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Surmounting Oscillating Barriers
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Thermally activated escape over a potential barrier in the presence of periodic driving is considered.

By means of novel time-dependent path-integral methods we derive asymptotically exact weak-noise
expressions for both the instantaneous and the time-averaged escape rate. The agreement with accurate
numerical results is excellent over a wide range of driving strengths and driving frequencies.

PACS numbers: 05.40.–a, 82.20.Mj, 82.20.Pm
The problem of noise driven escape over a potential bar-
rier is ubiquitous in natural sciences [1]. Typically, the
noise is weak and the escape time is governed by an expo-
nentially leading Arrhenius factor. This scheme, however,
meets formidable difficulties in far from equilibrium sys-
tems due to the extremely complicated interplay between
global properties of the metastable potential and the noise
[1,2]. Prominent examples are systems driven by time-
periodic forces [3,4], exemplified by strong laser driven
semiconductor heterostructures, stochastic resonance [5],
directed transport in rocked Brownian motors [6], or pe-
riodically driven “resonant activation” processes [7] like
ac driven biochemical reactions in protein membranes.
Despite its experimental importance, the theory of oscil-
lating barrier crossing is still in its infancy. Previous
attempts have been restricted to weak (linear response),
slow (adiabatic regime), or fast (sudden regime) driving
[3–5]. In this Letter we address the most challenging
regime of strong and moderately fast driving by means
of path-integral methods. In fact, our approach becomes
asymptotically exact for any finite amplitude and period of
the driving as the noise strength tends to zero, and com-
prises a conceptionally new, systematic treatment of the
rate prefactor multiplying the exponentially leading Ar-
rhenius factor. Closest in spirit is the recent work [4],
which is restricted, however, to the linear response regime
for the exponentially leading part and treats the prefactor
with a matching procedure, involving the barrier region
only. Our analytical theory is tested for a sinusoidally
rocked metastable potential against very precise numerical
results. Conceptionally, our approach should be of consid-
erable interest for many related problems: generalizations
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for higher dimensional systems and for nonperiodic driv-
ing forces.
Model.—We consider the overdamped escape dynamics

of a Brownian particle x�t� in properly scaled units

�x�t� � F�x�t�, t� 1
p

2D j�t� , (1)

with unbiased d-correlated Gaussian noise j�t� (thermal
fluctuations) of strength D. The force field F�x, t� is as-
sumed to derive from a metastable potential with a well
at x̄s and a barrier at x̄u . x̄s, subject to periodic modula-
tions with periodT . For D � 0, the deterministic dynam-
ics (1) is furthermore assumed to exhibit a stable periodic
orbit (attractor) xs�t� and an unstable periodic orbit (basin
boundary) xu�t� . xs�t�.

For weak noise D, there is a small probability that a
particle obeying (1) escapes from the basin of attraction
A�t� :� �2`, xu�t�� of xs�t� and disappears towards in-
finity. For an ensemble of particles with probability density
p�x, t�, the population PA�t� within the basin of attrac-
tion is

Rxu�t�
2` p�x, t� dx and the instantaneous rate of escape

G�t� equals 2 �PA�t��PA�t�. Apart from transients at early
times, this rate G�t� is independent of the initial conditions
at time t0. Without loss of generality we can thus focus on
x�t0� � xs�t0�. Small D implies rare escape events, i.e.,
the deviation of PA�t� from its initial value PA�t0� � 1 is
negligible. Exploiting �xu�t� � F�xu�t�, t� and the Fokker-
Planck equation ≠tp � ≠x�2F�x, t� 1 D≠x�p governing
p � p�x, t� we find for the instantaneous rate

G�t� � 2D≠xp�x � xu�t�, t� . (2)
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Path-integral approach.—With the choice p�x, t0� �
d�x 2 xs�t0�� we obtain for the conditional probability
p�x, t� the path-integral representation [8]

p�xf , tf� �
Z

D x�t�e2S�x�t���D , (3)

where the “action” is given by

S�x�t�� :�
Z tf

t0

dt � �x�t� 2 F�x�t�, t��2�4 , (4)

and where x�t0� � xs�t0� and x�tf� � xf are the “initial”
and “final” conditions for the paths x�t�. For weak noise,
the integral (3) is dominated by a set of paths x�

k �t�, corre-
sponding to minima of the action (4) (distinguished by the
label k). These satisfy an Euler-Lagrange equation equiva-
lent to the following Hamiltonian dynamics:

�p�
k�t� � 2p�

k �t�F0�x�
k �t�, t� , (5)

�x�
k �t� � 2p�

k �t� 1 F�x�
k�t�, t� , (6)

with F0�x, t� :� ≠xF�x, t�. For well-separated paths x�
k�t�,

a functional saddle point approximation in (3) yields

p�xf , tf� �
X
k

e2S�x�
k �t���D

�4pDQ�
k�tf ��1�2 �1 1 O �D�� , (7)

where the quantity Q�
k �t� relates to the determinant of fluc-

tuations around x�
k �t�. Following the reasoning in [9], we

find for our case [10] that Q�
k �t� obeys the relation

Q̈�
k �t��2 2 d�Q�

k�t�F0�x�
k�t�, t���dt 1

Q�
k �t�p�

k �t�F00�x�
k �t�, t� � 0 (8)

with initial conditions Q�
k �t0� � 0 and �Q�

k �t0� � 1. Ex-
ploiting the fact that the derivative of the action at its end
point equals the momentum p�

k�tf �, we can infer from (2)
and (7) our first main result, namely,

G�tf� �
X
k

p�
k�tf �e2S�x�

k �t���D

�4pDQ�
k�tf��1�2 �1 1 O �D�� , (9)

where the boundary conditions x�
k �t0� � xs�t0� and

x�
k �tf� � xu�tf� are understood in (5) and (6). In view of

(7), the instantaneous rate (9) has the suggestive form of
probability at the separatrix times “velocity.”

Closer inspection of (4)–(6) reveals the following
generic features of each path x�

k �t� which notably
contributes to the rate (9); see Fig. 1: Starting at
x�

k �t0� � xs�t0�, it continues to follow rather closely the
stable periodic orbit xs�t� for some time. At a certain
moment, it crosses over into the vicinity of the unstable
periodic orbit xu�t� and remains there for the rest of
its time, ending at x�

k �tf � � xu�tf �. Without loss of
generality, we can sort the paths x�

k �t� by the time they
spend near the unstable periodic orbit, such that x�

0�t� is
that path which crosses over from xs�t� to xu�t� at the
“latest possible moment.” Apart from a time shift, each
path x�

k �t� then closely resembles the same “master path”
x��t� (see Fig. 1). This path x��t� is defined as an absolute
1640
FIG. 1. Solid line: The paths x�
k �t�, k � 0, . . . , 3, which mini-

mize the action (4) with boundary conditions x�
k �t0� � xs�t0�

and x�
k �tf � � xu�tf� for the example (24) with x̄s � ls � 21,

x̄u � lu � V � 1, and A � 0.5 (dimensionless units). Dashed
line: The associated “master paths” x��t 1 kT �. Dotted line:
Stable and unstable periodic orbits xs�t� and xu�t�. In this plot,
tf 2 t0 has been chosen rather small. As tf 2 t0 increases,
more and more intermediate paths x�

k �t� appear which better and
better agree with x��t 1 kT �.

minimum of the action (4) in the limit t0 ! 2`, tf ! `,
and is fixed uniquely by demanding that x��t 1 kT � is
the master path associated with x�

k�t�.
The basic qualitative features of each minimizing path

x�
k �t� are thus quite similar to the well-known barrier-

crossing problem in a static potential [11]. However, in the
limit t0 ! 2`, tf ! ` we have, in contrast to this latter
situation, not a continuous symmetry (Goldstone mode),
but a discrete degeneracy of the minimizing paths. As a
consequence, in our case the minimizing paths x�

k �t� re-
main well separated and thus the rate formula (9) is valid
for any (arbitrary but fixed) finite values of the driving am-
plitude and period, provided the noise strength D is suffi-
ciently small. On the other hand, for a given D we have
to exclude extremely small amplitudes and extremely long
or short periods since this would lead effectively back to
the static case.

As long as the master path x��t� remains sufficiently
close to the stable periodic orbit xs�t�, say for t # ts, the
force field is well approximated by

F�x, t� � F�xs�t�, t� 1 �x 2 xs�t��F0�xs�t�, t� . (10)

An analogous approximation for F�x, t� is valid while
x��t� remains in a sufficiently small neighborhood of xu�t�,
say for t $ tu. The corresponding local solutions of the
Hamilton equations (5) and (6) can then be written as

p��t� � p��ts,u�e2Ls,u�t,ts,u�, (11)

x��t� � xs,u�t� 6 p��t�Is,u�t� . (12)

Here s, u means that the index is either s or u and the
upper and lower signs in (12) refer to s and u, respectively.
Further, we have introduced

Ls,u�t, ts,u� :�
Z t

ts,u

F0�xs,u�t̂�, t̂� dt̂ , (13)
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Is,u�t� :�
Ç

2
Z t

7`
e2Ls,u�t,t̂� dt̂

Ç
. (14)

Similarly, the local solutions for the prefactor in (8) can be
written as

Q��t # ts� � Is�t��2 , (15)

Q��t $ tu� � c1�p��t�2 2 c2Iu�t� . (16)
The parameters p��ts,u� in (11) and c1,2 in (16) cannot be
fixed within such a local analysis around xs,u�t�; they re-
quire the global solution of (5), (6), and (8). We further-
more observe that due to the time periodicity of F�x, t� and
xs,u�t�, the quantities

ls,u :� Ls,u�t 1 T , t��T (17)
are indeed t independent. The stability/instability of the
periodic orbits xs,u�t� implies ls , 0 and lu . 0. It fol-
lows that Is,u�t� from (14) are finite, T -periodic functions.

The expressions for x�
k �t�, p�

k �t�, and Q�
k�t� are some-

what more complicated than in (11)–(16) but since x�
k �t�

is well approximated by x��t 1 kT �, the same follows for
p�

k �t� and Q�
k�t�. Closer inspection shows [10] that in (9)

the preexponential factors p�
k�tf � and Q�

k �tf � can be ap-
proximated by p��tf 1 kT � and Q��tf 1 kT � without
further increasing the error O �D� in (9). Within this same
accuracy, the exponential in (9) requires—due to the small
denominator D—a somewhat more elaborate approxima-
tion, yielding

S�x�
k �t�� � S�x��t�� 1

Z `

tf1kT
p��t�2 dt . (18)

Rate formula.—By introducing these approximations into
(9), exploiting (11)–(16), and dropping the index f of
tf , we obtain [10] as the central result of this work the
instantaneous rate

G�t� �
p

D ae2S�x��t���Dk�t, D� �1 1 E�D�� , (19)

a :� �4pT 2 lim
t!`

p��t�2Q��t��21�2, (20)

k�t, D� :� T
X̀

k�2`

bk�t�2

D
e2bk�t�2Iu�t��2D , (21)

bk�t� :� e2lukT lim
t̂!`

p��t̂�eLu�t̂,t�. (22)

The relative error E�D� is found to be of the order ofO �D�
if F00�xu�t�, t� � 0, and O �D1�2� otherwise. By the use of
(13)–(17) one finds that the average of (21) over a single
time period T equals 1. For the time-averaged rate Ḡ we
thus obtain

Ḡ �
p

D ae2S�x��t���D�1 1 E�D�� . (23)

It consists of an Arrhenius-type exponentially leading part
and, in contrast to equilibrium rates [1], a nontrivial pre-
exponential D dependence.

An archetype example.—In general, the explicit quan-
titative evaluation of S�x��t��, a, and k�t, D� in (19) and
(23) is not possible in closed analytical form. An exception
FIG. 2. Instantaneous rate G�t� for the force field (24) with
x̄s � ls � 21, x̄u � lu � V � 1, and A � 0.5, correspond-
ing to a static (A � 0) potential barrier DV � 1. Solid line:
Analytical result, (19),(21),(26)–(30). Dashed line: High-
precision numerical results by evolving the Fokker-Planck
equation for p�x, t� until transients have died out and then
evaluating (2).

is the piecewise linear force field with additive sinusoidal
driving

F�x # 0, t� � ls�x 2 x̄s� 1 A sin�Vt� ,

F�x $ 0, t� � lu�x 2 x̄u� 1 A sin�Vt� ,
(24)

corresponding to a periodically rocked piecewise para-
bolic potential, with parameters x̄s , 0, x̄u . 0, ls , 0,
lu . 0, respecting lsx̄s � lux̄u (continuity at x � 0). To
simplify the analytical calculations we further restrict our-
selves to the case that the master path x��t� crosses the
matching point x � 0 in (24) only once [12], say at t � tc.
The periodic orbits xs,u�t� then assume the simple form

xs,u�t� � x̄s,u 2
A�ls,u sin�Vt� 1 V cos�Vt��

l2
s,u 1 V2 . (25)

FIG. 3. Arrhenius plot of the time-averaged rate Ḡ. Parameters
are like in Fig. 2. Solid line: Analytical result, (23),(28),(29).
Crosses: Precise numerical results. Inset: Relative difference
between analytical (Ḡ) and numerical (Ḡnum) rate.
1641
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FIG. 4. Time-averaged rate Ḡ vs driving amplitude A for D �
0.05. Parameters are like in Fig. 2. Crosses: Precise numerical
results. Solid: Analytical result, (23),(28),(29). Dotted line:
Theoretical approximation from Ref. [4]. The small-A regime is
magnified in the inset.

Moreover, Eqs. (11) and (12) are now valid with index s
for all t # tc and with u for all t $ tc. By matching these
solutions at t � tc the global parameters p��ts,u� in (11)
are fixed and one obtains

tc �
1
V

arctan
µ

luls 2 V2

V�lu 1 ls�

∂
. (26)

To ensure that x��t� is a minimum of the action in (4) one
has

�lu 1 ls�AV cos�Vtc� , 0 . (27)

In the same manner, the prefactor (16) has to be matched
at t � tc. While Q��t� is still continuous, �Q��t� develops
a jump at t � tc which can be determined from (8). Upon
collecting everything, the final result reads

S�x��t�� � DV

"
1 2

jAlulsj

�RDV �1�2

#2

, (28)

a �

"
jAj �V2 1 luls� 1 �RDV �1�2

16p3jAjS�x��t��

#1�2

, (29)

bk�t� � e2lu�kT 1t2tc�
∑
lux̄u 2

jAlulsj

H1�2

∏
, (30)

where H :� �l2
u 1 V2� �l2

s 1 V2�, R :� 2H��l21
u 2

l21
s �, and DV :� �lux̄2

u 2 lsx̄2
s ��2 is the potential barrier

corresponding to the undriven (A � 0) force field (24).
With T � 2p�V, Iu�t� � 1�lu, and tc from (26) and
(27), the rate (19),(23) is thus determined completely.

Comparison.—These analytical predictions for the in-
stantaneous rate (19) are compared in Fig. 2 for a represen-
tative set of parameter values with very accurate numerical
1642
results. The agreement indeed improves with decreasing
noise strength D. While the absolute values of G�t� and the
location of the extrema strongly depend on D, the overall
shape changes very little and does not develop singularities
as D ! 0. The corresponding time-averaged rates (23) are
depicted in Fig. 3, exhibiting excellent agreement between
theory and numerics even for relatively large D. The in-
set of Fig. 3 confirms our prediction that the relative er-
ror E�D� in (23) decreases asymptotically like D. Finally,
Fig. 4 illustrates the dependence of the averaged rate Ḡ

upon the amplitude A of the periodic driving force. As ex-
pected, our theoretical prediction compares very well with
the (numerically) exact rate, except for very small driving
amplitudes A [see the discussion above Eq. (10)]. The ap-
proximation from [4] is complementary to ours in that it is
very accurate for small A but develops considerable devia-
tions with increasing A. Those approximations have been
omitted in Figs. 2 and 3 since they are not valid in this
parameter regime and indeed are way off.
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