamic ~time
dependent! information Shannon entropy given in terms of
the TCF. This allows us to use the information measure for
the quantitative characteristic of two interrelated correlation
channels. One of them corresponds to the creation of time
correlation and the other to the annihilation of correlation.

For that as we employ one of the classical Shannon’s
results @17#, related to the introduction of fidelity evolution
function and distance function between two vectors of state.
The existence of a new information measure opens up new
fields for exploration of information characteristics of com-
plex systems. In particular, some interesting data arise from
calculations frequency spectra of power of information en-
tropy.

The important consequence of the results obtained is the
usage of power spectra of memory functions M j(mt), where
m50,1,2,3, . . . and j51,2,3, . . . . The set of three junior
memory functions with numbers j51,2,3 provides the basis
for the pseudohydrodynamical description of the complex
system. In practice, any memory function can be extracted
from the experimental time sets and experimentally recorded
TCF. These criteria provide the possibility to get reliable
information about non-Markov processes and memory ef-
fects in natural evolution of complex systems. In principle,
TABLE I. Set of ECG’s data for the various group of patients.

Mean of RR Absolute Relative A first general
intervals variance variance relaxation frequency

Patient t5^lRR& ~ms! s ~ms! d ~%! V1
2 @units of (2p/t)2#

Healthy man 781 40.9 5.2 0.24
Rhythm driver migration 756 55.9 7.4 0.57
After myocardial
Infarction 647 45.8 7 2.04
After myocardial infarction
With subsequent sudden
Cardiac death 776 32.3 4.8 2.34
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the new point in the analysis of complex systems arises from
the opportunity to construct the dynamical information Sh-
annon entropy for the experimental memory functions. Un-
doubtedly, detection of the frequency spectra of power of
entropy for memory functions gives us new unique informa-
tion about the statistical non-Markov properties as well as
memory effects in complex systems of various nature.

Application of the theory developed on the analysis of
dynamics of RR intervals from human ECG’s strongly sug-
gest the substantially non-Markovian properties of the this
dynamics. Here we have obtained non-Markovian quantita-
tive characteristics for the fourth various groups of patients.
One might expect this method may be use in distinguishing
healthy from pathalogic data sets based in differences in its
non-Markovian properties.

In conclusion it may be said that this paper describes a
first-principle derivation of a hierarchy of finite-difference
equations for time correlation function of out-of-equilibrium
systems without Hamiltonian. The approach developed
seems to have potentials and offer few advantages over the
usual Hamiltonian point of view. A similar situation is true
apparently with regard to turbulence, aging, for instance, as
in spin glasses and glasses as well as experimental time se-
ries for living, social, and natural complex systems ~physiol-
ogy, cardiology, finance, psychology, and seismology, etc.!.

By way of illustration it is significant that the anomalous
scaling of simultaneous correlation function in turbulence is
intimately related to the breaking of temporal scale invari-
ance, which is equivalent to the appearence of infinitely
many time times scales in the time dependence of time-
correlation functions. In Refs. @75# temporal multiscaling on
the basis of the continued fraction representation of turbulent
correlation function @76# was addressed within the frame-
work the Zwanzig-Mori formalism @43,44# which was ap-
plied to the time correlation function in turbulence. It has
been shown by Grossman and Thomas @76# that the
Zwanzig-Mori formalism applied to turbulent systems de-
scribed by Navier- Stokes-like equations.

Mode coupling equatins have been considered in various
areas of many particle physics for an approximate treatment
of the dynamics of particles in glasses @77,78#. These equa-
tions are obtained if one represent within the Zwanzig-Mori
formalism @43,44# correlation functions in terms of memory
kernels and then expressed the latter via a factorization ap-
proximation in terms of the former for the glass transition of
molecular liquids @79#. It has been found by Heuer et al. @80#
that a model-free interpretation of higer-order correlation
function determined by NMR reveals important information
about the complex dynamics close to glass transition of poly-
mers. This has been demonstrated with spin glasses @81# to
show how a hierarchical model of spin glasses relaxation can
display aging behavior in the time scale, similar to what is
found in spin glasses and other complex systems out of ther-
modynamical equilibrium. The application of the approach
developed on the analysis of the temporal behavior of com-
plex systems of various natures will be available in our forth-
coming papers.
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