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Stochastic resonance driven by time-modulated correlated white noise sources
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We analyze the effects caused by the simultaneous presence of correlated additive and multiplicative noises
for stochastic resonance. Besides the standard potential modulation we also consider a time-periodic variation
of the correlation between the two noise sources. As a foremost result we find that stochastic resonance, as
characterized by the signal-to-noise ratio and the spectral amplification, becomes characteristically broadened.
The broadening can be controlled by varying the relative phase shift between the two types of modulation
force.

PACS number~s!: 05.40.2a
I. INTRODUCTION

There is evidence from many recent theoretical and ex-
perimental studies that fluctuations are essential and play a
constructive role in a variety of intriguing noise-induced
phenomena. Some key examples are problems related to self-
organization and dissipative structures @1,2#, noise-induced
transitions @3#, noise-induced phase transitions @4#, thermal
ratchets or Brownian motors @5#, combinations of the latter
two phenomena @6#, noise sustained patterns @7#, and sto-
chastic resonance in zero-dimensional and spatially extended
systems @8,9#.

The last phenomenon, that is, stochastic resonance ~SR!,
has attracted considerable interest in the last decade due,
among other aspects, to its potential technological applica-
tions for optimizing the transmission of information such as
the output signal-to-noise ratio ~SNR! and amplification fac-
tor (h) in nonlinear dynamical systems. The phenomenon
shows the counterintuitive role played by noise in nonlinear
systems as it harnesses the fluctuations to enhance the output
response of a system subjected to a weak external signal.
There is a wealth of papers, conference proceedings, and
reviews on this subject; for a comprehensive recent review
see Ref. @9#, showing the large number of applications in
science and technology, ranging from paleoclimatology to
electronic circuits, lasers, and noise-induced information
flow in sensory neurons in living systems, to name a few.

Several recent papers have aimed at achieving an en-
hancement of the system response ~that is, obtaining a larger
output SNR! by means of the coupling of several SR units
@10–14# in what forms an ‘‘extended medium’’ @15#. Yet
another aspect that has attracted interest is the construction
of systems or arrangements where the SNR becomes mostly
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independent of external parameters such as the noise inten-
sity ~SR without tuning! @12,16#.

In this work we focus on the latter aspect. For this we
study a bistable system which is subject to both an additive
and a multiplicative noise source but—at variance with the
work in Ref. @17#—we consider the case when both noise
sources are correlated. In addition to the modulation of the
bistable potential by a weak external signal, we consider that
this very correlation between both noises is modulated as
well. We have found that this extra noise correlation contrib-
utes to a remarkable widening of the SNR’s maximum as a
function of the additive noise intensity, making the detection
of the signal less sensitive to the actual value of that noise. In
previous preliminary work @19# we analyzed the case when
both modulation frequencies are equal; here we extend the
study to the most general case; i.e., when ~i! both frequencies
are equal and possess either zero or a finite relative phase
shift fÞ0, or ~ii! there are different driving frequencies. We
have also done numerical simulations and have considered
the evaluation of not only the SNR, but also another charac-
terization of the SR phenomenon that relates SR to stochastic
synchronization, namely, the spectral amplification factor
@18#. It is worth remarking here that the additive ~external!
noise can be assumed to be white, while the ~internal! mul-
tiplicative noise source generally involves time scales char-
acteristic of the system; therefore it is generally far from
being white. However, as discussed previously in @20#, as a
first step we can approximate the multiplicative colored
noise by a white one.

The organization of the paper is as follows. In the next
section we set up the model. In Sec. III we present the results
for the case of unequal modulation frequencies, while Sec.
IV contains the case of equal frequencies with both a zero
and a finite relative phase shift. In Sec. V we present the
results of our numerical simulations while in Sec. VI we
discuss the spectral amplification factor. The last section
contains the final discussion and some conclusions.

II. THEORETICAL APPROACH

The model system we consider here corresponds to an
overdamped bistable system described by the Langevin
4623 ©2000 The American Physical Society
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equation ~written in properly scaled, dimensionless variables;
see @9#!

ẋ5«~ t !1x2x31j«~ t !1xjr~ t !, ~1!

where «(t)5«0 cos(V«t), and «0 and V« are, respectively,
the intensity and frequency of the dipole-type potential
modulation 2x«(t). The additive and multiplicative Gauss-
ian white noise sources, indicated by j«(t) and jr(t), respec-
tively, obey

^j i~ t !&50, i51,2,

^j«~ t !j«~ t8!&52D«d~ t2t8!,
~2!

^jr~ t !jr~ t8!&52Drd~ t2t8!,

^j«~ t !jr~ t8!&52AD«Drr~ t !d~ t2t8!.

The strength of the correlation between the two noises is
measured by the parameter r(t), fulfilling the condition
ur(t)u<1. The associated Fokker-Planck equation ~in the
Stratonovich prescription! reads @21–23#

] tP~x ,t !52]x$@x2x31Drx1r~ t !ADrD«2«~ t !#P~x ,t !%

1D«]x
2$@11Rx212r~ t !AR#P~x ,t !%. ~3!

Here we have defined R5Dr /D« . In what follows we as-
sume that r is a time dependent periodic function of the form
r(t)5r0cos(Vrt1f), where f is an arbitrary but fixed rela-
tive phase. In previous work @19# we studied the case where
Vr5V« . We shall shortly review this situation but will
mainly elaborate on the most general case with VrÞV« .

In order to evaluate the correlation function and the power
spectral density ~PSD! to obtain the SNR, we exploit the
results of the two-state approach @9,24,25#. The problem of
obtaining the SNR of a nonlinear and essentially bistable
symmetric system subject to a weak periodic signal is then
reduced to a description where the transitions occur between
the two minima of the deterministic potential. Besides using
linear response theory the main approximation involves an
adiabatic approximation in the sense that the relaxation time
around each minimum is much shorter than the characteristic
time for transitions between the two stable states and the
corresponding slow driving periods.

In the absence of any signal, the deterministic potential of
the system has two minima located at the points x6561.
Let n6(t) be the populations in each state, defined as
n1(t)5*0

1`P(x ,t)dx , and n2(t)512n1(t), respectively.
It has been shown that these minima do not coincide with the
maxima of the steady state probability distribution @26#.
However, if r(t)ADrD« is sufficiently small it is justified to
neglect this fact.

To apply the two-state approach, let us introduce W1(t)
and W2(t), these being the ~adiabatic! nonstationary transi-
tion rates from the state x1 to x2 and from the state x2 to
x1 , respectively. Then we can write the following master
equation for the probability distribution:

dn2

dt 52
dn1

dt 5W1~ t !n12W2~ t !n2 . ~4!
The reduction from a bistable continuous system, whose
probability density evolves through a Fokker-Planck equa-
tion, to a discrete system driven by a master equation such as
Eq. ~4! is well known @27#. To evaluate the statistical mo-
ments within such an approximation, the probability density
has the form p(x ,t)5n1(t)d(x2x1)1n2(t)d(x2x2).

Usually, the time dependence of W6 is such that the exact
solution for Eq. ~4! cannot be found. If, however, both
modulations are small compared with the barrier height, i.e.,
r0ADrD«!V(0)2V(61) and «0!V(0)2V(61), then it
is possible to make a Taylor expansion of the functions
W6(t) around r05«050. We thus obtain within linear re-
sponse theory the result

W6~ t !5W01
dW6

d« U
r05«050

«~ t !1
dW6

dr U
r05«050

r~ t !

1O~«0
2!1O~r0

2!1••• , ~5!

where W0 is the transition rate evaluated in absence of
modulation (r05«050). The latter may be calculated by
means of the mean first-passage time T(R ,r0 ,«0) @20#, yield-
ing

1
W0

5T~R !ur05«050

5
1
DE21

1
dxH~x !exp@F~x !/D#

3E
2`

x
dyH~y !exp@2F~y !/D# ~6!

with the function H(x)[@11Rx212r(t)ARx#21/2. The de-
termination of the effective potential F(x) is from the adia-
batic asymptotic ~nonstationary! probability density; yielding

F~x !5E
2`

x
H~x8!2@x82x831«~ t !12r~ t !ADrD«#dx8.

For the chosen sinusoidal form of the modulations the
expansion has the explicit form

W6~ t !5 1
2 @W07a« cos~V«t !7ar cos~Vrt1f !

1O~«0
2!1O~r0

2!1•••# , ~7!

The factors ar and a« are given by

a«

2 52
dW6

d« U
r05«050

«0 and
a«

2 52
dW6

dr U
r05«050

r0;

~8!

with

dW6~R !

d«
52

1
T~R !2

dT~R !

d«
, ~9!

dW6~R !

dr
52

1
T~R !2

dT~R !

dr
. ~10!
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After a somewhat cumbersome calculation for the deriva-
tives of T(R) we end up with

D«
2 dT
d« U

r ,«50
52E

21

1
dxH~x !exp@F~x !/D«#

3SH~x !2xE
21

x
dyH~y !exp@2F~y !/D«#

1E
21

x
dyH~y !exp@2F~y !/D«#

3E
21

y
dzH~z !2z D ~11!

for the contribution of the potential modulation. The corre-
sponding contribution of the correlation modulation is

D«
2

ADrD«

dT
dr
U

r ,«50

52E
21

1
dxH~x !exp@F~x !/D«#3HH~x !2xF12H~x !

1H~x !2x2S x22 21 D GE
21

x
dyH~y !exp@2F~y !/D«#

2
1

D«
E

21

x
dyH~y !3y exp@2F~y !/D«#

3F11H~y !1H~y !2y2S y22 21 D G J . ~12!

It is also important to note here that, if the modulation is
made around a value r0Þ0, it becomes necessary to extend
the two-state approach in order to take into account the lack
of symmetry of the potential @28#.

In order to simplify the notation, let us define Y«(t) and
Yr(t) as

Y«~ t !5a«

«~ t !

AWo
21V«

2
, Yr~ t !5ar

r~ t !

AWo
21Vr

2
. ~13!

Integrating Eq. ~4! up to first order in the variables r0 and
«0, we obtain

n1~ tux0 ,t0!512Y«~ t !2Yr~ t !1e2Wout2t0u

3@Y«~ t0!1Yr~ t0!12dx0121# , ~14!

where n1(tux0 ,t0) is the conditional probability that x(t)
5x1 , given that x(t0)5x0. The funtion dx01 is equal to 1 if
the particle is initially located at x1 and 0 otherwise, and
similarly for n2(tux0 ,t0).

From Eq. ~14!, all the moments of the distribution p(x ,t)
may be determined and the conditioned autocorrelation func-
tion, averaged over noise ^&, and uniformly over time ^& t ,
reads
K~t ,t0!5^x~ t !x~ t1t !ux0 ,t0& t

ª

1
TE0

T
^x~ t !x~ t1t !ux0 ,t0ux0 ,t0&dt

5e2Woutu2e2WoutuY«~ t0!22e2WoutuYr~ t0!2

22e2WoutuY«~ t0!Yr~ t0!1Y«~ t0!Y«~ t01t !

1Yr~ t0!Yr~ t01t !1Yr~ t0!Y«~ t01t !

1Y«~ t0!Yr~ t01t !. ~15!

In Eq. ~15! it is possible to see that the autocorrelation func-
tion depends explicitly on the modulation frequencies V«

and Vr , as well as on t0. Here, t0 represents the time when
the output PSD of a system is measured and the data acqui-
sition begins. The PSD S(V), is the time-averaged Fourier
transform ~over the time span T) of the autocorrelation func-
tion K(t ,t0),

^S~V !& t5
1
2p K E

2`

`

K~t ,t0!exp iVtdtL
t0

ª

1
TE0

T
S~V ,t !dt . ~16!

By means of the two-state approach, using Eq. ~15! and Eq.
~16!, the general expression for the PSD is

S~V !5S 2Wo

Wo
21V2D S 12

a«
2«0

2

2~Wo
21V«

2!
2

ar
2r0

2

2~Wo
21Vr

2!
D

1
pa«

2«0
2

2~Wo
21V«

2!
@d~V2V«!1d~V1V«!#

1
par

2r0
2

2~Wo
21Vr

2!
@d~V2Vr!1d~V1Vr!#

1dV«2Vr

p

2 S 2arr0a««0 cos~f !

~Wo
21V«

2!
D

3@d~V2V«!1d~V1V«!# , ~17!

where dx51 if x50 and 0 otherwise.
Hence, we can distinguish between two distinct cases ac-

cording to the relation between the frequencies, i.e., ~i! dif-
ferent frequencies and ~ii! equal frequencies.

To determine the output SNR, denoted by R, we use the
standard definition

R510 log10S EV2D

V1D

S~v !dv

Sn~v5V !
D . ~18!

Here Sn is the PSD in absence of the signal. The parameter
D is introduced in order to tune the theoretical result when it
is compared with a numerical simulation or an experiment.
Such a parameter is related to the bandwidth of sampling
frequencies.
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III. DIFFERENT MODULATION FREQUENCIES

In spite of the result being the same, when the frequencies
are unequal the calculations differ slightly depending on
whether the ratio between driving frequencies is rational or
irrational. This difference in the calculation procedure arises
due to the evaluation of T. If the ratio between the modula-
tion frequencies is a rational number, that is, V« /Vr5q/p ,
with q ,pPN, then T52pq/V«52pp/Vr , while when the
ratio is an irrational number T increases without limit (T
→`). However, as we have already remarked, the final re-
sult remains the same, and using Eq. ~16! the PSD emerges
as

S~V !5S 2Wo

Wo
21V2D S 12

a«
2«0

2

2~Wo
21V«

2!
2

ar
2r0

2

2~Wo
21Vr

2!
D

1
pa«

2«0
2

2~Wo
21V«

2!
@d~V2V«!1d~V1V«!#

1
par

2r0
2

2~Wo
21Vr

2!
@d~V2Vr!1d~V1Vr!# . ~19!

Introducing an arbitrary phase shift between the signals
leads to the same result, namely, the appearance of two dis-
tinct SR effects, each one due to a different modulation. As
in the case when only one parameter is modulated, a
Lorentzian-like dependence arises in the output PSD due to
the noisy dynamics of the system. The signals are amplified,
yielding d functions at the modulation frequencies. This is a
counterintuitive result since ~as is already known! SR is a
consequence of the nonlinearity of the system. In spite of the
latter fact, it is apparent that the indicated effect on SR ap-
pears via two separate—linearly superimposed—events, sug-
gesting that there is no cooperative effect between the two
modulations, no matter how similar they are. One might
think that this fact is due to the linear response approxima-
tion we have used within the two-state approach and to the
fact that the modulation amplitude we used is very small.
Indeed, the numerical simulations support this result, as will
be shown later.

The expressions for each independent contribution to SR
are

R«510 log10Fp2a«
2«0

2

WoD
S 12

a«
2«0

2

2~Wo
21V«

2!

2
ar
2r0

2

2~Wo
21Vr

2!
D 21G , ~20!

Rr510 log10Fp2ar
2r0

2

WoD
S 12

ar
2r0

2

2~Wo
21Vr

2!

2
a«
2«0

2

2~Wo
21V«

2!
D 21G . ~21!

Of particular interest is the case in which there is a single
modulation of either «(t) or r(t). For instance, in Fig. 1 we
depict the SNR when only the potential is modulated, as a
function of D« and Dr . It is apparent that the SR phenom-
enon disappears for large noise intensities. Indeed, if the
multiplicative noise Dr is kept constant, and D« is increased,
the SNR starts from a small value, increases reaching a
maximum ~for an additive noise intensity D«;1021), and
afterwards decreases. It is also possible to see that if Dr

becomes large enough (Dr;10) the phenomenon of SR
vanishes. In the opposite limit, Dr→0, we recover the well
known SR with an additive noise only, and in this case R
reaches its maximum.

From Fig. 1, and for fixed Dr , we can see that it is pos-
sible to associate a characteristic width to the SNR as a func-
tion of D« . This width indicates the range of values of ad-
ditive noise intensities D« where the SR phenomenon is
more apparent. As indicated in the Introduction, it is of in-
terest to widen this range as much as possible because then it
will be possible to find a great insensitivity to external pa-
rameters, such as the additive noise intensity D« . As shown
in Fig. 1, the maximum of the SNR is lower for large Dr

intensities, while its width increases.
In Fig. 2, R is depicted as a function of D« and Dr when

the signal is introduced only through a modulation on the
correlation. In this case, the SR phenomenon exhibits a more
localized behavior in (D« ,Dr) parameter space. In fact, the
effect vanishes not only when the additive noise intensity
approaches infinity ~i.e., D«→1`) or zero ~i.e., D«→0),
but also when Dr→1` or Dr→0.

This aspect of the phenomenon is explained through the
Fokker-Planck equation @Eq. ~3!#. Both signals enter that
equation as contributions to the convective term. Therefore,
the potential modulation contributes as «(t), while the cor-
relation modulation contributes as r(t)ADrD«. Then ~if «0
50), the signal disappears only if at least one of the noise
intensities is zero.

In Fig. 2 we also show the curves R(D«), for different
values of Dr . Here it is apparent that the characteristic width
of SNR is modified when the multiplicative noise intensity is

FIG. 1. We show the SNR (R«) as a function of the additive
and multiplicative noise intensities D« and Dr , when only the po-
tential is modulated. We fixed «050.05 and V«50.008. In the lim-
iting case Dr→0, the usual SR phenomenon is recovered. It is easy
to see that, when Dr;1021, the typical width of SR increases
greatly.
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varied. We may note that, depending on this intensity, the
width of R may change by nearly three orders of magnitude.
In spite of this, as the width of the SNR grows, its maximum
falls.

It is worthwhile remarking that the functional dependence
on the modulation frequency is small. When the modulation
is applied simultaneously for «(t) and r(t), all the results
shown thus far remain robust. This fact is due to the unex-
pected linear superposition of both modulation effects.

IV. EQUAL MODULATION FREQUENCIES

When both driving frequencies are equal (V«5Vr) we
can distinguish two possibilities: the signals possess either a
zero or a finite relative phase shift f . The general form for
the modulations is

r~ t !5r0 cos~V«t1f !,

«~ t !5«0 cos~V«t !,

with the period being T52p/V« . The PSD is given by

S~V !5S 2Wo

Wo
21V2D

3S 12
a«
2«0

21ar
2r0

212a««0arr0 cos~f !

2~Wo
21V«

2!
D

1
p

2 S a«
2«0

21ar
2r0

212a««0arr0 cos~f !

~Wo
21V«

2!
D

3@d~V2V«!1d~V1V«!# . ~22!

and the output SNR reads

FIG. 2. In this three-dimensional plot we show the output SNR
(Rr) as a function of D« and Dr . Here, only the correlation pa-
rameter is modulated; thus, r050.08 and Vr50.008. The SR phe-
nomenon diminishes when both noises disappear or increase
enough, at variance with the previous case.
R510 log10Fp@a«
2«0

21ar
2r0

212a««0arr0 cos~f !#

DWo

3S 12
a«
2«0

21ar
2r0

212a««0arr0 cos~f !

2~Wo
21V«

2!
D 21G .

~23!

A. Signals with zero relative phase shift

From Eq. ~22!, the corresponding expression for f50
emerges as

S~V !5S 2Wo

Wo
21V2D S 12

~a««01arr0!
2

2~Wo
21V«

2!
D

1
p

2 S ~a««01arr0!
2

~Wo
21V«

2!
D @d~V2V«!1d~V1V«!# .

~24!

From this expression, we note that the two SR phenomena
associated with each separate modulation become indistin-
guishable: the system behaves as if only one signal acted on
it. The expression for the SNR thus reads

R510 log10Fp2~a««01arr0!
2

WoD
S 12

~a««01arr0!
2

2~Wo
21V«

2!
D 21G .

~25!

To simplify notation, we shall call the output PSD due to the
potential modulation S« , while the output PSD due to modu-
lation of the correlation will be indicated as Sr .

When there is no relative shift between the signals, the
two SR phenomena are linearly superimposed. This is a quite
interesting fact because ~as indicated above! the SR peak is
wider when the correlation is modulated than when there is
only a modulation of the potential. Thus, by modulating both
parameters simultaneously, the total SR effect may achieve a
greater independence relative to the ~external! additive noise
intensity D« .

In Fig. 3 we show SNR surfaces in (D« ,Dr) parameter
space when both modulations are simultaneously present,
with the same driving frequency and with f50. It is appar-
ent that ~keeping the noise intensity Dr constant! we obtain a
widening of the SNR function. This effect is larger if the
phenomena due to both modulations are of similar ampli-
tude. Indeed, if S«@Sr , the characteristic peak in the SNR
function is approximately the same as that obtained if the
signal is injected through the potential. In the opposite case,
Sr@S« , the effect is more dependent on the noise intensi-
ties.

If Sr>S« , a ~very! considerable widening of the SNR
function is found. It is seen that for multiplicative noise in-
tensities around 0.8 the characteristic peak of R increases its
width up to three orders of magnitude in comparison with the
case of modulation of the potential.

When the two signals have a phase shift of f5p we find
a different behavior. The linear superposition of the signals
then weakens the total SR phenomenon. An interesting as-
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pect is that, for specially chosen modulation intensities, the
SR exhibits two peaks vs D« , instead of the usual situation
with only one peak.

B. Signals with a finite relative phase shift

The second case is when there is a finite relative phase
shift f between the signals. We will consider only the case
f5p/2. The PSD becomes

S~V !5S 2Wo

Wo
21V2D S 12

a«
2«0

21ar
2r0

2

2~Wo
21V«

2!
D

1
p

2 S ~a«
2«0

21ar
2r0

2!

~Wo
21V«

2!
D @d~V2V«!1d~V1V«!# ,

~26!

i.e., the PSD splits into two separate contributions. In this
case, the powers of both signals are added, at variance with
the previous case in which the modulations were added. This
is due to the fact that the two signals are orthogonal ~in
Fourier space!. The SNR is given by

R510 log10S p2
a«
2«0

21ar
2r0

2

WoD
F 12

a«
2«0

21ar
2r0

2

2~Wo
21V«

2!
G21D .

~27!

It is also worth remarking that R is independent of the sign
of the amplitudes «0 , r0, unlike in the case with f50, @see
Eq. ~25!#.

V. NUMERICAL SIMULATIONS

In order to verify our analytic predictions of the previous
section, Eq. ~1! was numerically integrated. We have used

FIG. 3. Here we show the SNR (R) in (D« ,Dr) space. We
have fixed «050.05, r050.08, V«5Vr50.005, and f50. A con-
tribution between the two phenomena depicted in the previous fig-
ures is apparent.
the Runge-Kutta-Helfand @29# method for solving stochastic
differential equations. Such a method is fast enough, and of
higher order in the integration step h @in fact O(h3) @30##.
The integration gives a trajectory whose statistical moments
are the same as those for the formal solution of the equation

When modulating the correlation parameter, the same dy-
namical behavior as that obtained with a potential modula-
tion was observed. This phenomenon has been previously
studied in Ref. @17#. By means of numerical simulations, we
verified the existence of SR when a modulation is applied
only over the correlation parameter between the two noises.

A prediction of our approach is that, when both param-
eters are modulated with different driving frequencies, the
two contributions seem to appear independently from each
other. However, as indicated previously, this counterintuitive
result is due to the linear response simplifications made
within the two-state approach. In Figs. 4~a! through 4~d!, we
depict the PSD S(V) obtained from numerical experiments,
where the independent contributions from the two separate
effects are apparent. Clearly, this is due to the smallness of
the modulation amplitudes, and for larger values of «0 and
r0 we do find not only peaks corresponding to the harmonics
but also those associated with the sum or difference of the
two frequencies.

When both frequencies are equal, with zero relative phase
shift between the signals, a net contribution due to the two
signals arises with an enhanced SR effect. In Fig. 4~e! we
depict the case when both frequencies are equal and with
f50. Finally, Fig. 4~f! allows us to verify another feature
predicted by the two-state approach: when the modulation
frequencies are equal, but with f5p , a weakening in the
output spike at V5V«5Vr indeed occurs.

The characterization of the SR phenomenon given by the
output SNR R, is depicted in Fig. 5. In part ~a! of this figure
we compare R versus the additive noise intensity D« when
there is a modulation «(t). In contrast, in Fig. 5~b! we show
R when the correlation r(t) is varied periodically. Although
the functional dependence on D« looks the same in both
plots, it is important to remark that the characteristic width in
each of the two cases is quite different. When a modulation
is simultaneously applied in both parameters ~with f50),
we can expect that the effects reinforce each other. Figure
5~c! shows the existence of such behavior corroborating the
SNR dependence as a function of the additive noise intensity
D« for fixed Dr .

Lastly, Fig. 6 shows the dependence of the output SNR on
multiplicative noise intensity. Note that the function R(Dr)
increases for small Dr intensities and assumes a maximum at
Dr;0.2. Thus, we can conclude that in the presence of a
correlation modulation SR can become enhanced through
correlated (rÞ0) multiplicative noise.

In order to analyze the possibility of using the simulta-
neous modulation of potential and correlation as a way of
controlling SR @32#, it is important to study the behavior of
the SNR as a function of the relative phase shift f when both
modulation frequencies are equal. The numerical results are
given in Fig. 7, and as predicted by the two-state approach
the maximum in SNR occurs when f50.
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FIG. 4. We show the output PSD of the system when both amplitudes are different from zero. In all the plots, D «50.1, D r50.1, «0
50.04, V«52.531023, and r050.06. In the plots ~a! through ~e! there is no relative phase shift between the signals (f50), while in ~f!
f5p . The values of the frequency modulation of the correlation parameter are ~a! Vr52.031023, ~b! Vr52.331023, ~c! Vr52.4
31023, ~d! Vr52.931023, ~e! and ~f! Vr52.531023.
VI. SPECTRAL AMPLIFICATION FACTOR

The previous results, based on the two-state approach, do
not contain the whole dynamics. Furthermore, they are re-
stricted to an adiabatic regime and to small modulation am-
plitudes. This fact motivated researchers to propose other
characterizations of the SR phenomenon. A particularly in-
teresting point of view was proposed in Ref. @18#, exploiting
a Floquet expansion for the steady state solution of the asso-
ciated ~nonstationary! Fokker-Planck equation @see Eq. ~3!#.
For large times, and independently of the initial distribution
P (x , t0), the Fokker-Planck equation tends asymptotically to
a periodic function P as(x , t). This asymptotic solution may
be expanded into Floquet states: a basis of time-dependent,
periodic eigenfunctions of such an equation. The same ap-
proach can be used with the asymptotic expression of the
autocorrelation function. For such an expansion to be pos-
sible, a common characteristic frequency ~which we denote
V̄) must exist in the system so that the function can be
written as an expansion in its higher harmonics,

K̄ as~t !5 (
n52`

`

uM nu2 exp~ inV̄t !52(
n50

`

uM nu2 cos~nV̄t !.

~28!
Projecting this expression on the first harmonic of the series,
we obtain

E
0

1`

K̄ as~t !cos~V̄«t !dt52puM 1u2. ~29!

This expression will be used to evaluate uM 1u2. Hence we
obtain

P 154puM 1u2, ~30!

while the total power at the input @by inspection of the
Fokker-Planck equation ~3!# is

P in5p~«01r0AD «D r!2. ~31!

The spectral amplification factor ~SAF! h is defined as

h~V̄ ,D « ,D r ,«0 ,r0!5
P 1

P in
54S uM 1u

«01r0AD « D r

D 2

.

~32!

This SAF is an indicator for the SR phenomenon @18#, indi-
cating to what extent the signal is able to entrain the noise
~stochastic synchronization!.
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In order to verify the results obtained by means of the
output SNR for the system under study, we have also evalu-
ated this SAF h . The numerical results can be obtained by a
discrete version of the asymptotic autocorrelation function
from Eq. ~29!. We restrict our analysis to the case when the
two modulation frequencies are equal. For this reason, we
consider in the present section only the case with f50.

In Fig. 8 we depict the results for h as a function of D«

when the potential @case ~a!# and the noise correlation @case
~b!# are modulated. Once again, the characteristic width of

FIG. 6. SNR as a function of multiplicative noise intensity,
when modulating the potential («050.04) and the noise correlation
parameter r(t) (r050.02). The remaining parameters are D«

50.1, V«5Vr52.531023, and f50. In this plot we see that the
output SNR may grow even with increasing multiplicative noise
intensity. The numerical result ~squares! is in good agreement with
the two-state theory ~lines!.

FIG. 5. SNR vs D« when modulating both parameters with the
same driving frequency V«5Vr52.531023, and with relative
phase shift f50. In the three plots, we compare the theoretical
predictions ~lines! with the numerical simulations ~filled squares!.
In plot ~a!, the multiplicative noise intensity is Dr50.1, and only
the potential is modulated: «050.06. In plot ~b! there is modulation
only over the correlation parameter, Dr50.1, r050.03. Finally,
plot ~c! shows the case in which there is a signal injected through
both parameters. In this figure, Dr50.8 «050.05, r050.07, and
f50. It is important to remark here that we used a different scale
in case ~c! due to the large widening obtained in the SR peak,
compared with the ones obtained in plots ~a! and ~b!.
the numerically evaluated SR phenomenon becomes broad-
ened when we have r0Þ0 as compared to the case r050.
However, we observed that the functional shape of uM 1u2
remains numerically ~mostly! unaffected by the value of the
modulating strength. Thus, the observed widening is due to
the fact that h depends inversely on the product DrD« .
Hence, when D«→0, uM 1u2 increases more when modulat-
ing the correlation r(t) than when modulating «(t). Finally,
Fig. 8~c! shows the h factor when both parameters are modu-
lated simultaneously. It corroborates our previous result, that
its width is notably larger than in the case of Fig. 8~a!. As
was observed in the SNR results, this yields a higher maxi-
mum in the SR indicator ~in this case h).

FIG. 8. Behavior of the spectral amplification factor. In ~a!, only
the bistable potential is modulated, i.e., r(t)50 and «050.05. In
~b!, the correlation r(t) is the only modulated parameter (r0
50.04). In this case as in the previous one, the driving frequency is
V05V«52.531023, and the multiplicative noise intensity is Dr

50.1. In ~c! we depict the case when both parameters are modu-
lated with amplitudes «050.05, r050.7, while Dr50.8, and V«

5Vr52.531023. The scale D« is enlarged to emphasize visibly
the widening of the SR peak.

FIG. 7. Dependence of output SNR on phase shift f between
the two modulations «(t) and r(t). We have fixed D«50.1, Dr

50.7, «050.05, r050.07, and V«5Vr52.531023. We observe
that the maximum occurs for f50, when no relative phase shift
exists between the signals, while a minimum is assumed for f
5p . As in the previous plots, we compare the numerical results
~black squares! with our theoretical predictions ~solid line!.
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VII. CONCLUSIONS

In this work we have studied a bistable symmetric system,
driven by two white Gaussian noise sources that are corre-
lated: one of them is associated with an additive white noise
and the other with a multiplicative white noise. As in other
systems exhibiting SR, a periodic signal was introduced
through a weak potential modulation. In systems that exhibit
SR, the phenomenon depends strongly on the tuning of an
external ~noise! parameter, which usually cannot be con-
trolled. In order to improve this effect we have added a sec-
ond signal to the system, in the form of a modulation of the
correlation between the two white noises. In this way we
obtain a SR effect similar to that when the potential is modu-
lated.

Through the two-state approach, the output SNR was cal-
culated as a function of the various parameters of the system.
Numerical simulations of the system under study were con-
sistent with all theoretical results, including the evaluation of
the SAF, a synchronization measure of the SR in our system.
The results are briefly summarized as follows.

On modulating only the noise correlation r(t) the SR
phenomenon becomes less sensitive to the external additive
noise. This is the reason why, when modulating simulta-
neously both parameters with signals that have the same
driving frequency and with a relative phase shift of f50,
what we find is a large degree of independence of the exter-
nal parameter. As a consequence, by appropriately tuning the
~internal! multiplicative noise intensity, the range where the
SR appears ~as a function of the external additive noise! can
be extended by almost two orders of magnitude. This aspect
was found in both the SNR and the spectral amplification
measure. Unfortunately, such behavior occurs only when the
two driving frequencies are equal. It is interesting to note
that, for some multiplicative noise intensities, the SR phe-
nomenon can increase with increasing multiplicative noise
intensity Dr .

A fact worth remarking is the prominent prediction ob-
tained within the two-state approach: when both parameters
are modulated with different driving frequencies, the two SR
phenomena associated with each driving source can appear
independently of each other. One might think that this coun-
terintuitive result is due to the linear response approximation
we have used within the two-state approach and to the fact
that the modulation amplitude we used is very small. Indeed,
the numerical simulations support this view.

Regarding the physical relevance of the present results, in
Ref. @20# some examples of realistic models showing
bistable behavior plus the possibility of correlated additive
and multiplicative noise sources were discussed. However, in
those cases the modulation of the correlation does not seem
to be at all that simple. A simpler way to physically realize
the situation we have described here is by means of an elec-
tronic circuit with two different white noise sources. Noise
sources could be combined in such a way as to produce a
third correlated one. Hence, one of the original sources to-
gether with the engineered one can be used to produce the
two correlated noises. In addition, the modulation of this
correlation can be appropiately introduced through the pa-
rameter defining the correlation @31#. Furthermore, using this
method it should be possible to introduce the very idea de-
scribed here into other experimental situations where multi-
plicative and additive noise have been introduced previously.

What we intend to point out in this work is the fact that
with an appropriate design it is possible to achieve a remark-
able widening of the range of values of the fluctuation pa-
rameter where the SR phenomenon can be detected. Also, a
remarkable aspect of our present findings indicates an alter-
native route of controlling the SR phenomenon along the
reasoning put forward in Ref. @32#. We hope that the present
results can awaken the interest of theoreticians and experi-
mentalists in the search for alternative forms of the SR phe-
nomenon that can produce effects similar to those indicated
above and contribute to different ways of controlling the
phenomenon.
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Kuperman, H.S. Wio, G. Izús, R. Deza, and F. Castelpoggi,
Physica A 257, 275 ~1998!.

@16# J.J. Collins, C.C. Chow, and T.T. Imhoff, Nature ~London!
376, 236 ~1995!; J.J. Collins, C.C. Chow, A.C. Capela, and
T.T. Imhoff, Phys. Rev. E 54, 5575 ~1996!.

@17# L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S.
Santucci, Phys. Rev. E 49, 4878 ~1994!.
@18# P. Jung and P. Hänggi, Europhys. Lett. 8, 505 ~1989!; Phys.

Rev. A 44, 8032 ~1991!.
@19# C.J. Tessone and H.S. Wio, Mod. Phys. Lett. B 12, 1195

~1998!.
@20# A.J.R. Madureira, P. Hänggi, and H.S. Wio, Phys. Lett. A 217,

248 ~1996!.
@21# H. Dekker, Phys. Lett. 90A, 26 ~1982!.
@22# D. Gong, G. Hu, and X. Wen, Phys. Rev. E 48, 4862 ~1992!.
@23# W. Da-Jin, C. Li, and K. Sheng-zhi, Phys. Rev. E 50, 2496

~1994!.
@24# C. Nicolis, Tellus 34, 1 ~1982!.
@25# B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4854

~1989!.
@26# A. Fulinski and T. Telejko, Phys. Lett. A 152, 11 ~1991!.
@27# B. Caroli, C. Caroli, B. Roulet, and D. Saint-James, Physica A

108, 233 ~1981!.
@28# S. Bouzat and H.S. Wio, Phys. Rev. E 59, 5142 ~1999!; H.S.

Wio and S. Bouzat, Braz. J. Phys. 29, 136 ~1999!.
@29# H. Helfand, Bell Syst. Tech. J. 56, 2289 ~1979!.
@30# M. San Miguel and R. Toral, in Instabilities and Nonequilib-

rium Structures VI, edited by E. Tirapegui and W. Zeller ~Klu-
wer Academic Press, Dordrecht, 1999!.

@31# G. Savino ~private communication!.
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