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Surmounting oscillating barriers: Path-integral approach for weak noise
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We consider the thermally activated escape of an overdamped Brownian particle over a potential barrier in
the presence of periodic driving. A time-dependent path-integral formalism is developed which allows us to
derive asymptotically exact weak-noise expressions for both the instantaneous and the time-averaged escape
rate. Our results comprise a conceptually different, systematic treatment of the rate prefactor multiplying the
exponentially leading Arrhenius factor. Moreover, an estimate for the deviations at finite noise strengths is
provided and a supersymmetry-type property of the time-averaged escape rate is verified. For piecewise
parabolic potentials, the rate expression can be evaluated in closed analytical form, while in more general
cases, as exemplified by a cubic potential, an action-integral remains to be minimized numerically. Our
comparison with very accurate numerical results demonstrates an excellent agreement with the theoretical
predictions over a wide range of driving strengths and driving frequencies.

PACS number~s!: 05.40.2a, 82.20.Mj, 82.20.Pm
I. INTRODUCTION

The thermally activated escape over a potential barrier is
a recurrent theme in a large variety of physical, chemical,
and biological contexts @1–3#. In the case of foremost prac-
tical relevance, the characteristic strength of the thermal
noise ~the thermal energy kBT) is much smaller than the
potential barrier. As a consequence, successful barrier cross-
ings constitute rare events and the escape statistics verifies
with very high accuracy an exponential decay as a function
of time. In other words, a meaningful escape rate can be
defined which completely characterizes the decay process. A
seminal contribution to the theory of escape rates represents
the work by Kramers in 1940 @4#, which subsequently has
been refined, modified, and generalized in various important
directions @1–3#.
A particularly challenging direction are systems far away

from thermal equilibrium, either due to nonthermal noise or
external deterministic forces @1#. In such a case, the relevant
probability distribution strongly deviates from the Boltz-
mann form in the entire state space and its determination
becomes a highly nontrivial problem. Mutatis mutandis, this
very same basic difficulty resurfaces again in all known the-
oretical methods of calculating escape rates in far from equi-
librium systems @5–12#.
The subject of our present paper is one of the simplest

nonequilibrium descendants of the original problem of
Kramers: namely the thermally activated escape of an over-
damped Brownian particle over a potential barrier in the
presence of a periodic driving ~details are given in Sec. II!.
This is a prototypical setup in the sense that investigating the
behavior of a system under the influence of a periodic forc-
ing represents a particularly natural and straightforward ex-
perimental situation. Examples arise in the context of laser
driven semiconductor heterostructures @13#, stochastic reso-
nance @14#, directed transport in rocked Brownian motors
@15–17#, or periodically driven ‘‘resonant activation’’ pro-
cesses @18,19# like ac-driven biochemical reactions in protein
membranes @20#, to name only a few.
Despite its experimental importance, the theory of oscil-
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lating barrier crossing in the regime of weak thermal noise is
still at its beginning. Previous quantitative, analytical inves-
tigations have been restricted to weak @21–23#, slow @24,25#,
or fast @21,24,26# driving. In this paper we continue our re-
cent study @27# of the most challenging intermediate regime
of moderately strong and moderately fast driving by means
of path-integral methods. The general framework of this ap-
proach is derived from scratch in Sec. III, thus collecting,
streamlining, and partially extending previously known ma-
terial. The evaluation of the escape rate is worked out in Sec.
IV with the central results ~116! for the time-averaged and
~108! for the instantaneous escape rate. Especially, these re-
sults comprise a conceptually different, systematic treatment
of the rate prefactor multiplying the exponentially leading
Arrhenius factor. They become asymptotically exact for any
finite amplitude and period of the driving as the noise
strength tends to zero. On the other hand, for any fixed
~small! noise strength, we have to exclude extremely small
driving amplitudes and extremely long or short driving peri-
ods since this would lead us effectively back to an undriven
escape problem, which is not covered by our present ap-
proach. Another situation which is excluded in our theory is
the case of extremely strong driving such that escape events
become possible even in the absence of the thermal noise
@28,29#. Closest in spirit to our methodology is the recent
work @23#, which is restricted, however, to the linear-
response regime ~weak driving! for the exponentially leading
part ~Arrhenius factor! and treats the prefactor by means of a
matching procedure, involving the barrier region only. The
approximation adopted in that work is complementary to
ours in that it admits, for a fixed ~small! noise strength, ar-
bitrarily small driving amplitudes.
In Sec. V our analytical predictions are verified for the

case of sinusoidally rocked metastable potentials against
very precise numerical results. A first example consists of a
piecewise parabolic potential, for which our general rate ex-
pressions can be evaluated in closed analytical form. In more
general cases, exemplified in Sec. V by a cubic potential, a
few elementary numerically tasks remain before actual num-
6282 ©2000 The American Physical Society
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bers can be obtained from our rate expressions. The final
conclusions are presented in Sec. VI.

II. ESCAPE PROBLEM

A. Model

We consider the following model for the one-dimensional
Brownian motion of a particle with coordinate x(t) and mass
m under the influence of a time-dependent force field F(x ,t):

mẍ~ t !2F„x~ t !,t…52h ẋ~ t !1A2Dj~ t !. ~1!

While the left-hand side accounts for the dynamics of the
isolated particle, the right-hand side models the influence of
its thermal environment @1# with a viscous friction coeffi-
cient h and a randomly fluctuating force j(t), which is as-
sumed to be unbiased Gaussian white noise with correlation

^j~ t !j~ t8!&5d~ t2t8!. ~2!

At thermal equilibrium, the intensity D of the noise is related
to the temperature T according to the Einstein relation D
5hkBT , where kB is Boltzmann’s constant @1#. Throughout
this paper we will restrict ourselves to the overdamped mo-
tion such that inertia effects mẍ(t) in Eq. ~1! are negligible
@30#. Choosing the time unit such that h51, the stochastic
dynamics takes the form

ẋ~ t !5F„x~ t !,t…1A2Dj~ t !. ~3!

The force field F(x ,t) in Eq. ~3! is assumed to derive
from a metastable potential which undergoes an arbitrary pe-
riodic modulation in time with period T,

F~x ,t1T !5F~x ,t !. ~4!

An example is a metastable static potential V(x) as car-
tooned in Fig. 1, supplemented by an additive sinusoidal
driving

F~x ,t !52V8~x !1A sin~Vt !, ~5!

FIG. 1. Sketch of a typical metastable potential V(x) in Eq. ~5!.
Plotted is the piecewise parabolic example ~134! with parameters
DV50.9, ls520.6, and lu50.3 in arbitrary, dimensionless units.
V52p/T. ~6!

Our next assumption is that the deterministic dynamics in
Eq. ~3! with D50 exhibits a stable periodic orbit xs(t) and
an unstable periodic orbit xu(t) @31#, satisfying

ẋs ,u~ t !5F„xs ,u~ t !,t…, ~7!

xs ,u~ t1T !5xs ,u~ t !, ~8!

where ‘‘s ,u’’ means that the index may be either ‘‘s’’ or
‘‘u.’’ Moreover, every deterministic trajectory is assumed to
approach in the long-time limit either the attractor xs(t) or to
diverge towards x5` , except if it starts exactly at the sepa-
ratrix xu(t) between those two basins of attraction. In other
words, the metastable potential is required not to be rocked
too violently such that particles cannot escape deterministi-
cally, i.e., without the assistance of the random fluctuations
in Eq. ~3!. It is clear that xs(t) and xu(t) must be disjoint and
by assuming a second ‘‘attractor’’ at x5` we have, without
loss of generality, implicitly restricted ourselves to the case
that

xu~ t !.xs~ t ! ~9!

for all t. Note that the above requirements do not necessarily
exclude the possibility that for certain times t the ‘‘instanta-
neous potential,’’ from which the force field F(x ,t) derives,
does no longer exhibit a potential barrier.

B. Escape rates

Next, we return to the stochastic dynamics ~3! with a
finite but very small noise strength D such that a particle x(t)
is able to leave the domain of attraction of the stable periodic
orbit xs(t) and subsequently disappear towards x5` but the
typical waiting time before such an event occurs is much
longer than all characteristic time scales of the deterministic
dynamics ~separation of time scales @1,22,32#!. For a quanti-
tative characterization of such escape events, our starting
point is the probability distribution p(x ,t) of particles which
is governed by the Fokker-Planck equation @33#

]

]t p~x ,t !5
]

]x H 2F~x ,t !1D
]

]xJ p~x ,t !. ~10!

Once p(x ,t) is known, the population PA(t) of the time-
dependent basin of attraction A(t)ª(2` ,xu(t)# of the
stable periodic orbit xs(t) follows as

PA~ t !5E
2`

xu~ t !
p~x ,t !dx . ~11!

A suggestive definition of the ‘‘instantaneous rate’’ G(t) is
then provided by the relative decrease of this population per
time unit

G~ t !ª2 ṖA~ t !/PA~ t !. ~12!

We note that particles which leave the domain of attraction
give rise to a positive contribution to G(t). There is also a
certain probability that particles from outside this domain
recross the separatrix xu(t), giving rise to a negative contri-
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bution to G(t). In other words, Eq. ~12! is the net flux of
particles ~outgoing flux minus back flux! across the sepa-
ratrix xu(t) in units of the remaining population PA(t). By
exploiting the deterministic dynamics ~7! for xu(t), the
Fokker-Planck equation ~10! for p(x ,t), and the definition
~11! of PA(t), we can rewrite the instantaneous rate ~12! as

G~ t !52
D

PA~ t !
]p„xu~ t !,t…

]xu~ t !
. ~13!

Inside the metastable state x,xu(t) the particle distribu-
tion is governed by intrawell relaxation processes. For small
noise strengths D, their characteristic time scales are well
separated from the typical escape time itself @1,22,32#. On
this time scale of the intrawell relaxation, transients die out
and the distribution p(x ,t) approaches a quasiperiodic de-
pendence on time t. More precisely, p(x ,t)/*

2`
xu(t)p(x ,t)dx

tends, at least for x<xu(t), towards a time-periodic function
as t grows. The same carries over to the escape probability
~13! and thus the time-averaged escape rate

Ḡª
1
T Et

t1T
G~ t8!dt8 ~14!

becomes independent of the time t.
Our assumption of weak noise guarantees that the loss of

population PA(t) is negligible on the time scale of the in-
trawell relaxation for any initial distribution p(x ,t0) that is
negligibly small in the vicinity and beyond the instantaneous
separatrix xu(t0). The denominator in Eq. ~13! can thus be
approximated by 1 for all times t2t0 much smaller than the
characteristic escape time 1/Ḡ itself. Further, we can restrict
ourselves to d-distributed initial conditions of the form
p(x ,t0)5d(x2x0) with x0 inside the basin of attraction
A(t) of x s(t) such that the overwhelming majority of real-
izations ~3! will first relax towards a close neighborhood of
the attractor x s(t) before they escape. The behavior of more
general initial distributions then readily follows by way of
linear superposition. Moreover, one expects @1,22,32# that
after transients ~intrawell relaxation processes! have died out,
the time-dependent escape rate ~13! will actually become in-
dependent of the initial conditions x0 and t0 . Denoting by
p(x ,tux0 ,t0) the conditional probability associated with an
initial d-peak at x0 we thus can rewrite Eq. ~13! as

G~ t !52D
]p„xu~ t !,tux0 ,t0…

]xu~ t !
. ~15!

We recall that this expression is valid even if t2t0 is not
large, but then G(t) still depends on x0 and t0 . On the other
hand, t2t0 has been assumed to be much smaller than the
typical escape time 1/Ḡ . However, on this time scale the rate
G(t) has practically converged to its asymptotically periodic
behavior and thus the extrapolation of G(t) to arbitrarily
large t2t0 is trivial.

C. Supersymmetry

Given a time-periodic force field F(x ,t), we define its
supersymmetric partner field F̃(x ,t) @22,34,35# according to
F̃~x ,t !ªF~2x ,2t !. ~16!

For instance, if the force field F(x ,t) derives from a periodi-
cally rocked potential V(x) like in Eq. ~5!, then its supersym-
metric partner is obtained by turning V(x) upside down, fol-
lowed by an inversion of the x axis, i.e., Ṽ(x)52V(2x),
see Fig. 2, while the driving A sin(Vt) in Eq. ~5! remains
invariant ~up to an irrelevant phase!. In such a supersymmet-
ric partner field F̃(x ,t), the stable and unstable periodic or-
bits exchange their roles, thus defining a different escape
problem out of the basin of attraction of the new stable orbit
x̃ s(t)52xu(2t) across the new separatrix x̃u(t)52x s(2t).
It has been demonstrated in @22,34# that for force fields

F(x ,t) of the form ~5!, the time-averaged rate ~14! is invari-
ant under the supersymmetry transformation ~16!. The same
line of reasoning @22,34# can be readily generalized to force
fields of the form F(x ,t)52V8(x)1y(t) with an arbitrary
periodic driving y(t). In our present paper we will show that
for asymptotically weak noise D the time-averaged escape
rate ~14! is invariant under the general supersymmetry
transformation (16) without any further restrictions on
F(x ,t). Regarding the notion of supersymmetry and espe-
cially its connection with supersymmetric quantum mechan-
ics, we refer to @22,34# and further references therein. We
finally remark that the standard definition of the supersym-
metric partner force field is 2F(x ,2t). For our present pur-
poses, the definition ~16! is equivalent but more convenient.

III. PATH INTEGRALS: GENERAL FRAMEWORK

In this section the general framework of a path-integral
approach to the stochastic dynamics ~3! is outlined. Though
these concepts are not new @8–12,36–42#, we find it worth
while to briefly review them here in order to make our paper
self-contained. We also note that most of this section re-
mains valid beyond the particular assumptions on the force
field F(x ,t) from Sec. II.

A. Time-discretized path integrals

Much like in quantum mechanics, also in the present con-
text of stochastic processes, path-integral concepts have a

FIG. 2. The supersymmetric partner potential Ṽ(x)ª2V(2x)
of the potential V(x) from Fig. 1 in arbitrary, dimensionless units.



PRE 62 6285SURMOUNTING OSCILLATING BARRIERS: PATH- . . .
tangible meaning only when considered as the limiting case
of appropriate discrete-time approximations. Our first step is
therefore a discretization in time of the overdamped stochas-
tic dynamics ~3!. Denoting the initial and final times by t0
and t f , we introduce the definitions

Dtª@ t f2t0#/N , ~17!

tnªt01nDt , ~18!

xnªx~ tn!, ~19!

where n50,1, . . . ,N . The integer N is considered as large
but finite and will ultimately be sent to infinity ~continuous-
time limit!. The discretized dynamics ~3! then takes the form

xn112xn5F~xn ,tn!Dt1A2DDtjn ~20!

where the jn are independent, identically distributed Gauss-
ian random numbers with probability distribution

P~jn!5~2p !21/2 exp$2jn
2/2%. ~21!

As a side remark we notice that the so-called ‘‘prepoint dis-
cretization scheme’’ @40–42# @not to be confused with the Ito
scheme in the stochastic dynamics ~3!# has been implicitly
adopted in Eq. ~20! for the sake of later convenience. Other
‘‘discretization schemes’’ @40–42# would give rise to a
somewhat modified path-integral formalism but would, of
course, lead to identical results as far as the actual stochastic
dynamics ~3! is concerned. In passing we further note that
our treatment for Eq. ~3! can be generalized to multiplicative
noise g(x)j(t), with g(x)Þ0, without encountering addi-
tional difficulties.
For the conditional probability pN(xn11 ,tn11uxn ,tn) to

reach the point xn11 at time tn11 when starting out from xn
at the previous time step tn we find from the discretized
dynamics ~20! and the noise distribution ~21! that

pN~xn11 ,tn11uxn ,tn!

5E d~xn112xn2F~xn ,tn!Dt2A2DDtjn!P~jn!djn

5
1

~4pDDt !1/2expH 2
@xn112xn2F~xn ,tn!Dt#2

4DDt J . ~22!

Here and in the following, integrals over the entire real axis
are written without the integration limits 6`. Further, the
mutual independence of the random numbers jn in Eq. ~20!
~Markov property! implies for the conditional probability the
Chapman-Kolmogorov relation

pN~xn12 ,tn12uxn ,tn!5E pN~xn12 ,tn12uxn11 ,tn11!

3pN~xn11 ,tn11uxn ,tn!dxn11 .

Upon iteration of this relation in combination with Eq. ~22!
one finds for the conditional probability the time-discretized
path-integral representation
pN~x f ,t f ux0 ,t0!5E dx1¯dxN21

~4pDDt !N/2 expH 2
SN~x0 , . . . ,xN!

D J ,
~23!

where

SN~x0 , . . . ,xN!ª (
n50

N21
Dt
4 Fxn112xn

Dt 2F~xn ,tn!G2 ~24!

is the discrete-time ‘‘action’’ or ‘‘Onsager-Machlup func-
tional.’’ While x1 , . . . ,xN21 are integration variables in Eq.
~23!, the initial and end points are fixed by the prescribed x0
and by the additional constraint xN5x f , see Eqs. ~17!–~19!.

B. Saddle-point approximation

For small noise strengths D the path integral ~23! is domi-
nated by the minima of the action SN(x0 , . . . ,xN). The exis-
tence of at least one ~global! minimum can be readily in-
ferred from the general structure of the action in Eq. ~24!. To
keep things simple we assume for the moment that besides
this global minimum no additional ~local! minima play a role
in Eq. ~23!. Denoting the global minimum by x*
ª(x0* , . . . ,xN*) it follows that it satisfies the extremality con-
ditions

]SN~x*!

]xn*
50 ~25!

for n51, . . . ,N21, supplemented by the boundary condi-
tions for n50,N ,

x0*5x0 , xN*5x f . ~26!

Under the assumption that the noise strength D is small, the
path integral in Eq. ~23! can be evaluated by means of a
saddle-point approximation about the minimizing path x*
with the result

pN~x f ,t f ux0 ,t0!5ZN~x*!e2SN~x*!/D@11O~D !# , ~27!

where the prefactor ZN(x*) is given by a Gaussian integral
of the form

ZN~x*!ªE dy1¯dyN21

~4pDDt !N/2

3expH 2
1
2D (

n ,m51

N21

yn
]2S~x*!

]xn*]xm*
ymJ , ~28!

and where in the order of magnitude expression O(D) only
the dependence on the noise-strength D is being kept. A
more detailed quantitative estimate of this correction O(D)
is a difficult, and to our knowledge unsolved task.
The Gaussian integral in Eq. ~28! is readily evaluated to

yield

ZN~x*!ªF4pDDt detS 2Dt
]2S~x*!

]xn*]xm*
D G21/2

, ~29!

where det(Anm) indicates the determinant of an N213N
21 matrix with elements Anm . As demonstrated in Appen-
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dix A, the determinant appearing in Eq. ~29! can be rewritten
in the form of a two-step ~second-order! linear recursion

Qn11* 22Qn*2Qn21*
Dt2

52
Qn*F8~xn* ,tn!2Qn21* F8~xn21* ,tn21!

Dt

2Qn*Fxn11* 2xn*
Dt 2F~xn* ,tn!GF9~xn* ,tn!

1Qn*F8~xn* ,tn!22Qn21* F8~xn21* ,tn21!
2

~30!

with initial conditions

Q1*5Dt ,
Q2*2Q1*

Dt 511O~Dt !, ~31!

from which the prefactor ZN(x*) in Eq. ~29! follows as

ZN~x*!5@4pDQN*#21/2. ~32!

The fact that x* is a minimum of the action ~24! guarantees
that QN*.0. Here and in the following we use the abbrevia-
tions:

F8~x ,t !ª
]F~x ,t !

]x , Ḟ~x ,t !ª
]F~x ,t !

]t , ~33!

and bracket-saving expressions like f (x)2 are understood as
@ f (x)#2.
As we shall see later, we have to leave room for the

possibility that even for small noise strengths D more than
one ~global or local! minimum of the action ~24! notably
contributes to the path-integral expression ~23!. We label
those various non-negligible minima xk* by the discrete index
k but leave for the moment the precise set of k values un-
specified. Each of the minimizing paths xk* thus satisfies an
extremality condition of the form ~25!. Under the assumption
that those minima xk* are well separated in the
N21-dimensional space of all paths (x0 , . . . .xN) appearing
in Eq. ~23!, the saddle-point approximation ~27! simply ac-
quires an extra sum over k with a corresponding extra index
k in Eqs. ~28!–~32!. Combining Eqs. ~27! and ~32! we thus
arrive at

pN~x f ,t f ux0 ,t0!5(
k

e2SN~xk*!/D

~4pDQN ,k* !1/2
@11O~D !# . ~34!

C. Continuous-time limit

Next we turn to the continuous-time limit N→` , Dt
→0 in Eq. ~17!. The continuous-time conditional probability
p(x f ,t f ux0 ,t0) when N→` in Eq. ~23! is symbolically indi-
cated by the path-integral expression @36#

p~x f ,t f ux0 ,t0!5E
x~ t0!5x0

x~ t f !5x fDx~ t !e2S@x~ t !#/D, ~35!

where
S@x~ t !#ªE
t0

t f
L„x~ t !, ẋ~ t !,t…dt ~36!

is the continuous-time limit of the action ~24! with

L~x , ẋ ,t !ª 1
4 @ ẋ2F~x ,t !#2 ~37!

as Lagrangian. The extremality conditions for the minimiz-
ing paths xk*(t) in the continuous-time limit are obtained
from Eqs. ~24! and ~25! by letting Dt→0 as

ẍk*~ t !5Ḟ„xk*~ t !,t…1F„xk*~ t !,t…F8„xk*~ t !,t… ~38!

with boundary conditions @cf. ~26!#

xk*~ t0!5x0 , xk*~ t f !5x f . ~39!

The same result ~38! can also be recovered as the Euler-
Lagrange equation corresponding to the Lagrangian ~37!.
Equivalent to this Lagrangian dynamics is the following

Hamiltonian counterpart:

H~x ,p ,t !ªpẋ2L5p21pF~x ,t !, ~40!

ṗk*~ t !52pk*~ t !F8„xk*~ t !,t…, ~41!

ẋk*~ t !52pk*~ t !1F„xk*~ t !,t…. ~42!

The last equation ~42! may also be considered as the defini-
tion of the momentum pk*(t) in terms of xk*(t) and ẋk*(t).
With Eqs. ~37! and ~42! the action ~36! along a minimizing
path xk*(t) follows as

fk~x f ,t f !ªS@xk*~ t !#5E
t0

t f
pk*~ t !2dt , ~43!

where the dependence of the action fk(x f ,t f) on the initial
condition x0 at time t0 has been dropped. For later use we
also recall the well-known result from classical mechanics
that the derivative of the extremizing action with respect to
its end point equals the canonical conjugate momentum, i.e.,

]fk~x f ,t f !
]x f

5pk*~ t f !. ~44!

Finally, the continuous-time limit for the conditional
probability ~34! in combination with Eq. ~43! takes the form

p~x f ,t f ux0 ,t0!5(
k

e2fk~x f ,t f !/D

@4pDQk*~ t f !#1/2
@11O~D !# ,

~45!

where Qk*(t) is governed by the second-order homogeneous
linear differential equation @27,39,43# that follows in the
limit Dt→0 from Eqs. ~30! and ~42!,

1
2 Q̈k*~ t !2

d
dt @Qk*~ t !F8„xk*~ t !,t…#1Qk*~ t !pk*~ t !F9„xk*~ t !,t…

50. ~46!

Similarly, the initial conditions ~31! go over for Dt→0 into
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Qk*~ t0!50, Q̇k*~ t0!51. ~47!

We remark that according to Eqs. ~38! and ~39! the mini-
mizing paths xk*(t) are independent of the noise strength D.
Consequently, neither fk(x f ,t f) from Eqs. ~38!, ~39!, and
~43! nor Qk*(t) from Eqs. ~46! and ~47! depend on the noise
strength, i.e., no implicit additional D dependences are hid-
den in Eq. ~45!. We further note that by means of the sub-
stitution

gk*~ t !ª
Q̇k*~ t !
2Qk*~ t !

2F8„xk*~ t !,t… ~48!

the linear homogeneous second-order equation ~46! goes
over into the nonlinear first-order Riccati equation

ġk*~ t !12gk*~ t !212gk*~ t !F8„xk*~ t !,t…52pk*~ t !F9„xk*~ t !,t….
~49!

Since Eq. ~47! does not lead to a meaningful initial condition
for gk*(t) in Eq. ~48!, the Riccati equation ~49! can only be
used for times t.t0 . For this reason and also from the view-
point of calculational efficiency we found that for practical
purposes the linear second-order equation ~46! is often supe-
rior to the Riccati equation ~49!.
To establish contact with previously known results we

finally remark that one can identify

]2fk~x f ,t f !
]x f

2 5gk*~ t f !. ~50!

This relation ~50! and the associated Riccati equation ~49!
are usually derived by introducing a WKB-type ansatz into
the Fokker-Planck equation for the conditional probability
distribution @cf. Eq. ~10!# and then comparing powers of the
noise strength D. Since a direct derivation by means of path-
integral methods is not known to us, we have included such
a derivation of the relation ~50! in Appendix B.

IV. PATH-INTEGRAL SOLUTION OF THE ESCAPE
PROBLEM

By introducing the path-integral expression ~45! for the
conditional probability into the formula ~15! for the instan-
taneous rate G(t) at time t5t f and taking into account Eq.
~44!, we obtain our first main result @27#, namely,

G~ t f !5(
k

pk*~ t f !e2fk„xu~ t f !,t f …/D

@4pDQk*~ t f !#1/2
@11O~D !# . ~51!

In view of Eq. ~45!, the instantaneous rate ~51! has the sug-
gestive structure of ‘‘probability at the separatrix times ve-
locity.’’
As already mentioned in Sec. II, for sufficiently large

times t f2t0 the instantaneous rate ~51! is expected to be-
come independent of the initial position x0 as long as x0 is
located inside the domain of attraction of the stable periodic
orbit xs(t). A more detailed discussion of this point will be
given in Sec. IVG. To keep things as simple as possible we
focus in Secs. IVA–IV F on the particular case that x0 is
located at the stable periodic orbit, i.e.,
x05xs~ t0!. ~52!

A. Minimizing paths

Our next goal is the characterization of all the minimizing
paths xk*(t) which significantly contribute to the sum in Eq.
~51!. Our first observation is that for any finite t0 and t f the
action ~36! exhibits in the generic case a unique global mini-
mum respecting the boundary conditions

xk*~ t0!5xs~ t0!, xk*~ t f !5xu~ t f !, ~53!

according to Eqs. ~39! and Eqs. ~51! and ~52!. To be specific,
we denote this globally minimizing path as xk0* (t). From the
explicit form of the Lagrangian ~37! we can infer that for
large values of t f2t0 the minimal path xk0* (t) follows most
of the time rather closely a deterministic trajectory, i.e.,
ẋk0* (t).F„xk0* (t),t…, in order not to accumulate a too large
amount of action ~36!. In view of Eqs. ~7! and ~53! it is thus
suggestive that xk0* (t) starts at xk0* (t0)5xs(t0) and then con-
tinues to closely follow the stable periodic orbit xs(t) for
quite some time. At a certain moment, xk0* (t) leaves this
neighborhood and travels in a comparatively short time into
the vicinity of the unstable periodic orbit xu(t), where it
remains for the rest of its time and ends at xk0* (t f)5xu(t f).
Only during the crossover from the neighborhood of xs(t)
into that of xu(t) does the path xk0* (t) substantially deviate
from a deterministic behavior and so gives rise to the main
contribution to the action ~36!. We desist from a more rigor-
ous derivation of these basic qualitative features since they
are quite similar to the well-known barrier-crossing problem
in a static potential ~time-independent force field! @37,38,44#.
Especially, the relatively short ‘‘crossover segment’’ of
xk0* (t) between the long sojourns close to the stable and un-
stable orbits has lead to the name ‘‘instanton’’ for such a
path.
As we will see in more detail later, a meaningful limit of

xk0* (t) exists for t0→2` and t f→` ~henceforth abbreviated
as t f2t0→`) in the sense that xk0* (t) follows closer and
closer the periodic orbits xs ,u(t) over longer and longer time
intervals, while the crossover-segment does practically not
change its shape any more. Also the associated minimal ac-
tion S@xk0* (t)# from Eq. ~36! tends to a finite limit. In fact,
one can readily show that the minimal action cannot increase
upon increasing t f and/or decreasing t0 . Furthermore, since
it is bounded from below, the existence of the limit follows
for the action as well as for the minimizing path itself. More
importantly, from the time periodicity of the force field ~4!
one can infer that in the limit t f2t0→` the action S@xk0* (t
1nT )# has the same value for any integer n. In other words,
for infinitely large t f2t0 the action no longer exhibits a
unique absolute minimum, rather each path xk0* (t1nT
_! glo-
bally minimizes the action. However, these degenerate abso-
lute minima are still well separated in the space of all paths
x(t) appearing in Eq. ~35!. This feature is the salient differ-
ence between our present problem and its time-independent

counterpart @37,38,44–46#, which exhibits a continuous de-
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generacy ~Goldstone mode! in the limit t f2t0→` . Put dif-
ferently, the time-periodic force field reduces the continuous
time-translation symmetry into a discrete one. Since the rate
formula ~51! assumes well separated minima xk*(t) of the
action, it is quite clear that the time-independent case must
be excluded in the following.
We emphasize that the minimizing paths xk*(t) remain

well separated and thus the rate formula ~51! becomes as-
ymptotically exact for any ~arbitrary but fixed! finite values
of the driving amplitude and period as the noise strength D
tends to zero. Apart from this fact that in the limit D→0 the
O(D) correction in the saddle-point approximation ~27! and
thus in Eq. ~51! vanishes, a more detailed quantitative state-
ment seems difficult. On the other hand, for a given ~small!
noise strength D, we have to exclude extremely small driving
amplitudes and extremely long or short driving periods since
this would lead us effectively back to the static ~undriven!
escape problem, which requires a completely different treat-
ment ~especially of the ~quasi-! Goldstone mode
@23,37,38,44–46#! than in Eq. ~27!. Put differently, in any of
these three asymptotic regimes, the error O(D) from Eqs.
~27! and ~51! becomes very large.
For later reference we denote the minimizing path xk0* (t)

when t f2t0→` by xopt* (t), keeping in mind that we are still
free to shift its time argument by an arbitrary multiple of T.
The corresponding action is

foptªS@xopt* ~ t !#5 lim
t0→2`
t f→`

min
x~ t !

x~ t0!5xs~ t0!

x~ t f !5xu~ t f !

S@x~ t !# , ~54!

where the second identity may also be considered as an im-
plicit definition of xopt* (t). Similarly, any other quantity as-
sociated with xopt* (t) will be marked by an index ‘‘opt,’’ for
instance popt* (t) @see Eq. ~42!#, Qopt* (t) @see Eq. ~46!#, and
gopt* (t) @see Eq. ~48!#.
In principle, besides the absolute minimum xopt* (t) of the

action there may coexist further ~absolute or relative!
minima which cannot be identified with each other after a
time shift by an appropriate multiple of T. While the coex-
istence of further absolute minima is nongeneric, coexisting
relative minima are irrelevant for sufficiently small noise
strengths D as far as the sum in Eq. ~51! is concerned.
Though both cases could be easily taken into account in the
following discussion, we will restrict ourselves to the sim-
plest and most common case that xopt* (t1nT ) are the only
~relevant! minima of the action ~36! in the limit t f2t0→` .
Returning to finite but large values of t f2t0 , we

expect—as a precursor of the t f2t0→` limit—that besides
the unique absolute minimum xk0* (t) there will coexist many
additional relative minima xk*(t) with an only slightly larger
action. All those minima xk*(t) possess a limit when t f2t0
→` in the same sense as for the case k5k0 described above
~quantitative details will be given later!. Moreover, when t f
2t0→` then each xk*(t) approaches xopt* „t1n(k)T … for a
suitable choice of n(k) and without loss of generality we can
assume a ~re-!labeling of the xk*(t) such that n(k)5k . In
other words, to each xk*(t) belongs a very similarly looking
‘‘master path’’ xopt* (t1kT ), see Fig. 3. Since t f2t0 is finite,
there is a finite number @of the order (t f2t0)/T # of minimiz-
ing paths xk*(t) and without loss of generality we can assume
that the indices in the sum ~51! start at k50 and run until a
certain maximal value K(t f ,t0):

0<k<K~ t f ,t0!5O„~ t f2t0!/T …. ~55!

Thus x0*(t) is that minimizing path which closely follows
xs(t) as long as possible and crosses over to the neighbor-
hood of xu(t) at ‘‘the latest possible moment’’ ~see Fig. 3!,
and similarly for xK(t f ,t0)* (t). Note that all the general quali-
tative features discussed above are nicely illustrated by the
explicit example in Sec. VA.

B. Neighborhood of periodic orbits

Our final goal is to approximate the action fk(x f ,t f) and
the prefactor pk*(t f)/@Qk*(t f)#1/2 for all minimizing paths
xk*(t) that play a non-negligible role in the sum @Eqs. ~51!
and ~55!# solely in terms of the master path xopt* (t) and its
descendants popt* (t),Qopt* (t), etc. To this end we first address
the behavior of a path xk*(t) within the neighborhood of
either the stable periodic orbit xs(t) or of the unstable one
xu(t). Within these regions, the time-dependent force field
can be approximately written as

F~x ,t !5F„xs ,u~ t !,t…1„x2xs ,u~ t !…F8„xs ,u~ t !,t…. ~56!

Note that these approximations are valid not only if x
2xs ,u(t) is small but also if F9(y ,t) is small for all y be-
tween x and xs ,u(t). An immediate consequence of Eq. ~56!
are the relations

F8~x ,t !5F8„xs ,u~ t !,t…, F9~x ,t !50. ~57!

FIG. 3. Solid: The paths xk*(t), k50, . . . ,K(t f ,t0)53 which
minimize the action @Eqs. ~36! and ~37!# with boundary conditions
~53!. Dashed: The associated ‘‘master paths’’ xopt* (t1kT ), implic-
itly defined via Eq. ~54!. Dotted: Stable and unstable periodic orbits
xs(t) and xu(t) from Eq. ~7!. In this plot, t f2t0 has been chosen
rather small. As t f2t0 increases, more and more intermediate paths
xk*(t) appear which better and better agree with their associated
master paths xopt* (t1kT ). The depicted curves have been obtained
for the addictively driven piecewise parabolic potential @Eqs. ~5!
and ~134!# with parameters A50.5, V51, ls521, lu51, DV
51, t05212, t f57.5 ~dimensionless units!.
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As long as a minimizing path xk*(t) remains in a region
where these approximations apply, the Hamiltonian equa-
tions ~41! and ~42! take the form

ṗk*~ t !52pk*~ t !F8„xs ,u~ t !,t…, ~58!

D ẋk*~ t !52pk*~ t !1Dxk*~ t !F8„xs ,u~ t !,t…, ~59!

where we have introduced

Dxk*~ t !ªxk*~ t !2xs ,u~ t !. ~60!

Their solutions are

pk*~ t !5pk*~ t1!e2Ls ,u~ t ,t1!, ~61!

Dxk*~ t !5Dxk*~ t1!eLs ,u~ t ,t1!1pk*~ t !Is ,u~ t ,t1!, ~62!

where t1 is an arbitrary reference time @within our assump-
tion that Eq. ~56! applies for all the considered times t# and
where

Ls ,u~ t ,t1!ªE
t1

t
F8„xs ,u~ t8!,t8…dt8, ~63!

Is ,u~ t ,t1!ª2E
t1

t
e2Ls ,u~ t ,t8!dt8. ~64!

Obvious properties of the functions Ls ,u(t ,t1) from Eq.
~63! are

Ls ,u~ t ,t2!5Ls ,u~ t ,t1!1Ls ,u~ t1 ,t2!, ~65!

Ls ,u~ t1 ,t !52Ls ,u~ t ,t1!, ~66!

Ls ,u~ t1T,t11T!5Ls ,u~ t ,t1!. ~67!

Further, one readily sees that the quantities

ls ,uªLs ,u~ t1T,t !/T ~68!

are indeed t independent and characterize the stability or in-
stability ~‘‘Lyapunov exponents’’! of the periodic orbits,
namely,

ls,0, lu.0. ~69!

One even expects that Ls(t ,t1),0 and Lu(t ,t1).0 not only
for t2t15T, 2T, . . . @cf. ~68!# but in fact for all t2t1.0;
however, exceptions cannot be excluded for not too large t
2t1 . From Eqs. ~63! and ~68! it follows that Ls ,u(t ,t1) can
be written as the sum of a linear function ls ,u•(t2t1) and a
periodic function of t. As a consequence, we obtain

Ls ,u~ t ,t1!;ls ,u•~ t2t1! ~70!

for asymptotically large positive and negative times t2t1 .
Turning to the discussion of Is ,u(t ,t1) from Eq. ~64!, we

first note that

Is~ t ,t1!5Is~ t !2e2Ls~ t ,t1!Is~ t1!, ~71!
Is~ t !ª lim
t1→2`

Is~ t ,t1!52E
2`

t
e2Ls~ t ,t8!dt8, ~72!

and similarly

Iu~ t ,t1!52Iu~ t !1e2Lu~ t ,t1!Iu~ t1!, ~73!

Iu~ t !ª2 lim
t1→`

Iu~ t ,t1!52E
t

`

e2Lu~ t ,t8!dt8. ~74!

Thus, Is ,u(t) are positive and finite for all t and obey

Is ,u~ t1T !5Is ,u~ t !. ~75!

It follows that Is(t ,t1) in Eq. ~71! is given by a periodic
function of t minus the product of another periodic function
times an exponentially decreasing factor exp$ls•(t2t1)%, and
analogously for Iu(t ,t1) in Eq. ~73!.
Choosing as reference time t15t0 in Eq. ~62! and taking

into account that Dxk*(t0)50 according to Eqs. ~52! and ~60!
implies that in the neighborhood of xs(t) we have

Dxk*~ t !5pk*~ t !Is~ t ,t0!. ~76!

Dividing this result by the same identity evaluated at a dif-
ferent reference time ts.t0 and taking into account Eq. ~61!,
we obtain

Dxk*~ t !5Dxk*~ ts!e2Ls~ t ,ts!
Is~ t ,t0!
Is~ ts ,t0!

, ~77!

pk*~ t !5Dxk*~ ts!e2Ls~ t ,ts!/Is~ ts ,t0!. ~78!

Both these expressions consist of an exponentially increas-
ing factor exp$2ls•(t2ts)% times some periodic function of t.
In Eq. ~77! one has in addition a quickly decreasing correc-
tion. The corresponding behavior in the neighborhood of
xu(t) is given by

Dxk*~ t !5pk*~ t !Iu~ t ,t f !, ~79!

Dxk*~ t !5Dxk*~ tu!e2Lu~ t ,tu!
Iu~ t ,t f !
Iu~ tu ,t f !

, ~80!

pk*~ t !5Dxk*~ tu!e2Lu~ t ,tu!/Iu~ tu ,t f !, ~81!

where tu is some reference time with tu,t f . As expected,
Eqs. ~80! and ~81! are now dominated by an exponentially
decreasing behavior exp$2lu•(t2tu)%. We further remark
that for the master path xopt* (t) we have t0→2` and t f
→` , thus Is ,u(t ,t0,f) in Eqs. ~76!–~81! go over into Is ,u(t)
according to Eqs. ~71! and ~73! and so all four equations
~77!, ~78!, ~80!, and ~81! are exactly given by exp$2ls,u•(t
2ts,u)% times certain periodic functions of t.
Within our above local analysis of the neighborhoods of

xs ,u(t), the reference times ts ,u are still arbitrary and the
corresponding parameters Dxk*(ts ,u) remain undetermined.
They can only be fixed through the global behavior of xk*(t).
It is instructive to reconsider the same thing from a some-
what different viewpoint. From Eqs. ~71!, ~72!, and ~76! we
conclude that
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Dxk*~ ts!
pk*~ ts!

5Is~ ts!22E
2`

t0
e2Ls~ ts ,t8!dt8 ~82!

and similarly

Dxk*~ tu!
pk*~ tu!

52Iu~ tu!12E
t f

`

e2Lu~ tu ,t8!dt8. ~83!

Let us consider ts.t0 as fixed and such that the approxima-
tion Eq. ~56! is valid for all tP@ t0 ,ts# . Within the same
restriction, we now consider the quantity Dxk*(ts) as a pa-
rameter. For any value of Dxk*(ts), Eq. ~82! thus fixes
pk*(ts). With these initial conditions for xk*(t) and pk*(t) at
time t5ts on may then propagate the Hamiltonian equations
~41! and ~42! up to the time t5t f . It is clear that for a typical
choice of Dxk*(ts) such a ‘‘shooting procedure’’ does not
lead to the desired end result Dxk*(t f)50. But we also know
from the mere existence of the minimizing paths that there
must be specific Dxk*(ts) values which do the job. Further-
more, Eq. ~83! tells us that it is not necessary to proceed until
t5t f , rather it is sufficient to take any time tu at which xk*(t)
has reached the xu(t) neighborhood and then check whether
Eq. ~83! is satisfied.
If ts2t0 and t f2tu are already large then the integrands in

Eqs. ~82! and ~83! are extremely small. Thus, tiny changes of
Dxk*(ts) and pk*(ts) will lead to huge changes of t0 and t f .
Especially, by letting t0→2` and t f→` those integrals
vanish and one recovers the master path xopt* (x1kT ) asso-
ciated with xk*(t). This confirms our conclusion from Sec.
IVA that a meaningful limit of xk*(t) for t0→` and t f→`
exists and that for finite but large t f2t0 the difference be-
tween xk*(t) and the associated master path xopt* (t1kT ) is
extremely small for all tP@ t0 ,t f # .
An example for which t f2tu is not large is the path

x0*(t), i.e., the one which crosses over from the neighbor-
hood of xs(t) into that of xu(t) at the latest possible moment,
see Fig. 3. For this path x0*(t), the time tu at which it enters
the neighborhood of xu(t) is already rather close to t f and so
the integral in Eq. ~83! is not any more small. As a conse-
quence, the deviation of x0*(t) from xopt* (t) is no longer small
as t approaches t f . In particular, for t5t f it follows that
x0*(t f)2xopt* (t f)52Dxopt* (t f) is no longer small and with
Eq. ~79! we conclude that the same is true for the momentum
popt* (t f), i.e.,

popt* ~ t f ! not small. ~84!

With increasing k values, the deviations 2Dxopt* (t1kT )
between xk*(t) and the associated master path xopt* (t1kT ) in
the vicinity of t f are rapidly decreasing, essentially like
exp$2lu kT%, see Eqs. ~68! and ~80!. In the same way, for
the largest possible k values, k.K(t f ,t0) @see Eq. ~55!#, cor-
responding to paths xk*(t) with only a very short initial time
segment close to xs(t), the deviations from xopt* (t1kT ) are
no longer small for t close to t0 . As we will see later, paths
xk*(t) with such large k values are negligible in the sum ~51!.
For this reason, we will henceforth neglect deviations be-
tween xk*(t) and xopt* (t1kT ) and between pk*(t) and popt* (t
1kT ) for times t near the starting point t0 . Formally, this
approximation is equivalent to letting

t0→2` . ~85!

C. Approximations in terms of the master path

Our next objective is to express the action ~43! of the path
xk*(t) in terms of the associated master path xopt* (t1kT ).
We recall that while xk*(t) satisfies the boundary conditions
~53!, those of xopt* (t) are xopt* (t)2xs(t)→0 for t→2` and
xopt* (t)2xu(t)→0 for t→` . We now modify the latter
boundary condition and require instead that

tkªt f1kT ~86!

is the final time and xkªxopt* (tk) the final position. In other
words, we simply truncate the master path xopt* (t) at the time
tk , associated with the final time t f of xk*(t). Since this
‘‘new’’ path xopt* (t) with tP@2` ,tk# obviously still satisfies
the Hamiltonian equations ~41! and ~42! it is again an ex-
tremizing path. The value of the action for this path follows
like in Eq. ~43! as

fopt~xk ,tk!ªE
2`

tk
popt* ~ t !2dt ~87!

and the relations ~44! and ~50! take the form

]fopt~xk ,tk!
]xk

5popt* ~ tk!, ~88!

]2fopt~xk ,tk!
]xk

2 5gopt* ~ tk!. ~89!

With Eqs. ~43! and ~54! we can rewrite Eq. ~87! as

fopt~xk ,tk!5fopt2E
tk

`

popt* ~ t !2dt . ~90!

Next we express the action ~36! of the path xk*(t) by
expanding the one belonging to the associated master path
xopt* (t1kT ) in powers of the difference 2Dxopt* (tk) between
the end points xk*(t f)5xu(t f) and xopt* (t f1kT )5xopt* (tk),

fk„xk*~ t f !,t f…5fopt~xk ,tk!2Dxopt* ~ tk!
]fopt~xk ,tk!

]xk

1
Dxopt* ~ tk!2

2
]2fopt~xk ,tk!

]xk
2 1¯ . ~91!

As justified above Eq. ~85!, the analogous contribution in
powers of Dxopt* (t01kT ) is negligible on the right-hand side
of Eq. ~91!. By exploiting Eqs. ~88!–~90! and the counter-
parts of Eqs. ~79!–~81! for xopt* (t1kT ), one arrives after a
short calculation at

fk„xk*~ t f !,t f…5fopt1E
tk

`

pk*~ t !2dt

3@11gopt* ~ tk!Iu~ tk!1¯# . ~92!
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A similar expansion of popt* (tk) from Eq. ~88! yields for
pk*(t f) the approximation

pk*~ t f !5popt* ~ tk!1Dopt* ~ tk!
]2fopt~xk ,tk!

]xk
2 1¯

5popt* ~ tk!@11gopt* ~ tk!Iu~ tk!1¯# . ~93!

We now turn to the prefactor terms Qk*(t) in Eq. ~51!.
Within the neighborhoods of xs ,u(t) for which the approxi-
mations ~56! and thus ~57! are valid, we can infer from Eq.
~46! that

Q̇k*~ t !/22Qk*~ t !F8„xs ,u~ t !,t…5const5..ms ,u . ~94!

By comparison with Eq. ~48! we further see that

gk*~ t !Qk*~ t !5ms ,u . ~95!

The constant ms , which is connected with the neighbor-
hood of xs(t) and is typically different form mu , follows
from the initial conditions ~47! as ms51/2. Hence, the solu-
tion of Eq. ~94! takes the form

Qk*~ t !5Is~ t ,t0!/2. ~96!

As a by-product we find from Eq. ~50!, evaluated for an
arbitrary final condition t f5t and x f5x in combination with
Eqs. ~95! and ~96! that

]2fk~x ,t !
]x2 5

1
Is~ t ,t0!

. ~97!

Within the linearization ~56!, closer inspection shows that
only a single summand appears in the conditional probability
~45! and one recovers the expected Gaussian result for x
close to the stable periodic orbit xs(t):

p„x ,tuxs~ t0!,t0…5S 1
2pDIs~ t ,t0!

D 1/2expH 2
@x2xs~ t !#2

2DIs~ t ,t0! J .
~98!

Returning to Eq. ~96!, it is remarkable that besides the
initial time t0 no further details of the path xk*(t) play a role.
Especially, if xk*(t) remains for a long time in the neighbor-
hood of xs(t) where Eq. ~96! is valid, then by the time it
leaves this neighborhood, say t5ts , the quantity Is(t ,t0) is
practically equal to Is(t) from Eq. ~72! and thus Qk*(t) equal
to the associated master prefactor Qopt* (t1kT ). Within our
usual approximation ~85! we thus have

Qk*~ ts!5Qopt* ~ ts1kT !5Is~ ts!/2, ~99!

Q̇k*~ ts!5Q̇opt* ~ ts1kT !5 İs~ ts!/2. ~100!

These relations are then used as initial conditions in Eq. ~46!
in order to propagate Qk*(ts) and Qopt* (ts1kT ) through the
crossover segments of the corresponding paths xk*(ts) and
xopt* (ts1kT ) up to a certain time point, say t5tu , beyond
which the linearization ~56! about xu(t) and thus Eq. ~94!
can be applied.
Once the neighborhood of xu(t) is reached, i.e., for t
>tu , the solution of Eqs. ~94! and ~95! can be written with
Eq. ~64! as

Qk*~ t !5Qk*~ tu!e2Lu~ t ,tu!@12gk*~ tu!Iu~ tu ,t !# . ~101!

In view of Eq. ~61! this yields, furthermore,

Qopt* ~ t !popt* ~ t !25Qopt* ~ tu!popt* ~ tu!2@12gopt* ~ tu!Iu~ tu ,t !# .
~102!

Due to Eq. ~73!, the factor Iu(tu ,t) approaches 2Iu(tu) as
t2tu becomes large. It follows that the left-hand side of Eq.
~102! tends towards a finite limit as t→` ,

qoptª lim
t→`

Qopt* ~ t !popt* ~ t !2. ~103!

Since tu is an arbitrary reference time in Eq. ~102!, we can
first let t→` and then rename tu as t with the result

Qopt* ~ t !5
qopt

popt* ~ t !2
2moptIu~ t !, ~104!

where the ~finite! constant mopt is defined analogously to Eq.
~95! as

moptª lim
t→`

gopt* ~ t !Qopt* ~ t !. ~105!

Exploiting once more Eqs. ~95! and ~105!, we can eliminate
Qopt* (t) in Eq. ~104! in favor of gopt* (t) with the result

gopt* ~ t !5
popt* ~ t !2

qopt /mopt2popt* ~ t !2Iu~ t !
. ~106!

As discussed below ~83!, the deviations of xk*(t) from the
associated master path xopt* (t1kT ) become smaller and
smaller as k increases and in view of Eqs. ~99!, ~100!, and
~46! we expect a similar convergence of Qk*(t) towards
Qopt* (t1kT ). In Appendix C, the following quantitative es-
timate for this convergence is established for all times t
P@ tu ,t f #:

Qk*~ t !5Qopt* ~ t1kT !@11O„ popt* ~ tk!2…# , ~107!

where the order of magnitude is meant with respect to the
dependence on k.
From the technical viewpoint, Eq. ~104! in combination

with Eq. ~107! is a central and highly nontrivial result of our
present work. Since Iu(t) is periodic in t and since popt* (t)
decreases exponentially according to Eq. ~61!, we see from
Eqs. ~104! and ~107! that the prefactor Qk*(t) diverges expo-
nentially with the time which the path xk*(t) spends in the
neighborhood of xu(t), in striking contrast to the behavior
~96! close to xs(t). The basic physical reason for this diver-
gence of Qk*(t) is that the probability of a stochastic process
~3! to permanently remain close to the unstable periodic orbit
xu(t) decreases exponentially with increasing time. Since
typically the process closely follows a deterministic trajec-
tory, the action barely grows and thus it is the prefactor
1/Qk*(t f)1/2 in Eq. ~45! which has to account for the expo-
nential decrease in time.
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Since popt* (tk) decreases exponentially with k we see from
Eq. ~106! that gopt* (tk) tends to zero like popt* (tk)2. In view of
Eqs. ~88! and ~89! we therefore conjecture that also higher
derivatives of fopt(xk ,tk) continue to scale like the corre-
sponding powers of popt* (tk). The terms indicated by the dots
in Eqs. ~11!–~93! are then indeed negligibly small.

D. Evaluation and discussion of the rate

We are now in the position to evaluate the rate formula
~51! in terms of the master path xopt* (t). To this end we
approximate in Eqs. ~92! and ~93! the square brackets by 1,
neglect in Eq. ~107! the term of order popt* (tk)2, and in Eq.
~104! the last term @being also a correction of order
popt* (tk)2#. By dropping the index of t f we then can infer
from Eqs. ~51! and ~55! our central result for the instanta-
neous rate @27#

G~ t !5ADaopte2fopt /Dkopt~ t ,D !@11O~Dg!# , ~108!

aoptª@4pT 2 lim
t→`

popt* ~ t !2Qopt* ~ t !#21/2, ~109!

kopt~ t ,D !ªT (
k50

K~ t ,t0! popt* ~ t1kT !2

D

3expH 2
1
D E

t

`

popt* ~ t81kT !2dt8J .
~110!

The effect of our various approximations in deriving this
result together with the corresponding ‘‘accuracy exponent’’
g.0 in Eq. ~108! will be discussed in Sec. IV E. Next, we
analyze in more detail the properties of kopt(t ,D). By means
of Eqs. ~61!, ~68!, and ~74! we rewrite Eq. ~110! as

kopt~ t ,D !5T (
k50

K~ t ,t0! popt* ~ t !2Ck

D expH 2
popt* ~ t !2CkIu~ t !

2D J ,
~111!

Cªe22luT. ~112!

Since 0,C,1 there is a competition in the sum ~111! be-
tween the exponential terms which increase with k and the
pre-exponential factors which decrease with k. One readily
sees that the dominant contribution to the sum stems from a
few k values around the real number k̂ , implicitly defined via

popt* ~ t !2C k̂Iu~ t !52D . ~113!

Recalling that t stands here for t f and since neither Iu(t
5t f) nor popt* (t5t f) @cf. Eqs. ~74! and ~84!# are small quan-
tities, it follows that k̂ is, for small noise strengths D, much
larger than 0 but, for sufficiently large t f2t0 , according to
Eq. ~55!, also much smaller than K(t5t f ,t0). Therefore the
sum in Eq. ~111! and thus in Eq. ~110! can be extended to
arbitrary integers k at the price of an error which is exponen-
tially small in D, i.e., without actually affecting the accuracy
exponent g in Eq. ~108!. As a further consequence of the fact
that the dominant k values are much smaller than the upper
limit K(t ,t0) for large t2t0 , we see that our formal approxi-
mation ~85! is indeed self-consistently satisfied.
Next we notice that under the sum in Eq. ~110!, the pre-

exponential term is nothing else than the time derivative of
the expression in the exponential. By extending the sum over
all integer k values as justified above we obtain

1
T Et

t1T
kopt~ t8,D !dt8

5 (
k52`

`

expH 2
1
D E

t

`

popt* ~ t8!2dt8J U
t5kT

~k11 !T

512expH 2
1
D E

2`

`

popt* ~ t8!2dt8J . ~114!

Neglecting as usual errors exponentially small in D this leads
us to the remarkable conclusion that

1
T Et

t1T
kopt~ t8,D !dt851 ~115!

for all t and all ~small! D. For the time-averaged rate ~14! we
thus obtain from Eqs. ~108! and ~115! our central result @27#

Ḡ5ADaopte2fopt /D@11O~Dg!# . ~116!

It consists of an Arrhenius-type exponentially leading part
with an ‘‘effective potential barrier’’ fopt and a nontrivial
pre-exponential D dependence. The two quantities aopt and
fopt follow from the master path xopt* (t) according to Eqs.
~54! and ~109!. Thus they are independent of D but depend
in a highly nontrivial way on various global properties of the
deterministic force field F(x ,t) in Eq. ~3!. In general, their
explicit value can only be determined numerically or by
means of approximations. An exactly analytically solvable
special case will be presented in Sec. VA.
We recall that for equilibrium systems, characterized by a

time-independent force field F(x)52V8(x) in Eq. ~3!, the
escape rate exhibits an exponentially leading Arrhenius fac-
tor, which involves simply the barrier against the escape of
the static potential V(x), and a D-independent pre-
exponential factor which depends only on local properties of
the potential at the barrier and the well @1#, see also Eq. ~161!
below. The different structure of Eq. ~116! is thus a conse-
quence of the far from equilibrium situation created by the
time dependence of the deterministic force field F(x ,t).
As announced in Sec. II C, the time-averaged escape rate

for the periodic force field F(x ,t) can be identified with that
of its supersymmetric partner force field ~16! for asymptoti-
cally weak noise D without any further restrictions on
F(x ,t). The detailed proof of this highly nontrivial invari-
ance property of Eq. ~116! is carried out in Appendix D.
Returning to the instantaneous rate ~108!, we see that it

exhibits in comparison with the time averaged rate ~116! the
additional time-dependent factor kopt(t ,D). The explicit
evaluation of this factor requires the knowledge of one more
global quantity, for instance of

bopt~ t !ª lim
t̂→`

popt* ~ t̂ !eLu~ t̂ ,t !. ~117!
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Note that due to relation ~65! the t dependency of this quan-
tity is actually quite simple. According to Eq. ~61!, this defi-
nition ~117! allows us to rewrite Eq. ~111!—with the range
of k extended to arbitrary integers—as

kopt~ t ,D !5T (
k52`

`
bopt~ t !2Ck

D expH 2
bopt~ t !2CkIu~ t !

2D J .
~118!

Besides bopt(t) all other quantities in this expression are de-
termined by local properties of the force field F(xu(t),t)
along the unstable periodic orbit. By exploiting Eqs. ~68!,
~75!, and ~112! it follows that

kopt~ t1T,D !5kopt~ t ,D !, ~119!

kopt~ t ,CD !5kopt~ t ,D !. ~120!

Together with Eq. ~113! and the obvious property 0
,kopt(t ,D),` this completes our qualitative picture of the
way in which G(t) oscillates around its average value Ḡ .

E. The accuracy exponent g

In the following we come to the determination of the ac-
curacy exponent g in Eqs. ~108! and ~116!. We will not
elaborate here all the details of the rather involved calcula-
tions but restrict ourselves to the main steps.
First of all, we recall that a contribution O(D) is inherited

right away from formula ~51!. Next we have approximated
the square brackets in Eq. ~92! by 1. For those k values
which mainly contribute to the rate it can be inferred from
Eq. ~113! together with t5t f and Eq. ~86! that

popt* ~ tk!25O~D ! ~121!

and hence with Eq. ~106! that

gopt* ~ tk!Iu~ tk!5O~D !. ~122!

Since the integral in Eq. ~92! is of the same order of magni-
tude as popt* (tk) from Eq. ~121! we conclude that the total
error we committed in Eq. ~92! is of the order O(D2), thus
contributing once more a term of the order O(D) in the rate
formulas ~108! and ~116!. The same conclusion can be
drawn with respect to our approximating the square brackets
by 1 in Eq. ~93! and neglecting the O„ popt* (tk)2… term in Eq.
~107! as well as the last term in Eq. ~104!. In other words, the
relative error induced by all our so far made approximations
is of the order O(D).
What remains is a closer inspection of the approximation

~56! for F(x ,t) in the neighborhood of x s ,u(t). One readily
sees that actually only the approximation in the neighbor-
hood of the unstable periodic orbit xu(t) matters in our quan-
titative evaluation of the rate; the basic reason for this is once
more our assumption t0→2` in Eq. ~85!. In case Eq. ~56!
happens to be an exact identity in this neighborhood of
xu(t), then the total error committed in the rate formulas
~108! and ~116! is thus of the order O(D). Otherwise, a
closer analysis of the relevant perturbative corrections shows
that the error introduced via the approximation ~56! amounts
to corrections of the order O„ popt* (tk)… in the rate formula,
i.e., of the order O(AD) according to Eq. ~121!. In other
words, we can conclude that

g5H 1 if F9„xu~ t !,t…[0
1/2 otherwise.

~123!

In the case g51/2 it is important that in the global quan-
tities fopt ,aopt ,bopt(t) from Eqs. ~54!, ~109!, and ~117! the
long-time limits are made and the exact master path is uti-
lized without any further approximations. If instead in these
definitions any finite reference time in combination with re-
lations based on the approximation ~56! were used, then this
would introduce a possibly very small but nevertheless
D-independent error and so ruin the asymptotically exact
predictions ~108! and ~116! in the weak noise limit D→0.
In cases for which Eq. ~56! is not exactly satisfied in the

neighborhood of the unstable periodic orbit xu(t) and hence
g51/2, it is in principle possible to calculate perturbatively
the corresponding corrections such as to arrive again at a
reduced relative error O(D) in the so improved rate formu-
las, though the actual calculations and the resulting expres-
sions become very complicated. On the other hand, further
reducing the O(D) error is even in principle rather problem-
atic since it would require going beyond the saddle-point
approximation in the path-integral approach from Sec. III.
At this point it may also be worth recalling from Sec.

IVA that for any fixed ~however small! D value, the error
O(D) in Eq. ~51!, which is inherited by the final rate for-
mula, diverges as the amplitude of the time dependency of
F(x ,t) tends to zero, but also if its period T either tends to
zero or to infinity. Thus, neither of these limits commutes
with the limit D→0.

F. The limits t\` and D\0

In the derivation of the rate formula ~108! we have as-
sumed that all paths xk*(t) which notably contribute in Eq.
~51! sojourn for a very long initial time interval close to the
stable periodic orbit x s(t), see Eq. ~85!. On the other hand,
Eq. ~113! tells us that the amount of time which those domi-
nant paths spend in the neighborhood of the unstable peri-
odic orbit xu(t) is roughly speaking of the order O(ln 1/D).
Both these conditions are compatible only if t2t0 substan-
tially exceeds in order of magnitude ln 1/D . In the physically
relevant case, the noise strength D is small but finite and this
condition is well satisfied after a comparatively short ‘‘tran-
sient’’ time period. Thus, strictly speaking, in Eqs. ~108! and
~116!, with decreasing D values also the lower limit of the
admitted times t2t0 is tacitly assumed to slowly increase in
proportion to ln 1/D .
We remark that our result ~108! obviously remains peri-

odic in t for arbitrarily large t2t0 , see Eq. ~119!. Therefore,
the restriction of the utilized basic formula ~14! to values of
t2t0 much smaller than 1/Ḡ no longer applies to the final
result ~108!; see also the discussion below Eq. ~15!.
In the physically less relevant case that t2t0 is kept at an

arbitrary but fixed value and then D is made smaller and
smaller, things become different. As pointed out in Sec.
IVA, for any finite initial and final times t0 and t5t f , there
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exists generically a unique absolute minimum xk0* (t) of the
action. For sufficiently small D the k0 term will thus com-
pletely dominate the sum in Eq. ~51!, i.e.,

G~ t5t f !5
pk0
* ~ t f !e2fk0

„xu~ t f !,t f …/D

@4pDQk0
* ~ t f !#1/2

. ~124!

While most of the quantities on the right-hand side of this
result ~including the index k0) still depend in a very compli-
cated way on the time t5t f , no additional implicit D depen-
dence is hidden. The most striking feature is the 1/AD pre-
exponential behavior in comparison with the AD scaling in
Eq. ~108!.
Qualitatively, the crossover from Eq. ~124! to Eq. ~108!,

either as t increases or as D decreases, is clear: At some point
the k dependence of the pre-exponential factors in Eq. ~51! is
no longer negligible in comparison with the exponentially
leading contributions and so the dominant k value moves
away from k05k0(t ,t0) towards smaller values k. k̂ , cf. Eq.
~113!. At the same time, more that one term in the sum ~51!
starts to notably contribute.
Quantitatively, a leading-order approximation follows

along the same line of reasoning as in the derivation of Eq.
~108! from Eq. ~51!, except that in the approximation for the
action ~91!, also contributions due to the deviations between
xk*(t) and its associated master path xopt* (t1kT ) at times
close to t0 have to be included, that is, the approximation
~85! should be abandoned. The final result is again of the
same form as in Eq. ~108! but with a larger error than O(Dg)
and instead of Eq. ~110! with

kopt~ t ,D !ªT (
k50

K~ t ,t0! popt* ~ t1kT !2

D

3expH 2
1
D F E

t

`

1E
2`

t0 Gpopt* ~ t81kT !2dt8J .
~125!

For moderate t2t0 or extremely small D the exponential in
Eq. ~125! depends very strongly on k and therefore the sum
is dominated by a single term k5k0(t ,t0). Upon increasing
t2t0 or D this strong k dependence of the exponential and
hence the dominance of the k0 contribution is softened and
the already discussed qualitative crossover behavior is recov-
ered.

G. More general seeds x0
So far, our rate formula ~108! is restricted to the case ~52!

that the initial position x0 at time t0 coincides with the stable
periodic orbit xs(t0). As pointed out in Sec. II, one expects
that for large enough times t2t0 the initial position x0
should not matter, provided it is chosen inside the domain of
attraction of xs(t). For sufficiently small noise strengths D
this is the case whenever

x0,xu~ t0!. ~126!

In the following, we analyze this intuitive expectation in
some more quantitative detail.
For arbitrary but fixed x0 satisfying Eq. ~126!, the obser-
vation from Sec. IV A remains true, namely that only mini-
mizing paths xk*(t) play a role in the rate ~51! which closely
follow a deterministic behavior ẋk*(t).F„xk*(t),t… for most
of the time. This requirement can be fulfilled in two basic
ways and appropriate compromises thereof. The first possi-
bility is that the path xk*(t) closely approximates a determin-
istic trajectory for a very long initial time interval. During
this time, xk*(t) approaches the periodic attractor xs(t) very
closely and practically does not accumulate any action @Eqs.
~36! and ~37!#. Consequently, one is back to the case ~52!
after an appropriate redefinition of the initial time t0 . Re-
garding the prefactor Qk*(t), one can, according to Eq. ~42!,
approximate pk*(t) in Eq. ~46! by zero. With the initial con-
ditions ~47! one then recovers the same solution as in Eq.
~96! except that in Eqs. ~63! and ~64! the function Ls(t ,t0) is
now defined as * t0

t F8„xk*(t8),t8…dt8. Since xk*(t) practically
agrees with xs(t) during a very long time interval, one sees
that also with respect to the prefactor Qk*(t) we are back to
the case ~52!. As before, we may label such paths by low k
values and their contributions to the rate ~51! are identical to
those of the low k values in Eqs. ~108!–~110!.
The second possibility is that the minimizing path xk*(t)

travels from its starting point x0 immediately into the neigh-
borhood of the unstable periodic orbit xu(t) and then very
closely follows this deterministic trajectory xu(t) for the rest
of its time. If x0 is already close to xu(t0), such paths lead to
a very small value of the action in Eqs. ~36! and ~37! and
thus will ultimately dominate the rate ~51! if t2t0 is kept
fixed and D becomes asymptotically small. This puzzling
observation has lead to some amount of confusion in the
recent literature @47,48#. The resolution is that, much like in
Sec. IV F, things become very different for a small but fixed
D in combination with larger and larger times t2t0 . The
salient point is that the price to be paid for a long sojourn
close to xu(t) is a very small prefactor pk*(t f)/@Qk*(t f)#1/2 in
Eq. ~51!, as discussed below ~107!, namely of the order
exp$22lu•(t2t0)%. As a consequence, the paths with low
k-values, as discussed in the preceding paragraph, will domi-
nate in spite of their unfavorable action. Therefore, the rate
formula ~108! applies for any x0 satisfying Eq. ~126! on
condition that

t2t0@fopt /~2Dlu!. ~127!

This condition characterizes the asymptotic time regime for
which the rate formula ~108! is valid in the case of a general
initial condition. Even for rather small D, the preceding tran-
sient regime is typically confined to a few driving periods T,
as illustrated by the examples in Sec. V. Note that Eq. ~127!
comprises the condition from Sec. IV F that t2t0 has to
substantially exceed in order of magnitude ln 1/D . In other
words, for a generic initial condition, Eq. ~127! is the only
restriction for the rate formula ~108!, apart from the exclu-
sion of vanishing driving amplitudes and vanishing or di-
verging periods T.

H. Summary from the practical viewpoint

Given an arbitrary time-periodic force field F(x ,t) that
satisfies the condition in Eq. ~9!, what are the necessary prac-
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tical ~numerical or analytical! steps for an explicit quantita-
tive evaluation of the rate ~108!?
The first step is the determination of the stable and un-

stable periodic orbits x s( t) and xu( t). An efficient way to do
this is by evolving the deterministic dynamics forward and
backward over a long time, respectively, with a reasonably
well chosen initial condition. Once x s ,u( t) is known, the
functions L s ,u( t , t1) from Eq. ~63! and I s ,u( t , t1) from Eqs.
~71! and ~73! follow readily, with t1 being an arbitrary ref-
erence time.
The next step is the determination of the master path

xopt* ( t). To this end, we chose an arbitrary but fixed time t s
and a very small but finite positive number Dxmin , charac-
terizing the neighborhood of x s( t) within which we are will-
ing to accept the errors introduced by the approximation
~56!. We now consider the quantity Dxopt* ( t s) as a parameter
that may take values in the interval @Dxmin ,Dxmine2lsT# .
Each such parameter value Dxopt* ( t s) yields a set of initial
conditions

xopt* ~ t s!5x s~ t s!1Dxopt* ~ t s!, ~128!

popt* ~ t s!5Dxopt* ~ t s!/I s~ t s!, ~129!

see Eqs. ~60! and ~82!. With these initial conditions one then
evolves xopt* ( t) and popt* ( t) according to Eqs. ~41! and ~42!.
For a generic value of the parameter Dxopt* ( t s), the path
xopt* ( t) will either reach xu( t) after a finite time and then
proceed towards x5` or never reach xu( t) and instead re-
turn into the vicinity of x s( t) as t grows. By fine tuning
Dxopt* ( t s) one has to find a path xopt* ( t) which remains close
to xu( t) as long as possible, say until t5 tmax . Upon varying
Dxopt* ( t s) within @Dxmin ,Dxmine2lsT# the existence of at least
one such path is guaranteed by the theory. A second solution,
corresponding to a saddle point instead of a minimum of the
action, is also to be expected @see Sec. VA, below Eq.
~158!#. Further local extrema may coexist as well. Among
them, the desired solution xopt* ( t) is the one with the smallest
value of the action

fopt5
Dxopt* ~ t s!2

2I s~ t s!
1E

ts

tmax
popt* ~ t !2dt , ~130!

see Eqs. ~43!, ~54!, ~61!, and ~76!. By approximating t̂ in Eq.
~117! by tmax we obtain

bopt~ t !5popt* ~ tmax!eLu~ tmax , t !, ~131!

whence kopt( t ,D ) from Eq. ~118! follows with C from Eq.
~112!. Finally, one chooses the initial conditions

Q opt* ~ t s!5I s~ t s!/2, Q̇ opt* ~ t s!5 İ s~ t s!/2, ~132!

see Eqs. ~99! and ~100!, and then propagates Q opt* ( t) accord-
ing to Eq. ~46! until t5 tmax , to obtain

aopt5@4pT 2popt* ~ tmax!2Q opt* ~ tmax!#21/2, ~133!

see Eq. ~109!.
The accuracy of fopt ,bopt( t),aopt from Eqs. ~130!, ~131!,
and ~133! can be estimated by observing how little these
quantities change if tmax is varied and if Dxmin is changed by
a factor elsT.
We finally note that the association of xopt* ( t1kT ) with

the specific path x k*( t) as in Secs. IVA–IVG does not play
a role any more in the above described practical procedure.

V. EXAMPLES

In general, the explicit quantitative evaluation of fopt ,
aopt , and kopt( t ,D ) in the rate formula ~108! is not possible
in closed analytical form. Exceptions are piecewise parabolic
potentials V (x) in conjunction with an additive sinusoidal
driving ~5!. In Sec. VA the simplest example @27# with two
parabolic pieces will be worked out and compared with ac-
curate numerical results and with the approximation for
small driving amplitudes from @23#. In Sec. VB we elaborate
as a second example the case of a force field ~5! deriving
from a cubic potential V (x) along the lines of the numerical
recipe from Sec. IVH.

A. Piecewise parabolic potential

We consider the force field from Eq. ~5! with a piecewise
parabolic potential of the form

V~x<0 !5
l s

2 @ x̄ s
22~x2 x̄ s!2# ,

~134!

V~x>0 !5
lu

2 @ x̄u
22~x2 x̄u!2# ,

where x̄ s denotes the potential well ~stable fixed point! and
x̄u the saddle ~unstable fixed point!, with the properties

x̄ s,0, x̄u.0. ~135!

The parameters

l s,0, lu.0 ~136!

characterize the piecewise constant curvatures and thus the
time scales ~Lyapunov exponents! of the deterministic mo-
tion near the attractor x̄ s and the repeller x̄u , respectively.
The force field ~5! then takes the explicit form

F~x<0,t !5l s~x2 x̄ s!1A sin~V t !,
~137!

F~x>0,t !5lu~x2 x̄u!1A sin~V t !.

In particular, the quantities l s ,u in Eqs. ~134! and ~137! are
identical to those from Eq. ~68!
Requiring continuity at x50 we conclude from Eq. ~137!

that l s x̄ s5lu x̄u . Selecting as independent model parameters
l s ,lu , and the static potential barrier

DVªV~ x̄u!2V~ x̄ s!, ~138!

the fixed points x̄ s ,u can be expressed through

l s x̄ s5lu x̄u5A2DV ul sulu

ul su1lu
. ~139!
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Turning to the determination of the stable and unstable
periodic orbits ~7!, it is convenient to make a somewhat
stronger assumption than in Eq. ~9!, namely that both peri-
odic orbits x s ,u(t) never cross the matching point x50 of the
two parabolic pieces of V(x), i.e., we require that

x s~ t !,0,xu~ t ! ~140!

for all times t. One finds that this property is granted if and
only if the conditions

A2,~ls ,u
2 1V2!x̄ s ,u

2 ~141!

are satisfied for both the ‘‘s’’ and the ‘‘u’’ indices, and that
the periodic orbits then take the explicit form

x s ,u~ t !5 x̄ s ,u2
A@ls ,u sin~Vt !1V cos~Vt !#

ls ,u
2 1V2 . ~142!

With the definitions ~63!, ~72!, and ~74! it follows that

L s ,u~ t ,t1!5ls ,u•~ t2t1!, ~143!

I s ,u~ t !5uls ,uu21. ~144!

Our next goal is the determination of the master path
xopt* (t). To simplify the analytical calculations we restrict
ourselves to the case that the master path xopt* (t) crosses the
point x50 exactly once, say at the time t5t1 ,

xopt* ~ t !50 ⇔ t5t1 . ~145!

The self-consistency of this assumption with the final solu-
tion for xopt* (t) remains to be checked later.
From Eqs. ~41! and ~42! we see that both xopt* (t) and

popt* (t) are still continuous at t5t1 . For all other times t the
relation ~56! and hence the following conclusions are not
approximations but exact identities since the force field
F(x ,t) in Eq. ~137! is by construction piecewise linear. By
introducing Eqs. ~144!, ~145!, and ~60! into Eqs. ~76! and
~79! we obtain, by letting t0→` and t f→` for the master
path, the following two relations ~one with index ‘‘s’’ and
one with ‘‘u’’!:

x s ,u~ t1!5popt* ~ t1!/ls ,u . ~146!

These two equations for the two unknowns t1 and popt* (t1)
imply with Eq. ~142! the result

tan~Vt1!5
1
V

lslu2V2

ls1lu
, ~147!

popt* ~ t1!5lux̄u2
Alslu cos~Vt1!

V~ls1lu!
. ~148!

We observe that the solutions t1 of Eq. ~147! are independent
of A. Furthermore, there are obviously two solutions t1
within every time period T52p/V . We anticipate that only
one of them corresponds to a minimum of the action, and
thus to the master path. Hence we fix t1 uniquely ~up to the
usual degeneracy under t°t1T ) by ~147! in conjunction
with
AV cos~Vt1!
ls1lu

,0, ~149!

and show later, that this condition singles out the right solu-
tion of ~147!. @The case ls1lu50 has to be treated as limit
ls1lu→0.# Combining Eqs. ~147!–~149! it follows that

popt* ~ t1!5lux̄u2uA uulsulu /n2.0, ~150!

where we have introduced the definition

n2ª@~ls
21V2!~lu

21V2!#1/2. ~151!

Note that lux̄u in Eq. ~150! may be rewritten in various
equivalent forms according to Eq. ~139! and that the last
relation popt* (t1).0 in Eq. ~150! follows as a consequence of
Eqs. ~136!, ~140!, and ~146!.
Given t1 and popt* (t1), the entire time evolution of the

master path xopt* (t) can be readily inferred from Eqs. ~60!,
~61!, ~72!, ~74!, ~76!, and ~79! and Eqs. ~143! and ~144! with
the result

popt* ~ t !5popt* ~ t1!e2ls ,u•~ t2t1!, ~152!

xopt* 5x s ,u~ t !2popt* ~ t !/ls ,u , ~153!

where ‘‘s’’ is associated with times t<t1 and ‘‘u’’ with t
>t1 . All the general qualitative features discussed in Sec.
IVA are nicely illustrated by this explicit example ~152! and
~153!.
Finally, we have to check the self-consistency of the so-

lution Eqs. ~152! and ~153! with our initial assumption ~145!,
i.e., we have to verify that xopt* (t) is strictly positive for t
.t1 and negative for t,t1 . In general, in doing so, a tran-
scendental equation arises which has to be evaluated numeri-
cally. Without going into the details of the proof we further
mention that one can show analytically that A2,ls ,u

2 x̄ s ,u
2 is a

sufficient but not necessary self-consistency criterion for Eq.
~145!. On the other hand, it is obvious that the assumption
x s(t),0,xu(t) in Eq. ~140! is automatically covered by the
stronger requirement ~145!. Thus, Eqs. ~140! and ~141! are a
necessary but not sufficient self-consistency criterion for Eq.
~145!.
Introducing the above relations ~152! and ~153! into Eqs.

~43! and ~54!, we obtain for the action of the master path

fopt5DVF12UA2lslu~ ulsu1lu!

2DVn4 U1/2G2. ~154!

For A→0 or V→` we thus recover the static ~undriven!
potential barrier DV from Eq. ~138!. The leading-order cor-
rections for small A decrease like uAu @23#. For any finite
amplitude A and driving period T52p/V the ‘‘effective po-
tential barrier’’ fopt is smaller than the static barrier DV and
is monotonically decreasing both with increasing A and in-
creasing T. Invoking the necessary but not sufficient self-
consistency criterion ~141! for Eq. ~145!, one can explicitly
confirm that fopt can never become zero @see Eqs. ~36!, ~37!,
and ~54!# by demonstrating that the argument in the square
brackets in Eq. ~154! is always positive. If we had chosen the
solution of Eq. ~147! with the opposite inequality than in Eq.
~149!, then a plus instead of the minus sign in Eq. ~154!
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would have been the consequence. Thus Eq. ~149! is indeed
the pertinent condition for singling out the solution which
minimizes the action.
By using Eqs. ~143! and ~152! in the definition ~117! of

bopt(t) we obtain

bopt~ t !5popt* ~ t1!e2lu•~ t2t1!. ~155!

Turning to the prefactor Qopt* (t), we see from Eqs. ~96! and
~144! that

Qopt* ~ t !5
1

2ul su
~156!

for all times t<t1 . Since F9(x ,t)5(lu2l s)d(x) according
to Eq. ~137!, we can infer from Eq. ~46! that the prefactor
Qopt* (t) is continuous at t5t1 while its derivative jumps from
Q̇opt* (t12)50 to the value

Q̇opt* ~ t1
1!5

ul su1lu

ul su
ẋopt* ~ t1!2popt* ~ t1!

ẋopt* ~ t1!
, ~157!

where t1
1 indicates the limit t→t1 from above and t1

2 from
below. With these initial conditions, the solution of Eq. ~94!
in the domain t.t1 is straightforward, yielding

lim
t→`

Qopt* ~ t !popt* ~ t !25
popt* ~ t1!2Q̇opt* ~ t1

1!

2lu
. ~158!

Using Eqs. ~148!, ~152!, and ~153! one can show that
popt* (t1)2 ẋopt* (t1) is identical to the expression on the left-
hand side of Eq. ~149!, so that Eqs. ~157! and thus ~158! are
positive quantities. With the opposite inequality in Eq. ~149!
they would be negative, confirming once more that the latter
case corresponds to a saddle point rather than a minimum of
the action. Collecting everything, we are finally in the posi-
tion to evaluate Eq. ~109! with the result

aopt5
F uA u~V21l slu!1A 2DVn4

ul su211lu
21

16p3uA ufopt

G 1/2. ~159!

Once again, the fact that the argument in the square root is
positive can be explicitly verified by exploiting the necessary
but not sufficient self-consistency criterion ~141! for ~145!.

B. Comparison of analytical and numerical results

We have compared the above analytical predictions for
the instantaneous rate ~108! with very accurate numerical
results in Fig. 4. To this end, we have computed the solution
of the Fokker-Planck equation ~10! and then evaluated the
rate according to Eq. ~13!, starting with a narrow Gaussian
initial distribution p(x ,t0) about the potential well x̄ s and
then waiting until transients have died out, i.e., until G(t) has
reached its T-periodic asymptotic behavior. In order to nu-
merically evolve the one-dimensional time-dependent
Fokker-Planck equation ~10! one can employ standard para-
bolic partial-differential equation solving procedures in one
spatial variable. We have adopted a Chebyshev collocation
method @49# to reduce the problem to a coupled system of
ordinary differential equations, which is then solved by stan-
dard numerical methods. By changing the various parameters
of the numerical procedure, the typical relative errors of the
numerical rates G(t) in our figures are estimated to be at
most of the order of 1024 for rates down to about 102100 and
of the order of 1023 for rates down to about 102200.
The results in Fig. 4 confirm for a representative set of

parameter values that the agreement between the analytical
predictions and the practically exact numerical results for the
instantaneous rate G(t) indeed improves with decreasing
noise strength D. While the absolute values of G(t) and the
location of the extrema strongly depend on D, the overall
shape changes very little and does not develop singularities
as D→0.
The corresponding time-averaged rates ~116! are depicted

in Fig. 5~a!, exhibiting excellent agreement between theory
and numerics even for relatively large D. Figure 5~b! con-
firms our analytical prediction that the relative error in Eq.
~116! decreases asymptotically like D, see Eq. ~123!.
Finally, Fig. 6 illustrates the dependence of the time-

averaged rate Ḡ upon the amplitude A of the periodic driving
force. As expected, our theoretical prediction compares very
well with the ~numerically! exact rate, except for very small
driving amplitudes A. The latter discrepancy is in accordance
with our discussion in Sec. IVA and Sec. IV E.
We have, furthermore, included in Fig. 6 a comparison

with the analytical approximation for the time-averaged rate
Ḡ from Ref. @23#. By way of a matching procedure, involv-
ing the barrier region only, it is predicted @23# that

Ḡ5G0E
0

2p df

2p
e2s~f !/D, ~160!

where G0 is the well-known Kramers-Smoluchowsky rate in
the absence of the periodic driving force @1#

FIG. 4. Instantaneous rate G(t) versus time t for the piecewise
linear force field ~137! in dimensionless units with parameters x s
5l s521, xu5lu51, V51 (T52p), and A50.5, corresponding
to a static (A50) potential barrier DV51 in Eqs. ~138! and ~139!.
Solid line: Analytical prediction @Eqs. ~108!, ~118!, ~150!, ~151!,
~154!, ~155!, and ~159!# by neglecting the O(Dg) term in Eq. ~108!.
Dashed line: High-precision numerical results, obtained as de-
scribed in Sec. V B.
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G05
uV 9~ x̄ s!V 9~ x̄ u !u1/2

2p
e2DV /D . ~161!

The leading-order effect of an additive sinusoidal driving ~5!,
such that the associated periodic modulations of the potential
barrier are small in comparison with the unperturbed barrier
DV , but not necessarily in comparison with the noise
strength D, are captured by the function s (f) in Eq. ~160!. It
can be written for a general metastable potential V (x ) in Eq.
~5! under the form @23#

s~f !5A ~S sinf2C cosf !, ~162!

S5S ~x 1!ªE
x̄ s

x̄u
dx sinS VE

x1

x dy
V 8~y ! D ,

C5C ~x 1!ªE
x̄ s

x̄u
dx cosS VE

x1

x dy
V 8~y ! D , ~163!

with an arbitrary reference point x 1P( x̄ s , x̄ u). Figure 6 con-
firms that this approximation from @23# is indeed comple-
mentary to ours in that it is very accurate for small driving

FIG. 5. ~a! Arrhenius plot of the time-averaged rate Ḡ for the
piecewise linear force field ~137! in dimensionless units with the
same parameters as in Fig. 4. Solid line: Analytical prediction @Eqs.
~116!, ~154!, and ~159!# by neglecting the O(D g) term in Eq. ~116!.
Crosses: High-precision numerical results, obtained as described in
Sec. V B. ~b! Relative difference between the analytical (Ḡ) and
numerical (Ḡnum) rate.
amplitudes A but develops considerable deviations with in-
creasing A. Those approximations have been omitted in Figs.
4 and 5 since they are not valid in this parameter regime and
indeed are way off.

C. Cubic potential

As a second example we consider a force field ~5! with a
cubic metastable potential

V ~x !52
a
3 x 31

b
2 x 2, a ,b.0. ~164!

The stable and unstable fixed points x̄ s ,u of this potential are
given by

x̄ s50, x̄ u5
b
a
, ~165!

with curvatures at those fixed points

V 9~ x̄ s!5b , V 9~ x̄ u !52b , ~166!

and a static potential barrier height

DVªV ~ x̄ u !2V ~ x̄ s!5
b 3

6a 2 . ~167!

The time-dependent force field ~5! takes the following form:

F ~x , t !5ax 22bx1A sin~V t !. ~168!

Since already the analytical evaluation of such a force
field’s periodic orbits is impossible, one has to recourse to
numerical methods for the calculation of the quantities fopt ,
aopt , and kopt( t ,D ) appearing in the rate expressions ~108!
and ~116!. A convenient numerical strategy for doing so has
been discussed in detail already in Sec. IVH. The so ob-
tained predictions for the time-averaged rate ~116! are com-

FIG. 6. Time-averaged rate Ḡ versus the driving amplitude A for
the piecewise linear force field ~137! in dimensionless units with
parameters x s5l s521, x u5lu51, V51, and D50.05. Solid
line: Analytical prediction @Eqs. ~116!, ~154!, and ~159!# by neglect-
ing the O(D g) term in Eq. ~116!. Dotted line: Theoretical approxi-
mation ~160!–~163! according to Ref. @23#. Crosses: High-precision
numerical results, obtained as described in Sec. V B. Inset: Magni-
fication of the small-A regime.
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pared in Fig. 7 against precise numerical results for a repre-
sentative set of parameter values. Note that these parameter
values are quantitatively very similar to those in Fig. 6,
hence also the rates as a function of the noise strength D are
very similar. The agreement between the theoretical predic-
tion and the practically exact numerical results is again ex-
cellent even for relatively large noise strengths D. However,
in contrast to the piecewise parabolic case, the numerically
accessible D values are still not small enough in order to
check the validity of our prediction ~123! for the behavior of
the relative error in the analytical approximation ~116!.

VI. CONCLUSIONS

In our present work we have scrutinized by means of
path-integral methods the thermally activated escape of an
overdamped Brownian particle over a periodically oscillating
potential barrier in the most challenging regime of weak
thermal noise in combination with moderately strong and
moderately fast driving.
A first major result of our path-integral approach is the

expression ~51! for the instantaneous escape rate, which dis-
plays the suggestive general structure of ‘‘probability at the
separatrix times velocity.’’ The summation appearing in this
expression reflects the fact that several local minima of the
relevant action in the path-integral formulation of the escape
problem notably contribute to the rate. In contrast to the
undriven escape problem, giving rise to a ~quasi-! Goldstone
mode due to the ~quasi-! time-translation symmetry, in our
present case the paths corresponding to the local minima of
the action are well separated and therefore admit a standard
saddle-point approximation of the path integral for small
noise strengths D. Pictorially speaking, by switching on the
periodic driving, the continuous time-translation symmetry
of the escape problem is reduced to a time-discrete one.
Our present explorations indicate that from the practical

~technical! viewpoint, a path-integral approach which keeps

FIG. 7. Arrhenius plot of the time-averaged rate Ḡ for the cubic
potential @Eqs. ~5! and ~164!# in dimensionless units with param-
eters a51/A6, b51, A50.5, and V51, corresponding to a static
(A50) potential barrier DV51 in Eq. ~167! and curvatures
uV9( x̄ s ,u)u51 in Eq. ~166!. Solid line: Analytical prediction from
Eq. ~116! without the O(Dg) term by adopting the calculational
procedure from Sec. IV H. Crosses: High-precision numerical re-
sults, obtained as described in Sec. V B.
an entire sum of possibly relevant contributions to the rate
may be easier to handle than WKB-type or quasipotential-
type methods @9,12#, which operate with the concept of a
single exponentially dominating weak-noise contribution and
a single pre-exponential factor, both of them typically of a
nonanalytic nature.
The central result of our present paper represents the for-

mula ~108! for the instantaneous rate, supplemented by the
result ~123! for the ‘‘accuracy exponent’’ g. The above dis-
cussed summation over the relevant local minima of the ac-
tion resurfaces in all the equivalent alternative expressions
@Eqs. ~110!, ~111!, and ~118!# for kopt( t ,D ) but drops out
~can be performed! in the time-averaged rate ~116! due to the
miraculous identity ~115!.
The rate expressions ~108! and ~116! share the general

Arrhenius-type structure of the exponentially leading weak-
noise contribution with the typical form of an equilibrium
~undriven! rate ~161!. However, both the Arrhenius factor
and the pre-exponential contribution to the rates ~108! and
~116! now depend in a very complicated way on global fea-
tures of the periodically oscillating potential @in contrast to
the purely local properties DV5V ( x̄u)2V ( x̄ s) and V9( x̄ s ,u)
governing Eq. ~161!#. Moreover, a nontrivial AD depen-
dence of the pre-exponential factor on the noise strength D
arises.
For the time-averaged rate ~116! we have shown in Ap-

pendix D that for asymptotically weak noise D an invariance
property holds under the supersymmetry transformation ~16!
without any further restrictions on the force field F (x , t).
Such an invariance property can be established rigorously on
very general grounds @34# for force fields of the form
F (x , t)52V8(x )1y ( t) and arbitrary noise strengths D.
The time-averaged rate ~116! displays a remarkable struc-

tural similarity with the rate expressions obtained in @50# for
one-dimensional discrete-time systems in the presence of
weak Gaussian white noise. While a general qualitative con-
nection between these two different types of escape problems
via some kind of stroboscopic mapping is quite suggestive,
the quantitative details are not so simple. Especially, the
Gaussianity of the resulting noise after the stroboscopic map-
ping is crucial @51# but is far from obvious @52# for the rare
but strong fluctuations ~large deviations! which govern the
escape events.
The condition for the validity of our rate formulas is Eq.

~127! and that for a fixed ~small! noise strength D, extremely
weak, fast, and slow periodic driving forces should be ex-
cluded. Especially, the weak noise limit D→0 displays a
rather intriguing noninterchangeability with the long-time
limit t→` ~see Sec. IV F!, and with the limits of asymptoti-
cally weak, fast, or slow driving.
In general, an action integral remains to be minimized

numerically and an ordinary linear differential equation of
second order for the prefactor to be solved ~Sec. IVH! before
actual numbers can be extracted from our rate formulas.
However, for the special case of a sinusoidally driven, piece-
wise parabolic metastable potential this entire program can
be executed in closed analytical from. This example retains
all the typical features of more general setups and exhibits
excellent agreement with high-precision numerical results
~Sec. V!.
Conceptually, our path-integral approach should be of
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considerable interest for many related problems. Generaliza-
tions for higher-dimensional systems and for nonperiodic
driving forces are currently under investigation @30#. Also
the proper handling of the tantalizing weak, fast, and slow
driving limits within a consistent path-integral formalism re-
mains as an open problem for future research.
Finally, the complicated dependence of the rate on the

global details of the oscillating potential poses a challenging
inverse problem, namely to reconstruct the underlying force
field from a given ~e.g., measured! behavior of the escape
rates.
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APPENDIX A

To prove the equivalence of Eq. ~29! and Eqs. ~30!–~32!
one first needs the Hessian of the discrete-time action
SN(x0 , . . . ,xN) in Eq. ~24!, which is given by the (N
21)3(N21) matrix

S 2Dt
]2S~x*!

]xn*]xn*
D
n ,m51,2, . . . ,N21

5S a1 2b1
2b1 a2 �

� � aN22 2bN22

2bN22 aN21

D ,
~A1!

where

anª21@2F8~xn* ,tn!2~xn11* 2xn*!F9~xn* ,tn!#Dt

1@„F8~xn* ,tn!…21F~xn* ,tn!F9~xn* ,tn!#Dt2, ~A2!

bnª11F8~xn* ,tn!Dt . ~A3!

For the prefactor ZN(x*) in Eq. ~29! the determinant of the
matrix on the right-hand side of ~A1! has to be evaluated.
This can be done by a standard procedure ~cf. @39#!. The
result is a linear two-step recursion relation for the principal
minor Q̃n* , consisting of the first n columns and rows of Eq.
~A1!, of the form

Q̃n11* 5anQ̃n*2bn21
2 Q̃n21* ~A4!

for 2<n<N , with initial conditions

Q̃1*51, Q̃2*5a1 . ~A5!

Comparing Eqs. ~29! and ~32! with Eq. ~A1!, we observe that
QN*5DtQ̃N* , and due to the linearity of Eq. ~A4! we can
conclude that Qn*ªDtQ̃n* also obeys these equations. There-
fore, using the definitions ~A2! and ~A3!, it is readily shown
that Qn* satisfies the required recursion relations ~30! to-
gether with the initial conditions ~31!.
As a by-product, needed in Appendix B, we notice that by

defining for 1<n,N

mnª
Q̃n11*

Q̃n*
5

Qn11*

Qn*
, ~A6!

the linear two-step recursion relation ~A4! can be rewritten
as an equivalent nonlinear one-step recursion

mn115an112
bk
2

mn
, m15a1 . ~A7!

The actual quantity of interest Q̃N* then follows as

Q̃N*5 )
n51

N21

mn . ~A8!

APPENDIX B

In the following we derive Eq. ~50! by showing that

]2fk~x f ,t f !
]x f

2 5
Q̇k*~ t f !
2Qk*~ t f !

2F8~x f ,t f !, ~B1!

which gives together with Eqs. ~39! and ~48! for t5t f the
desired result.
We work with the time-discrete version of the quantities

in Eq. ~B1! and consider in a first step the dependency of a
minimizing path x*5x*(x f) on the end point x f for fixed t0 ,
t f , and x0 . In order to complicate the notation as little as
possible, we have left out the index k labeling the different
paths xk* .
Since the initial point x0 is kept fixed, we have that

dx0*/dx f50. Further, we know from Eq. ~25! that for all n
51, . . . ,N21

]SN

]xn
U
x*~x f !

50, ~B2!

for any x f value, which implies, after taking the derivative
with respect to x f , that

(
m51

N21 dxm*
dx f

]2SN

]xm]xn
U
x*~x f !

50. ~B3!

Using Eq. ~A1!, we thus get

an
dxn*
dx f

2bn21
dxn21*
dx f

2bn
dxn11*
dx f

50. ~B4!

Introducing the new quantities hn by

hnªbn
dxn11*
dxn*

, ~B5!

one obtains from Eq. ~B4! the one-step recursion relation
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hn115an112
bn
2

hn
. ~B6!

The corresponding initial condition follows from Eq. ~B4!
for n51 by taking into account the above-mentioned fact
that dx0*/dx f50:

h15a1 . ~B7!

Comparing Eqs. ~A7! with ~B6! and ~B7! yields hn5mn for
n51, . . . ,N21 and therefore, using the definitions ~A3!,
~A6!, and ~B5!, for n5N21

QN*
QN21* 5@11F8~xN21* ,tN21!#

dxN*
dxN21* . ~B8!

In a next step an explicit expression for dxN*/dxN21* in
terms of well-known quantities has to be found. This can be
achieved by taking the second derivative of the discrete-time
action SN„x*(x f)… of the same minimizing path x* as above
with respect to the end point x f . With Eqs. ~B2! and ~B3!
and the boundary conditions ~26! we find

d2SN~x*„x f !…

dx f
2 5 (

n51

N dxn*
dxN*

]2SN

]xn]xN
U
x*~x f !

, ~B9!

and using Eq. ~24! we can conclude that

dxN*
dxN21* 5

11DtF8~xN21* ,tN21!

122Dt
d2

dx f
2 SN„x*~x f !…

. ~B10!

Together with Eq. ~B8! we thus arrive at

QN*
QN21* 5

@11DtF8~xN21* ,tN21!#
2

122Dt
d2

dx f
2 SN„x*~x f !…

, ~B11!

which with Eq. ~43! yields in the continuous-time limit the
searched for relation ~B1!.

APPENDIX C

In this appendix we derive Eq. ~107! for tP@ tu ,t f # , where
the order of magnitude refers to the asymptotics with respect
to k. As discussed below Eq. ~83!, the differences

dxk*~ t !ªxk*~ t !2xopt* ~ t1kT !, ~C1!

dpk*~ t !ªpk*~ t !2popt* ~ t1kT ! ~C2!

rapidly decrease with increasing index k uniformly on the
entire time interval @ t0 ,t f # . Our first conclusion is that the
time point tu at which xu*(t) enters the neighborhood of
xu(t) depends itself on the index k; basically it decreases like
2kT, see Fig. 3. On the other hand, the distance Dxk*(tu) at
which the path enters this neighborhood is, by definition, k
independent. The corresponding momentum pk*(tu) is not
strictly k independent, but approaches an asymptotic k inde-
pendence for large k. Similar conclusions apply for the time
ts at which xu*(t) leaves the neighborhood of the stable pe-
riodic orbit.
Next we can conclude from Eqs. ~71! and ~76! that

dxk*~ t !5dpk*~ t !Is~ t !2pk*~ t !e2Ls~ t ,t0!Is~ t0!. ~C3!

Within the approximation ~85! it follows that dpk*(ts)
5dxk*(ts)/Is(ts). With these initial conditions at t5ts , the
small perturbations dxk*(t) and dpk*(t) are then propagated
according to Eqs. ~41! and ~42! until t5tu . In linear order of
these small perturbations it follows that dpk*(tu)/dxk*(tu) is
an asymptotically k-independent constant, which, however,
depends on all the details of the force field F(x ,t) along the
crossover segment of the master path xopt* (t).
The counterpart of Eq. ~C3! in the neighborhood of xu(t)

follows along the same line of reasoning, reading

dxk*~ t !52dpk*~ t !Iu~ t !1pk*~ t !e22Ls~ t f ,t !Iu~ t f !. ~C4!

Replacing on the right-hand side e22Ls(t f ,t) by popt* (t f
1kT )2/popt* (t1kT )2 according to Eqs. ~61! and ~65!,
choosing t5tu , and making use of Eqs. ~86! and ~C2!, we
can infer that

dxk*~ tu!1dpk*~ tu!Iu~ tu!5
pk*~ tu!Iu~ t f !

@pk*~ tu!2dpk*~ tu!#2
popt* ~ tk!2.

~C5!

As we have just pointed out, the quantity dxk*(tu) is propor-
tional to dpk*(tu) with an asymptotically k-independent pro-
portionality constant that depends on the details of the force
field F(x ,t) along the crossover segment of the master path
xopt* (t). In the generic case, this proportionality constant is
thus not expected to coincide with 2Iu(tu) since the latter
depends on the behavior of F(x ,t) along the unstable peri-
odic orbit xu(t) only. Consequently, both dxk*(tu) and
dpk*(tu) on the left-hand side of Eq. ~C5! are, with respect to
their k dependence, of the same order of magnitude as the
right-hand side. Since pk*(tu) is asymptotically k indepen-
dent and dpk*(tu) tends to zero, we can infer from Eq. ~C5!
that

dxk*~ tu!5O„popt* ~ tk!2…, dpk*~ tu!5O„popt* ~ tk!2….
~C6!

With the initial conditions ~99! and ~100! it follows from
Eq. ~46! that the relative difference between Qk*(tu) and
Qopt* (tu1kT ) scales as a function of k like dxk*(tu) and
dpk*(tu). With Eq. ~C6! this implies that

Qk*~ tu!5Qopt* ~ tu1kT !@11O„ popt* ~ tk!2…# . ~C7!

A similar relation follows for Q̇k*(tu) and thus for gk*(tu) @cf.
Eq. ~48!#, namely,

gk*~ tu!5gopt* ~ tu1kT !@11O„ popt* ~ tk!2…# . ~C8!

Finally we conclude from Eq. ~101! that
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Qk*~ t !
Qopt* ~ t1kT !

5
Qk*~ tu!

Qopt* ~ tu1kT !

12gk*~ tu!Iu~ tu ,t !
12gopt* ~ tu1kT !Iu~ tu ,t !

.

~C9!

Like for Dxk*(tu) and pk*(tu) @see below Eq. ~C2!# one can
convince oneself that also gk*(tu) is asymptotically k inde-
pendent. With Eqs. ~C7! and ~C8! the result ~107! then fol-
lows from Eq. ~C9!.

APPENDIX D

The purpose of this appendix is to verify that our expres-
sion ~116! for the time-averaged rate is invariant with respect
to the supersymmetry transformation ~16!. To this end, we
first note that the path defined via

x̃opt* ~ t !ª2xopt* ~2t !, ~D1!

p̃opt* ~ t !ªpopt* ~2t ! ~D2!

satisfies the Hamilton equations ~41! and ~42! for the super-
symmetric partner field F̃(x ,t) from Eq. ~16!. Since the pe-
riodic orbits of this new force field are given by x̃s(t)5
2xu(2t) and x̃u(t)52xs(2t) ~see Sec. II C! one can
readily see that x̃opt* (t) from Eq. ~D1! also obeys the bound-
ary conditions ~53! in the relevant limit t f2t0→` . Hence
we have found ~up to the usual degeneracy with respect to
time shifts by arbitrary multiples of T ! the unique solution of
the supersymmetric partner variational problem ~54!. Insert-
ing p̃opt* (t) from Eq. ~D2! into the definitions ~43! and ~54!
then leads to the following result:

f̃opt5fopt . ~D3!

Somewhat more elaborate considerations are necessary in
order to establish a corresponding identity for the prefactor
aopt in Eq. ~116!. To this end we first consider two arbitrary
but linear independent solutions Q i(t) (i51,2) of the pref-
actor equation ~46! for Qopt* (t). One can then easily verify
that the prefactor Qopt* (t) which, moreover, has to fulfill the
initial conditions ~47! in the limit t0→2` , is given by

Qopt* ~ t !5 lim
t0→`

Q1~ t !Q2~ t0!2Q1~ t0!Q2~ t !
W~ t0!

, ~D4!
with the Wronskian

W~ t !ªQ̇1~ t !Q2~ t !2Q1~ t !Q̇2~ t !. ~D5!

Due to Eq. ~46! one can infer that

Ẇ~ t !52W~ t !F8„xopt* ~ t !,t…. ~D6!

With help of the Hamilton equation ~41! it follows that

popt* ~ t !2W~ t !5const. ~D7!

Turning now to the supersymmetric partner problem, it is
readily seen that one obtains via Q̃ i(t)ªQ i(2t) two linear
independent solutions of the prefactor equation ~46! for the
supersymmetric partner field ~16! and the path given by Eq.
~D1!. Thus we can use Eqs. ~D2! together with ~D4! and
~D5! ~with tildes! to establish the identity

lim
t→`

p̃opt* ~ t !2Q̃opt* ~ t !5 lim
t0→2`
t→`

popt* ~2t !2

2W~2t0!

3@Q1~2t !Q2~2t0!

2Q1~2t0!Q2~2t !# . ~D8!

According to Eq. ~D7! we can now rewrite
popt* (2t)2/W(2t0) as popt* (2t0)2/W(2t). Replacing t→
2t0 and vice versa one can then conclude with help of Eq.
~D4! that

lim
t→`

p̃opt* ~ t !2Q̃opt* ~ t !5 lim
t→`

popt* ~ t !2Qopt* ~ t !. ~D9!

Hence we finally obtain

aopt5ãopt . ~D10!

This, in combination with Eq. ~D3!, proves our proposition
that the time-averaged rate ~116! is invariant with respect to
the supersymmetric transformation ~16!.
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