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Abstract

We consider a quite general class of SPDEs with quadratic and
cubic nonlinearities and derive rigorously amplitude equations, using
the natural separation of time-scales near a change of stability. We
show that degenerate additive noise has the potential to stabilize or
destabilize the dynamics of the dominant modes, due to additional
deterministic terms arising in averaging.

We focus on equations with quadratic and cubic nonlinearities and
give applications to the Burgers’ equation, the Ginzburg-Landau equa-
tion and generalized Swift-Hohenberg equation.
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1 Introduction

Stochastic partial differential equations (SPDEs) appear in several appli-
cations, for instance the stochastic Swift-Hohenberg equation, which was
first used as a toy model for the convective instability in Rayleigh-Bénard
problem (see [7] or [16]), and stochastic Burgers’ equation, which use in the
study of closure models for hydrodynamic turbulence [8].

Here we consider parabolic nonlinear SPDEs with additive forcing close
to a change of stability, where the order of the noise strength is comparable
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to the order of the distance from the change of stability. Under appropriate
scaling close to bifurcation one can reduce the essential dynamics to a simpler
model for the amplitudes of the dominant bifurcating modes.

The general prototype of equations under consideration is an equation
of the type

du(t) =
[
Au(t) + ε2Lu(t) +B(u(t)) + F(u(t))

]
dt+ σεdW (t), (1)

where A is non-positive operator with finite dimensional kernel, ε2Lu is
a small deterministic perturbation, B(u) is a quadratic nonlinearity, F is a
cubic nonlinearity, and W is finite dimensional noise for simplicity.

Near a change of stability, we can rely on the natural separation of time-
scales, in order to derive simpler equations for the evolution of the dominant
modes or pattern that change stability. As these equations describe the
amplitude of these pattern, they are referred to as amplitude equations. As
we are forcing only non-dominant modes, if the noise is too small there is no
direct impact on the amplitude equation. But as soon as the distance to the
change of stability is comparable to the order of the squared noise strength,
we will see additional terms in the amplitude equation induced by the noise.
This is due to the fact that the degenerate additive noise is transported via
nonlinear interaction to the dominant pattern. Other examples of this effect
are [2, 4, 13, 14, 15, 21, 22]. Related works in this direction are [19, 23].

The aim of this paper is to derive rigorously the amplitude equation
for a quite general class of SPDEs (cf. (1)) and investigate whether additive
degenerate noise (i.e. noise that does not act directly on the dominant mode)
can lead to stabilization of the solution of the SPDE (1). We could easily
treat even higher order terms like, for instance, quartic or quintic, but they
do not have any impact on the final result. Thus we can think of B and F as
the lowest order terms in a Taylor expansion of a more general nonlinearity.

Interesting effects appear due the appearance of additional deterministic
terms in the amplitude equation due to stochastic averaging. These terms
can change the nature of stability of the dominant modes. Here we present
two cases. In the first one due to noise and nonlinear interaction deter-
ministic linear terms appear in the amplitude equation. In the second one
a deterministic constant forcing term appears, and stabilizes the dominant
pattern, as the dominant mode is driven away from zero. To our knowledge,
this was not observed before.

In all our examples the noise strength σε scales with the distance from
bifurcation. In experiments σε is usually fixed, while one is free to vary
the distance from bifurcation given by ε2. Nevertheless, here we take the
equivalent viewpoint with ε2 small but fixed, and consider different scalings
of the small noise strength σε.

The case of σε = ε2 was treated in [1] for cubic nonlinearities like Swift-
Hohenberg and in [3] for quadratic nonlinearities like Burgers equation. Here
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the dominant behavior is given by an SDE, called the amplitude equation,
where the noise only acts directly on the dominant modes.

The case σε = ε is treated in [4] for cubic nonlinearities and in [2] for
quadratic nonlinearities like Burgers equation, where only noise not acting
directly on the dominant modes influences the final result. Due to averag-
ing additional linear deterministic terms appear that have the potential to
stabilize or destabilize the dominant behavior. In [17] a generalized Swift-
Hohenberg equation was studied with polynomial nonlinearity containing
cubic and quadratic terms.

Here we revisit the case σε = ε and generalize the previously obtained
results in [2, 4, 17] in a unified framework. The new interesting case of noise
strength σε = ε3/2 with noise not acting directly on the dominant modes
leads to deterministic constant forcing in the amplitude equations. This was
to our knowledge not studied before.

The rest of this paper is organized as follows. In Section 2 we state the
precise setting for equation (1) and the assumptions that we need. In Section
3 we discuss the first reduction steps and state the main theorem. Section 4
gives bounds for high non-dominant modes. In Section 5 we give the proof
of the approximation Theorem I and some applications like the Burgers’
equation (treated also in [2]) the Ginzburg-Landau Equation (treated also
in [4]) and the generalized Swift-Hohenberg equation (also treated in [17]).
Finally, we prove the the approximation Theorem II and apply this result
to the generalized Swift-Hohenberg equation.

2 Setting & Assumptions

This section states the precise setting for (1) and summarizes all assumptions
that are necessary for our results. For the analysis we will work in some
separable Hilbert space H equipped with scalar product 〈·, ·〉 and norm ‖ · ‖.
For the linear operator A we assume the following:

Assumption 1 (Linear operator A) Suppose A is a non-positive self-
adjoint operator on H with real eigenvalues −λk such that

0 = λ1 = . . . = λn < λn+1 ≤ . . . ≤ λk ≤ . . . and λk ≥ Ckm

for all sufficiently large k and one m > 0. The corresponding eigenfunctions
{ek}∞k=1 form a complete orthonormal system in H such that Aek = −λkek.

From the assumption, we know that N := kerA has finite dimension
n with basis (e1, . . . , en). Note that the growth rate of the eigenvalues λk
depends on the dimension. If A is a differential operator on functions on a
bounded interval, as in our examples, then m corresponds with the order of
the operator.
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Define by S = N⊥ the orthogonal complement of N in H, and by Pc the
orthogonal projection onto N . Define the projection onto the orthogonal
complement by Ps := I − Pc, where I is the identity operator on H.

For α ∈ R, we define the space Hα by Fourier series:

Hα =

{ ∞∑
k=0

γkek :

∞∑
k=1

k2αγ2k <∞

}
with norm

∥∥∥ ∞∑
k=1

γkek

∥∥∥2
α

=

∞∑
k=0

k2αγ2k .

Note that in our examples, with A being a polynomial of the Laplacian on
an interval, the space Hα coincides with the usual Sobolev space Hα. If we
also have an upper bound on the eigenvalues (i.e., λk ∼ km), then Hα can
be seen as a fractional interpolation space.

The operator A given by Assumption 1 generates an analytic semigroup
{etA}t≥0, (cf. Dan Henry [12] or Pazy [18]), on any space Hα defined by

eAt
( ∞∑
k=1

γkek

)
=

∞∑
k=1

e−λktγkek ∀ t ≥ 0,

and has the following property for all t > 0, β ≥ α, λn < ω ≤ λn+1 and all
u ∈ Hβ ∥∥etAPsu∥∥α ≤Mt−

α−β
m e−ωt ‖Psu‖β , (2)

where M depends only on the constants α, m, β, and ω.

Assumption 2 (Operator L) Let L : Hα → Hα−β for some α ∈ R and
some β ∈ [0,m) be a linear continuous mapping that commutes with Pc and
Ps.

The Assumption on L basically states that the operator is a compact
perturbation of the operator A : Hα → Hα. For details see Pazy [18]
or Henry [12]. In the example of differential operators one can think of
operators of lower order.

For the quadratic nonlinearity B we make two assumptions. The first
one was crucial in [2] and is satisfied for equations like the Burgers equation.
It basically guarantees that a single mode cannot map back via the quadratic
nonlinearity to the dominant mode.

Assumption 3 (Bilinear Operator B - I) With α and β from Assump-
tion 2 let B be a bounded symmetric bilinear mapping from Hα × Hα to
Hα−β. Suppose that PcB(ek, ek) = 0 for all k ∈ N.

The second assumption relaxes the first one, as it allows single non-
dominant modes to map back to the dominant ones. But dominant modes
still cannot map back to the dominant mode. This is crucial, in order to
study both cubic and quadratic nonlinearities with only cubic nonlinearities
appearing in the Amplitude equation.
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Assumption 4 (Bilinear Operator B - II) With α and β from Assump-
tion 2 let B be a bounded symmetric bilinear mapping from Hα×Hα to Hα−β.
Suppose that PcB(ek, ek) = 0 for k ∈ {1, 2, ...., n}, where n is the dimension
of the null-space of A.

For the cubic nonlinearity F we assume that:

Assumption 5 Assume that F : (Hα)3 → Hα−β with β as in Assumption
2 is trilinear, symmetric and bounded. Thus for some C > 0

‖F(u, v, ω)‖α−β ≤ C ‖u‖α ‖v‖α ‖ω‖α ∀ u, v, ω ∈ Hα, (3)

The assumption that B and F are symmetric is without loss of generality.
As they are quadratic and cubic we can always define them in a symmetric
way.

Denote B(u) = B(u, u) and F(u) = F(u, u, u) for short. Moreover, we
denote the projections by indices. This means Fc = PcF or Fs = PsF . We
define Bs, Bc, and Lc in a similar way.

For the noise we suppose:

Assumption 6 Let W be a finite dimensional Wiener process on H, such
that for t ≥ 0,

W (t) =
∑
k

αkβk(t)ek for finitely many k ≥ n+ 1,

where (βk)k are independent, standard Brownian motions in R and (αk)k
are real numbers.

The assumption of finiteness on the noise is mainly for simplicity of
presentation. We could handle infinite sums, but would need in this case
several conditions for series to converge. Moreover, the fact that the noise
is given as a Fourier series with respect to the ek is not important. But it is
a key assumption, that the noise is degenerate, i.e., that PcW = 0.

The following assumption is crucial in order to obtain long-time results
and global existence for the amplitude equation.

Assumption 7 Define the cubic nonlinearity F̃ : N → N via

F̃ (a) = −2Bc(a,A−1s Bs(a, a)) + Fc(a). (4)

Assume there is a constant c0 ≥ 0 and a constant C ≥ 0 such that for all
a, b, R ∈ N

〈F̃ (a+ b+R)− F̃ (b), a〉 ≤ −c0|a|4 + C|R|4 + C|R|2|b|2 .

Setting b = 0 = R we immediately obtain:
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Corollary 8 Under Assumption 7 for all a ∈ N

〈F̃ (a), a〉 ≤ −c0|a|4 .

Example 9 For the standard cubic nonlinearity F̃ (a) = −|a|2a Assumption
7 is true with positive c0 > 0. Note that here 3F̃ (a, b, d) = −(a · b)d − (a ·
d)b− (d · b)a.

To give a meaning to (1) we always consider mild solutions.

Definition 10 (Local mild solution) An Hα-valued process {u(t)}t∈[0,T ]
is a local mild solution of (1) if for some stopping time τ0 we have on a set
of probability 1 that τ0 > 0 and u ∈ C0([0, τ0],Hα) such that

u(t) = etAu0+

∫ t

0
e(t−s)A[ε2Lu+B(u)+F(u)]ds+σεWA(t), ∀ t ∈ (0, τ0], P−a.s,

(5)
where WA is the stochastic convolution defined as

WA(t) =

∫ t

0
e(t−s)AdW (s).

The existence and uniqueness of local solutions in the sense of the previous
definition is standard, as we consider locally Lipschitz-continuous nonlinear-
ities. See, e.g., [9] or [20] for many examples. Moreover, path-wise for each
realization of randomness, the deterministic theory based on Banach’s fixed
point theorem can be applied (see [12], for example). It it is a well-known
result, both in the deterministic and completely analogous in the stochastic
case, that the solution u and the stopping time τ0 can be extended such that
u ∈ C0([0, τ0),Hα) and either τ0 = ∞ or ‖u(t)‖α → ∞ for t → τ0. See for
example Theorem 2.2 of [5].

Let us also remark that in the definition τ0 could only be a random time,
but here we focus on stopping times with respect to the canonical filtration
induced by W .

For our result we rely on a cut off argument. First we consider only
solutions u that are not too large, as given by the stopping time below. Thus
we can always control the Lipschitz-constants of the nonlinear terms and
higher moments of the nonlinearity. Later, we use the amplitude equations,
in order to show that the stopping time is actually large, at least with high
probability.

Definition 11 For a mild solution u of (1) we define, for some fixed T0 > 0
and small κ ∈ (0, 1

18), the stopping time τ∗, with respect to the canonical
filtration induced by W , by

τ∗ := T0 ∧ inf
{
T > 0 : ‖u(Tε−2)‖α > ε1−κ

}
. (6)
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Definition 12 For a real-valued family of processes {Xε(t)}t≥0 we say
Xε = O(fε), if for every p ≥ 1 there exists a constant Cp such that

E sup
t∈[0,τ∗]

|Xε(t)|p ≤ Cpfpε . (7)

We use also the analogous notation for time-independent random variables.

3 Derivation and Main Results

In this section we present the first reduction step and state the main re-
sults. We are interested here in studying behavior of solution to (1) on
the long time-scale of order ε−2 induced by the distance from bifurcation.
Furthermore, due to the noise-strength and the distance from bifurcation,
we cannot expect solutions to be too large. Finally, our aim is to obtain a
reduced equation for the evolution of the dominant modes.

Thus we rescale and split the solution u into

u(t) = εa(ε2t) + εψ(ε2t), (8)

where a is an N -valued and ψ an S-valued process. By the definition (6) of
τ∗ we have that

‖a(T )‖α ≤ ε−κ and ‖ψ(T )‖α ≤ ε−κ for all T ≤ τ∗ .

After rescaling to the slow time-scale T = ε2t, we obtain the following system
of equations:

da =
[
Lca+ 2ε−1Bc(a, ψ) + ε−1Bc(ψ) + Fc(a+ ψ)

]
dT, (9)

and

dψ =
[
ε−2Asψ + Lsψ + ε−1Bs(a+ ψ) + Fs(a+ ψ)

]
dT + σεε

−2dW̃ , (10)

where W̃ (T ) := εW (ε−2T ) is a rescaled version of the Wiener process.
Equation (9) reads in the integrated form

a(T ) = a(0)+

∫ T

0
Lcadτ+ε−1

∫ T

0
Bc(2a+ψ,ψ)dτ+

∫ T

0
Fc(a+ψ)dτ. (11)

In order to obtain the amplitude equation in a only, we need two steps. As a
first step, we have to remove all terms explicitly depending on ε−1, as these
might not be small. In a second step, we use stochastic averaging in order
to get rid of all the ψ from Equation (9).

As the first step, we start with removing the ε−1. This can be achieved
by Itô’s formula applied to Bc(a,A−1s ψ) and to Bc(ek, e`)ψkψ`. Recall that
A−1s is well defined on PsH. We obtain for the first term
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ε−1
∫ T

0
Bc(a, ψ)dτ = εBc(a(T ),A−1s ψ(T ))− εBc(a(0),A−1s ψ(0))

−ε
∫ T

0
Bc(Lca,A−1s ψ)dτ −

∫ T

0
Bc(Bc(2a+ ψ,ψ),A−1s ψ)dτ

−
∫ T

0
Bc(a,A−1s Bs(a, a+ 2ψ))dτ − ε

∫ T

0
Bc(Fc(a+ ψ),A−1s ψ)dτ

−
∫ T

0
Bc(a,A−1s Bs(ψ,ψ))dτ − σεε−1

∫ T

0
Bc(a,A−1s dW̃s)

−ε
∫ T

0
Bc(a,A−1s Lsψ)dτ − ε

∫ T

0
Bc(a,A−1s Fs(a+ ψ))dτ, (12)

and for the second (assuming all sums run over the forced modes k, ` ≥ n+1)

ε−1
∫ T

0
Bc(ψ,ψ)dτ = ε−1

∑
`,k

Bc(ek, e`)

∫ T

0
ψkψ`dτ

= −ε
∑
`,k

Bc(ek, e`)

(λk + λ`)
[ψk(T )ψ`(T )− ψk(0)ψ`(0)]

+ε
∑
`,k

2Bc(ek, e`)

(λk + λ`)

∫ T

0
[〈Lsψ, e`〉+ F`(a+ ψ)]ψkdτ

+
∑
`,k

2Bc(ek, e`)

(λk + λ`)

[
σεε
−1αk

∫ T

0
ψ`dβ̃k +

∫ T

0
B`(a+ ψ)ψkdτ

]
+

1

4
σ2εε
−3
∑
k

α2
k

λk
Bc(ek, ek)T. (13)

Here B`(w) = 〈B(w), e`〉. Substituting from (12) and (13) into (11) we
obtain

a(T ) = a(0) +

∫ T

0
[Lca+ F̃ (a)− 2Bc(Bc(ψ,ψ),A−1s ψ)]dτ

−
∫ T

0
[4Bc(Bc(a, ψ),A−1s ψ) + 4Bc(a,A−1s Bs(a, ψ))]dτ

−
∫ T

0
[2Bc(a,A−1s Bs(ψ,ψ))− 3Fc(a, a, ψ)]dτ

+

∫ T

0
[3Fc(a, ψ, ψ) + Fc(ψ)]dτ − 2σεε

−1
∫ T

0
Bc(a,A−1s dW̃ )

+
∑
`,k

2Bc(ek, e`)

(λk + λ`)

[
σεε
−1αk

∫ T

0
ψ`dβ̃k +

∫ T

0
B`(a+ ψ)ψkdτ

]
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+
1

4
σ2εε
−3
∑
k

α2
k

λk
Bc(ek, ek)T +O(ε1−4κ), (14)

where the cubic term F̃ (a) is given by (4).

3.1 The scaling σε = ε.

The first main result of this paper is the rigorous derivation of an amplitude
equation in the case of σε = ε. For simplicity we assume that the noise is
forcing only one mode called k. If not, we get all terms we have with sums
and several additional terms (see Remark 14 below). In the single mode
case the amplitude equation reads

∂T b = Lcb+ F̃ (b) + G̃b+
2αk
λk

Bc(b, ek)∂T β̃k, (15)

with a linear map G̃ : N → N given by

G̃b =
3α2

k

2λk
Fc(b, ek, ek)−

α2
k

λk
Bc(b,A−1s Bs(ek, ek))

+
2α2

k

λ2k
Bc(Bc(b, ek), ek) +

∑
`6=k

2α2
kB`(b, ek)

λk(λk + λ`)
Bc(e`, ek), (16)

where B` = P`B with projection P` : Hα → R defined by P`(
∑
k

αkek) = α`.

We show in our main Theorem I that near a change of stability on a
time-scale of order ε−2 the solution of (1) is well estimated by

u(t) ' εb(ε2t) + εZk(ε2t)ek +O(ε2−) , (17)

where b is the solution of the amplitude equation (17) and the fast real-
valued OU process Zk(T ) is defined by

Zk(T ) := αkε
−1
∫ T

0
e−ε

−2λk(T−τ)dβ̃k(τ), (18)

with β̃k(T ) := εβk(ε
−2T ) being a rescaled version of the Brownian motion.

The main result in this case is:

Theorem 13 (Approximation I) Let Assumptions 1, 2, 3, 5, 6, and 7 be
true, where only one mode k is forced. Let u be a solution of (1) defined in
(8) with the initial condition u(0) of order ε and split u(0) = εa(0) + εψ(0)
with a(0) ∈ N and ψ(0) ∈ S where a(0) and ψ(0) are of order one. Suppose
b is a solution of (15) with b(0) = a(0). Then for all p > 1 and T0 > 0 and
all κ ∈ (0, 1

12), there exists C > 0 such that

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εetAsψ(0)− εZk(ε2t)ek
∥∥∥
α
> ε2−13κ

)
≤ Cεp,

(19)
where Zk defined in (18).
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Remark 14 For simplicity we forced the noise in the above theorem in one
mode only. If we force the noise in many modes we will have nonlinear
interactions leading to a martingale term. One example are integrals of the
type

∫ T
0 Z`dβk. In order to approximate this martingale term, we need to

use Lemma 6.1 from [2], which is strictly only for one-dimensional N , as it
is based on Levy representation and the martingale representation theorem.
For more related results in this direction, see for instance [4].

Remark 15 Let us comment on the case, when Assumption 7 fails to be
true. In that case we do not obtain control on the stopping time τ∗. Es-
pecially, τ∗ = T0 might have very small probability due to blow up in finite
time of the amplitude equation. Nevertheless in the proof we still establish
a bound like:

E sup
t∈[0,ε−2τ∗]

∥∥∥u(t)− εb(ε2t)− εetAsψ(0)− εZk(ε2t)ek
∥∥∥p
α
≤ Cεp(1−12κ) . (20)

To illustrate our approximation result of Theorem 13 we consider here
the setting of [17], which is a stochastic Swift-Hohenberg equation with
respect to periodic boundary conditions on [0, 2π] and forced by spatially
constant noise:

∂tu = −(1 + ∂2x)2u+ νε2u+ γu2 − u3 +
1√
2π
εσ∂tβ. (21)

The approximation theorem in this case states that the solution of (21)
is of the type

u(t) = εv(ε2t),

with
v(T ) = b1(T ) sin +b−1(T ) cos +σZ0 +O(ε1−),

where the fast OU-process Z0 ' ∂T β̃(T ) is well approximated by noise, and
b1 and b−1 are the solutions of the amplitude equation

dbi =
[
(ν − 3

2σ
2 + 3σ2γ2)bi + 3

4(3827γ
2 − 1)bi(b

2
1 + b2−1)

]
dT+2γσbidβ̃0 for i = ±1.

Here we have to assume that 27
38 > γ2. Otherwise the nonlinearity is not

stable, and Assumption 7 fails to be true. In that case we cannot apply our
theorems directly. In case 27

38 < γ2 the result would only hold up to a possible
blow-up time of the amplitude equation. An interesting scaling is the case
27
38 = γ2. Here the amplitude equation is linear, and we could consider larger
solutions, and still obtain a meaningful result. The amplitude equation in
that case will have quintic nonlinearities. This case was studied by [6] for
the deterministic equation.

If we choose γ ≤ 1
2 and σ2 ≥ 4ν

3 , then the constant (ν − 3
2σ

2 + 3σ2γ2) in
front of the linear term is negative. In this case we can say that degenerate
additive noise has the potential to stabilize the dynamics of the dominant
modes.
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3.2 The scaling σε = ε3/2

The second approximation result of this paper considers the case where
σε = ε

3
2 . Here we allow for many modes being forced, and for nonlinear

interaction of the noise terms. The first approximation result still holds,
as the noise strength is an order ε1/2 smaller than before. But we will
loose all the impact of the noise in the amplitude equation. Thus we allow
for a different assumption on the nonlinearity (i.e., Bc(ek, ek) 6= 0 for non-
dominant and forced modes k.

The general result is the same as in the previous scaling, but the ampli-
tude now takes the form

db(T ) =
[
Lcb+ F̃ (b) + 1

4

∑
k

α2
k

λk
Bc(ek, ek)

]
dT . (22)

It is an interesting feature, that despite of the presence of noise, the ampli-
tude equation is deterministic. Nevertheless, induced by the noise there is
an additional constant forcing term, that will always drive solutions away
from 0. Thus already a little bit of noise will stabilize the dominant pattern,
and prevents it from disappearing.

We prove the following theorem:

Theorem 16 (Approximation II) Under Assumptions 1, 2, 4, 5, 6, and
7, let u be a solution of (1) defined in (8) with the initial condition u(0) =
εa(0) + εψ(0) with a(0) ∈ N and ψ(0) ∈ S where a(0) and ψ(0) are of order
one, and b is a solution of (22) with b(0) = a(0). Then for all p > 1 and
T0 > 0 and all κ ∈ (0, 1

18), there exists C > 0 such that

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εetAsψ(0)
∥∥∥
α
> ε3/2−10κ

)
≤ Cεp . (23)

We see that the part depending on ψ(0) decays exponentially fast on
time-scales of order O(ε2). Theorem 16 states that the solution of Equation
(1) is well approximated by

u(t) ' εb(ε2t) +O(ε3/2−), (24)

where b is the solution of the amplitude equation in (22).
To illustrate our result, let us give an example of Theorem 16. Consider

again the stochastic generalized Swift-Hohenberg equation with respect to
periodic boundary conditions on [0, 2π]

∂tu = −(4 + ∂2x)2u+ νε2u+ γu2 − u3 + σε3/2∂tβ cos(x). (25)

Thus the dominant modes are N = span(sin(2x), cos(2x)). Obviously, the
forced mode cos(x) is mapped via u2 into N .
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Our main theorem in this case states that the solution

u(t) = εv(ε2t),

of (25) is given by

v(T, x) ' b2(T ) sin(2x) + b−2(T ) cos(2x) +O(ε1/2−),

where b2 and b−2 are the solution of the amplitude equation

b′2 = νb2 − (34 −
5γ2

72 )b2(b
2
2 + b2−2),

b′−2 = νb−2 − (34 −
5γ2

72 )b−2(b
2
2 + b2−2) +

γσ2

72
.

In this case it is essential that we choose γ2 < 54
5 , in order to have

the coefficient in front of the cubic term negative. Otherwise our stability
condition on F̃ would not be satisfied, and Assumption 7 fails to be true.
See also the previous section for a similar discussion.

4 Bounds for the high modes

In this section we show that the non-dominant modes are already given by
an OU-process and a contribution from the initial condition that dies out
very fast.

Lemma 17 Under Assumptions 1, 2, 3 and 5, there is a constant C > 0
such that, for κ > 0 from the definition of τ∗ and p ≥ 1,

E sup
T∈[0,τ∗]

∥∥∥ψ(T )−Q(T )
∥∥∥p
α
≤ Cεp−3pκ, (26)

where Q(T ) is defined as

Q(T ) = eε
−2TAsψ(0) + σεε

−1Z(T ) (27)

Proof. Define
Z(T ) :=

∑
k

Zk(T )ek, (28)

where Zk(T ) is defined in (18), where the sum runs over all forced modes.
The mild solution of (10) is

ψ(T ) = eε
−2TAsψ(0) +

∫ T

0
eε

−2(T−τ)As [Lsψ + ε−1Bs(a+ ψ)]dτ

+

∫ T

0
eε

−2(T−τ)AsFs(a+ ψ)]dτ + σεε
−1Z(T ).

12



Using triangle inequality∥∥∥ψ(T )−Q(T )
∥∥∥
α
≤

∥∥∥∫ T

0
eε

−2As(T−τ)Lsψ (τ) dτ
∥∥∥
α

+ε−1
∥∥∥∫ T

0
eε

−2As(T−τ)Bs(a+ ψ)dτ
∥∥∥
α

+
∥∥∥∫ T

0
eε

−2As(T−τ)Fs(a+ ψ)dτ
∥∥∥
α

:= I1 + I2 + I3 .

We now bound these three terms separately. For the first term, we obtain
by using (2) and Assumption 2 for all T ≤ τ∗

I1 ≤ Cε
2β
m

∫ T

0
e−ε

−2ω(T−τ)(T − τ)−
β
m ‖ψ(τ)‖α dτ

≤ Cε2 sup
τ∈[0,τ∗]

‖ψ(τ)‖α
∫ ε−2ωT

0
e−ηη−

β
mdη

≤ Cε2−κ,

where we used the definition of τ∗. For the second term, we obtain com-
pletely similar by using (2) and Assumption 3 for all T ≤ τ∗

I2 ≤ Cε
2β
m
−1
∫ T

0
e−ε

−2ω(T−τ)(T − τ)−
β
m ‖a+ ψ‖2α dτ

≤ Cε sup
τ∈[0,τ∗]

‖a+ ψ‖2α
∫ ε−2ωT

0
e−ηη−

β
mdη

≤ Cε1−2κ.

Analogously, for the third term. We obtain by using (2) and Assumption 5
that for all T ≤ τ∗

I3 ≤ Cε2−3κ.

Combining all results, yields (26). �

Lemma 18 Under Assumption 1 and 6, for every κ0 > 0 and p ≥ 1, there
is a constant C, depending on p, αk, λk, κ0 and T0, such that

E sup
T∈[0,T0]

|Zk(T )|p ≤ Cε−κ0 ,

and
E sup
T∈[0,T0]

‖Z(T )‖pα ≤ Cε−κ0 ,

where Zk is defined in (18) and the finite sum Z in (28).

13



Proof. This is a straightforward bound on fast OU-processes. See for
instance the proof of Lemma 14 in [4]. With some more effort the bound
should be logarithmic in ε. �

The following Corollary states that ψ(T ) is with high probability much
smaller than ε−κ as asserted by the Definition 11 for T ≤ τ∗. We use this
later in order to show that τ∗ ≥ T0 with high probability (cf. Proof of
Theorem 13).

Corollary 19 Under the assumptions of Lemmas 17 and 18, if ψ(0) =
O(1), then for p > 0 and for all κ0 > 0 there exist a constant C > 0 such
that

E sup
T∈[0,τ∗]

‖ψ(T )‖pα ≤ Cε
−κ0 . (29)

Proof. We use

‖ψ‖p ≤ C‖ψ −Q‖p + C
(
σεε
−1)p ‖Z‖p + C‖eε−2TA‖p .

By Lemmas 17 and 18, we obtain, for κ0 ≤ κ,

E sup
[0,τ∗]

‖ψ‖pα ≤ C + C
(
σεε
−1)p ε−κ0 + Cεp−3κp

≤ ε−κ0 [C + Cσεε
−1 + Cε1−3κ]p .

If σε = ε (or σε = ε
3
2 ), then as κ < 1

3 we obtain (29). �
Let us now state a result similar to the averaging, but where we integrate

over the contribution of the initial condition in ψ. This always leads to terms
of order O(ε2).

Lemma 20 If Assumption 1 hold and ψ(0) = O(1), then for q ≥ 1 there
exist a constant C > 0 such that

sup
T≥0

∫ T

0

∥∥∥eτε−2Asψ(0)
∥∥∥q
α
dτ ≤ Cε2.

Proof. Using (2) we obtain∫ T

0

∥∥∥eε−2Asτψ(0)
∥∥∥q
α
dτ ≤ c

∫ T

0
e−qε

−2ωτ ‖ψ(0)‖qα dτ ≤
ε2

qω
‖ψ(0)‖qα .

�

14



5 Proof of the Approximation Theorem I

This section is devoted to prove the Theorem 13 for the approximation given
(17) of the solution u of the SPDE (1). Before we prove our Theorem 13,
let us state without proof the averaging Lemma 5.1 from [4] over the fast
OU process Zk. This lemma show that the integrals over the OU-process
containing odd powers like Zk or Z3

k , are small. Even mixed powers like
ZkZ` or Z2

kZ` do not contribute. Only even powers like Z2
k , Z4

k , and Z2
kZ2

`

have a contribution, which is a constant of order one.

Lemma 21 For all ε let X be a real valued stochastic process such that for
some r ≥ 0 we have X(0) = O(ε−r) and dX = GdT with G = O(ε−r).

Fix any κ0 > 0. Then for any nonnegative integers n1 , n2 , n3 not all
zero and for all triples of different indices k1, k2, k3 ∈ N, we obtain∫ T

0
XZn1

k1
Zn2
k2
Zn3
k3
dτ =

3∑
i=1

ni(ni − 1)α2
ki

2(n1λk1 + n2λk2 + n3λk3)

∫ T

0
XZn1

k1
Zn2
k2
Zn3
k3
Z−2ki dτ

+O(ε1−r−(n1+n2+n3)κ0), (30)

where the fast OU-process Zk is defined in (18).

Note that in the previous Lemma X might depend on ε. Especially in
the applications G will depend on ε. The dependence of X(0) on ε does not
change the result. Thus here we allow for ε-dependent initial conditions of
order O(ε−r).

Lemma 22 If Assumptions 1, 2, 3, 5 and 6 with only the mode k forced
hold and ψ(0) = O(1), then

a(T ) = a(0) +

∫ T

0
Lca(τ) + F̃ (a(τ)) + G̃a(τ)dτ

+
2αk
λk

∫ T

0
Bc(a, ek)dβ̃k +R(T ), (31)

where
R = O(ε1−12κ), (32)

for κ > 0 from the definition of τ∗.

Proof. From the mild solution of equation (10) and Lemma 17 we obtain
(recall that in this case Z = Zkek)

ψ(T ) = yε(T ) + Z(T ) +O(ε1−3κ), (33)

where
yε(T ) = eε

−2TAsψ(0).

15



Substituting from (33) into (14) and using Assumptions 3 and 5 to obtain

a(T ) = a(0) +

∫ T

0
[Lca+ F̃ (a)− 2Bc(Bc(Z,Z),A−1s Z)]dτ

−
∫ T

0
[4Z2

kBc(Bc(a, ek),A−1s ek) + 4ZkBc(a,A−1s Bs(a, ek))]dτ

−
∫ T

0
[2Z2

kBc(a,A−1s Bs(ek, ek))− 3ZkFc(a, a, ek)]dτ

+

∫ T

0
[3Z2

kFc(a, ek, ek) + Z3
kFc(ek)]dτ − 2

∫ T

0
Bc(a,A−1s ek)dβk

+
∑
6̀=k

2Bc(ek, e`)

(λk + λ`)

∫ T

0
2Z2

kB`(a, ek)dτ +R1, (34)

where we do not state the lengthy expression for R1 explicitly, but using
Lemma 20 it is straightforward to prove that

R1 = O(ε1−12κ). (35)

Applying finally Lemma 21 to (34), yields (31). �

Lemma 23 Let Assumptions 1, 2, 3, 5 and 7, hold. Define b(t) in N as
the solution of (15). If the initial condition satisfies E|b(0)|4p ≤ C for some
p > 1, then there exists another constant C such that

E sup
T∈[0,T0]

|b(T )|2p ≤ C. (36)

Proof. Applying Itô’s formula we first see that |b(T )|2 is a real-valued
diffusion process. Thus again by Itô’s formula applied to (|b(T )|2)p we derive

|b(T )|2p = |b(0)|2p + 2p

∫ T

0
|b(s)|2(p−1) 〈b(s), db(s)〉

+p

∫ T

0
|b(s)|2(p−1) 〈db(s), db(s)〉

+2p(p− 1)

∫ T

0
|b(s)|2(p−2) 〈b(s), db(s)〉2 .

From (15) we have

|b(T )|2p = |b(0)|2p + 2p

∫ T

0
|b(s)|2p−2

〈
b(s),Lcb(s) + F̃ (b(s)) + G̃b(s)

〉
ds

+C4

∫ T

0
|b(s)|2p−2 〈b, Bc(b, ek)〉 dβ̃k
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+C5

∫ T

0
|b(s)|2p−2 〈Bc(b, ek), Bc(b, ek)〉 ds

+C6

∫ T

0
|b(s)|2p−4 〈b, Bc(b, ek)〉2 ds.

Using Cauchy-Schwarz inequality and Assumption 5, together with Corol-
lary 8 or Assumption 7, we obtain (c ≥ 0)

|b(T )|2p = |b(0)|2p + C

∫ T

0
|b(s)|2pds− c

∫ T

0
|b(s)|2p+2ds

+ C4

∫ T

0
|b(s)|2p−2 〈b, Bc(b, ek)〉 dβ̃k.

(37)

Taking the expectations on both sides, yields

E|b(T )|2p ≤ E|b(0)|2p + C

∫ T

0
E|b(s)|2pds,

where we used we used that stochastic integrals have 0 expectation. Apply-
ing now Gronwall’s lemma to obtain

sup
T∈[0,T0]

E|b(T )|2p ≤ C. (38)

With 2p instead of p we have

sup
T∈[0,T0]

E|b(T )|4p ≤ C. (39)

Taking expectation after supremum on both sides of (37)

E sup
T∈[0,T0]

|b(T )|2p ≤ E|b(0)|2p + CE sup
T∈[0,T0]

∫ T

0
|b(s)|2pds

+C4E sup
T∈[0,T0]

∫ T

0
|b(s)|2p−2 〈b, Bc(b, ek)〉 dβ̃k.

Using Burkholder-Davis-Gundy inequality (cf. [10] or [11])

E sup
T∈[0,T0]

|b(T )|2p ≤ E|b(0)|2p + C

∫ T0

0
E|b(s)|2pds+ CE

(∫ T0

0
|b(s)|4pds

)1/2
.

Using our first bounds on b from (38) and (39) after Hölder, yields (36). �

Theorem 24 Assume that Assumptions 1, 2, 3, 5, 6 and 7 hold, and sup-
pose a(0) = O(1) and ψ(0) = O(1). Let b be a solution of (15) and a as
defined in (8). If the initial conditions satisfy a(0) = b(0), then for κ < 1

12
we obtain

E sup
T∈[0,τ∗]

‖a(T )− b(T )‖2p ≤ Cε2p(1−12κ). (40)
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Proof. Subtracting (15) from (31) and defining h := a− b, we obtain

h(T ) =

∫ T

0

[
Lch+ F̃ (h+ b)− F̃ (b) + G̃h

]
dτ

+

∫ T

0

2αk
λk

Bc(h, ek)dβ̃k +R(T ) .

In order to apply Ito-formula, we define h̃ = h−R. Thus,

dh̃ =
[
Lch+ F̃ (h+ b)− F̃ (b) + G̃h

]
dT +

2αk
λk

Bc(h, ek)dβ̃k .

Now Itô-formula yields

1

2p
d|h̃|2p = |h̃|2p−2〈h̃, dh̃〉+ |h̃|2p−2〈dh̃, dh̃〉+ |h̃|2p−4〈h̃, dh̃〉2 .

For the nonlinear term we use Assumption 7:

〈F̃ (h̃+ b+R)− F̃ (b), h̃〉 ≤ −c|h̃|4 + C|R|4 + C|R|2|b|2 .

for some c ≥ 0. Thus (note that we keep some of the h = h̃+R)

1

2p
d|h̃|2p + c|h̃|2p+2dT − |h̃|2p−2〈h̃, 2αk

λk
Bc(h, ek)dβ̃k〉

≤ C|h̃|2p−2[|R|4 + |R|2|b|2]dT + C|h̃|2p−2|h|2dT + C|h̃|2p−4|h|4dT
≤ C|h̃|2p−2[|R|4 + |R|2 + |R|2|b|2]dT + C|h̃|2pdT + C|h̃|2p−4|R|4dT
≤ C|h̃|2pdT + C[|R|4p + |R|2p + |R|2p|b|2p]dT ,

where we used Young’s inequality frequently. For example, x2p−`y` ≤ Cx2p+
Cy2p. Now consider for an appropriate constant C0 > 0

d[e−C0T |h̃(T )|2p] + 2pc e−C0T |h̃|2p+2dT − 2p e−C0T |h̃|2p−2〈h̃, 2αk
λk

Bc(h, ek)dβ̃k〉

≤ Ce−C0T [|R(T )|4p + |R(T )|2p + |R(T )|2p|b(T )|2p]dT

Integration up to T∧τ∗ and taking expectation (recall that h̃(0) = R(0) = 0)

E|h̃(T ∧ τ∗)|2p ≤ E
∫ T∧τ∗

0
[|R|4p + |R|2p + |R|2p|b|2p]ds

≤ Cε(1−12κ)2p
(41)

where we used Hölder, τ∗ ≤ T0, together with Lemma 23 and 22.
Taking a step back, recall that we had for T ≤ τ∗

1

2p
|h̃(T )|2p ≤

∫ T

0
|h̃|2p−2〈h̃, 2αk

λk
Bc(h, ek)dβ̃k〉

+ C

∫ T

0
|h̃|2pds+ C

∫ T

0
[|R|4p + |R|2p + |R|2p|b|2p]ds

18



In order to avoid problems with h̃ being defined only up to the stopping
time τ∗, we define the stopped process h̃τ∗(s) = h̃(s ∧ τ∗). Thus

1

2p
sup

T∈[0,τ∗]
|h̃(T )|2p ≤ sup

T∈[0,τ∗]

∫ T

0
|h̃τ∗ |2p−2〈h̃τ∗ ,

2αk
λk

Bc(h̃τ∗ , ek)dβ̃k〉

+ sup
T∈[0,τ∗]

∫ T

0
|h̃τ∗ |2p−2〈h̃τ∗ ,

2αk
λk

Bc(h̃τ∗ , ek)dβ̃k〉

+ C

∫ τ∗

0
|h̃τ∗ |2pds+ C

∫ τ∗

0
[|R|4p + |R|2p + |R|2p|b|2p]ds

Now we can take suprema up to T0 on the right hand side. Taking now
expectation, Burkholder-Davis-Gundy together with (32) and (41) yields

E sup
T∈[0,τ∗]

|h̃(T )|2p ≤ Cε(1−12κ)2p (42)

Finally, using

E sup
[0,τ∗]

|a− b|2p = E sup
[0,τ∗]

|h|2p ≤ CE sup
[0,τ∗]

|h̃|2p + CE sup
[0,τ∗]

|R|2p (43)

yields the result together with Lemma 22 and (42). �
Now, we can use the results obtained in the previous proofs to verify the

main result of Theorem 13.
Proof of Theorem 13. First we show that τ∗ = T0 with high proba-

bility. Note that

Ω ⊃ {τ∗ = T0}
⊃ { sup

[0,T0]
‖u(Tε−2)‖α < 1

2ε
1−κ}

⊃ { sup
[0,T0]

‖a‖α < 1
4ε
−κ, sup

[0,T0]
‖ψ‖α < 1

4ε
−κ}

⊃ { sup
[0,T0]

‖a− b‖α < 1
8ε
−κ, sup

[0,T0]
‖b‖α < 1

8ε
−κ, sup

[0,T0]
‖ψ‖α < 1

4ε
−κ}

=: Ωε .

Hence

P{τ∗ < T0} = 1− P{τ∗ = T0} ≤ 1− P{Ωε} = P{(Ωε)
c}

≤ P{ sup
[0,T0]

‖a− b‖α ≥ 1
8ε
−κ}+ P{ sup

[0,T0]
‖b‖α ≥ 1

8ε
−κ}

+ P{ sup
[0,T0]

‖ψ‖α ≥ 1
4ε
−κ}

≤ Cε(1−11κ)p + Cεκp + Cε(κ−κ0)p,

(44)
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where we used Chebychev’s inequality together with Theorems 24, 23, and
Corollary 19. If we choose κ < 1

12 and κ0 from Corollary 19 sufficiently
small, we obtain that for all p > 1 there is a constant such that

P{τ∗ < T0} ≤ Cεp . (45)

Now let us turn to the approximation result. Using Theorem 24 and Lemma
17, yields

E sup
T∈[0,τ∗]

‖u(ε−2T )− εb(T )− εQ(T )‖pα

≤ CεE sup
[0,τ∗]

‖a− b‖pα + CεE sup
[0,τ∗]

‖ψ −Q‖pα

≤ Cεp(2−12κ) + Cεp(2−3κ) ≤ Cεp(2−12κ) .

(46)

Thus

P
(

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)− εQ(ε2t)‖α > ε2−13κ
)

= P
(

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)− εQ(ε2t)‖α > ε2−13κ, τ∗ = T0

)
+ P

(
sup

t∈[0,ε−2T0]

‖u(t)− εb(ε2t)− εQ(ε2t)‖α > ε2−13κ, τ∗ < T0

)
≤ P

(
sup

t∈[0,ε−2τ∗]
‖u(t)− εb(ε2t)− εQ(ε2t)‖α > ε2−13κ

)
+ P

(
τ∗ < T0

)
≤ Cε−q(2−13κ)εq(2−12κ) + Cεq

≤ Cεqκ,

where we used again Chebychev’s inequality and (45) and (46). If p = qκ
we obtain our final result (19). �

5.1 Application of Approximation Theorem I

In the literature there are numerous examples of equations with quadratic
nonlinearities (Burgers’ equation) or with cubic nonlinearities (Ginzburg-
Landau / Allen-Cahn equation) or both (Swift-Hohenberg equation) where
our theory does apply.

5.1.1 Burgers’ Equation

The first example is the stochastic Burgers’ equation already studied in [2]

∂tu = −(∂2x + 1)u+ νε2u− u∂xu+ ε∂tW (t),

on the interval [0, π], with Dirichlet boundary conditions. We take

H = L2([0, π]), ek(x) =
√

2
π sin(kx) and N = span{sin}.
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Assumption 1 is true with m = 2 and limk→∞ λk =∞, where the eigenvalues
of −A = −∂2x − 1 are λk = k2 − 1. If we fix Pc to be the H-orthogonal
projection onto N , then both Pc and Ps commute with A.

Moreover, all conditions of Assumption 3 are satisfied for the operator

B(u, v) = 1
2∂x(uv),

as follows:

PcB(u, u) = Pc
[
γ2 sin(x) cos(x)

]
= 0 for u = γ sin ∈ N ,

and for α = 1
4 and β = 5

4 < m we obtain

2‖B(u, v)‖H−1 = ‖∂x(uv)‖H−1 ≤ ‖uv‖L2 ≤ C‖u‖
H

1
4
‖v‖
H

1
4
,

where we used Sobolev embedding of H1/4 into L4. If the noise acts on the
second mode (i.e., W (t, x) = σβ2(t) sin(2x)), then our main theorem states
that for

u(t) = εv(ε2t),

we have
v(T ) ' b(T ) sin +ε

σ

3
∂T β̃2(T ) sin(2x),

where b is the solution of the amplitude equation of Stratonovic type

db =
[
(ν − σ2

88
)b− 1

12
b3
]
dT − σ

6
b ◦ dβ̃2.

If σ2 > 88ν, then ν−σ2

88 is negative. In this case sufficiently strong degenerate
additive noise stabilizes the dynamics of the dominant modes.

5.1.2 Ginzburg-Landau / Allen-Cahn equation

The second example is the stochastic Ginzburg-Landau / Allen-Cahn equa-
tion

∂tu = (∂2x + 1)u+ νε2u− u3 + ε∂tW (t), (47)

subject to Dirichlet boundary conditions on the interval [0, π]. We note that

A = ∂2x + 1, L = νI, F(u) = −u3.

If we take H, ek, and N as in the previous example, then Assumption 1
is again true. Moreover, it is easy to check that the condition (3) on the
nonlinearity is satisfied for α = 1 and β = 0. For the Assumption 6 on the
Wiener process, we consider here noise acting only on sin(2x).

The main theorem states that the solution u(t) = εv(ε2t) of (47) is
approximated by

v(T ) ' b(T ) sin +ε
σ

3
∂T β̃2(T ) sin(2x),
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where b is the solution of the amplitude equation takes the form

b′ =
(
ν − σ2

4

)
b− 3

4
b3, (48)

where Fc (u, ek, ek) = − 1
πu. Note that here the Amplitude equation is de-

terministic, and we have a stabilization of the dominant modes provided
σ2 > 4ν. Here too much noise destroys the dominant pattern.

5.1.3 Generalized Swift-Hohenberg equation

The Swift-Hohenberg equation was defined in introduction (cf. (21)). It has
been used as a toy model for the convective instability in Rayleigh-Bénard
problem (see [7] or [16]). Now it is one of the celebrated models in the theory
of pattern formation. For this model we note that

A = −(1 + ∂2x)2, L = νI, F(u) = −u3, B(u, u) = γu2.

If we take

ek(x) =


1√
π

sin(kx) if k > 0,
1√
2π

if k = 0,
1√
π

cos(kx) if k < 0,

and
H = L2([0, 2π]) and N = span{sin, cos},

then the eigenvalues of −A = (1 + ∂2x)2 are λk = (1− k2)2 for k ∈ N0 with
m = 4, λ0 = 1 > 0 and limk→∞ λk = ∞. Moreover, with α = 1 and β = 0,
it is easy to check that

‖F(u, v, w)‖H1 = ‖−uvw‖H1 ≤ C ‖u‖H1 ‖v‖H1 ‖w‖H1 .

For Assumption 6, we consider two cases:
First case. The noise is a constant in the space (i.e. W (t) = α0√

2π
β0(t) =

σ0β0(t)). In this case our main theorem states that the solution u(t, x) =
εv(ε2t, x), of (21) approximated by

v(T, x) ' b1(T ) sin(x) + b−1(T ) cos(x) + εσ0∂T β̃0(T ) +O(ε1−),

where b1 and b−1 are the solution of the amplitude equation

dbi =
[
(ν − 3

2σ
2
0 + 3σ20γ

2)bi + 3
4(3827γ

2 − 1)bi(b
2
1 + b2−1)

]
dT+2γσ0bidβ̃0 for i = ±1.

Second case. If the noise acts on sin(2x) (or cos(2x)) , then the amplitude
equations are

db′i =
[
(ν − 1

12σ
2
2 + 1

16σ
2
2γ

2)bi + 3
4(3827γ

2 − 1)bi(b
2
1 + b2−1)

]
dT+

γσ2
9
b−idβ̃2 for i = ±1,
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where σ2 = α2√
π
.

Here the question of stabilization is not obvious to decide. In both cases
we need γ2 < 27/38 in order to have a stable cubic, and to apply our main
result. After using the Ito-Stratonovic-correction, we have that for γ2 < 2/3
in the first case and γ2 < 1.46 in the second case, large noise will stabilize.

6 Proof of the Approximation Theorem II

In this section, we use many lemmas and ideas of the previous sections, as
the main ideas are similar.

Lemma 25 If Assumptions 1, 2, 4, 5 and 6 hold, together with ψ(0) =
O(1), then

a(T ) = a(0) +

∫ T

0
[Lca+ F̃ (a)]dτ + 1

4

∑
k

α2
k

λk
Bc(ek, ek)T +O(ε1/2−9κ), (49)

for 1
6 > κ > 0 from the definition of τ∗.

Proof. From the mild solution of equation (10) and Lemma 17, with
σε = ε3/2, we obtain

ψ(T ) = yε(T ) + ε1/2Z(T ) +O(ε1−3κ)

= yε(T ) +O(ε1/2−3κ),
(50)

where as before
yε(T ) = eε

−2TAsψ(0).

Substituting from (50) into (14) and using Assumptions 4, 5 and using
Burkholder-Davis-Gundy inequality to obtain (49). Here we follow the lines
of the proof of our first theorem. The proof is a straightforward modification.
�

Lemma 26 Let Assumptions 1, 2, 4 and 5, hold. Define b(t) in N as the
solution of (22). If the initial condition satisfies E |b(0)|2p ≤ C for some
p ≥ 1, then there exists a constant C > 0 such that

E sup
T∈[0,T0]

|b(T )|2p ≤ C. (51)

Proof. Taking the scalar product 〈b, ·〉 on both sides of (22), and using
Corollary 8, yields

1

2
∂T |b|2 ≤ 〈b,Lcb+ F̃ (b) +

∑
k

α2
k

4λk
Bc(ek, ek)〉

≤ C|b|2 + C1.
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Using Gronwall’s lemma we obtain for 0 ≤ T that

|b(T )|2 ≤ e2CT |b(0)|2 + C1e
2CT .

We finish the proof by taking the expectation after supremum on [0, T0]. �

Theorem 27 Assume that Assumptions 1, 2, 4, 5, 6 and 7 hold and suppose
a(0) = O(1) and ψ(0) = O(1). Let b be a solution of the amplitude equation
(22). Recall a was described in (49). If the initial conditions satisfy a(0) =
b(0), then for κ < 1

18 we obtain that for all p > 1 there is a constant C > 0
such that

E sup
T∈[0,τ∗]

|a(T )− b(T )|p ≤ Cε(
1
2
−9κ)p. (52)

Proof. Subtracting (22) from (49) and defining

h(T ) := a(T )− b(T ), (53)

we obtain

h(T ) =

∫ T

0
Lch(τ)dτ +

∫ T

0
F̃ (h+ b)dτ −

∫ T

0
F̃ (b)dτ + R̃(T ), (54)

where the error R̃ is bounded by

R̃ = O(ε1/2−9κ) (55)

In order to apply standard techniques, we define Q as

Q(T ) := h(T )− R̃(T ). (56)

From Equation (54) we obtain the random ODE

∂TQ = LcQ+ LcR̃+ F̃ (Q+ R̃+ b)− F̃ (b).

Taking the scalar product 〈Q, ·〉 on both sides

1

2
∂T |Q(T )| =

〈
Q,LcQ+ LcR̃

〉
+
〈
Q, F̃ (Q+ R̃+ b)− F̃ (b)

〉
.

Using Young and Cauchy-Schwartz inequalities and Assumption 7, we obtain
the following linear ordinary differential inequality

1

2
∂T |Q(T )|2 ≤ C |Q(T )|2 + C

∣∣∣R̃(T )
∣∣∣2 − c0 |Q(T )|4 + C

∣∣∣R̃(T )
∣∣∣2 |b(T )|2

≤ C |Q(T )|2 + C
∣∣∣R̃(T )

∣∣∣2 + C
∣∣∣R̃(T )

∣∣∣2 |b(T )|2 .

Using Gronwall’s lemma, we obtain (as Q(0) = 0) for T ≤ τ∗ ≤ T0

|Q(T )|2 ≤ C
∫ T

0
|R̃(s)|2[1 + |b(s)|2]e2C(T−s)ds ≤ C sup

[0,τ∗]
|R̃|2[1 + |b|2]
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Taking p
2 -th power, supremum, and finally the expectation yields

E sup
[0,τ∗]

|Q|p ≤ Cεp/2−9pκ ,

where we used (51) and (55). We finish the proof by using (53), (56) and

E sup
[0,τ∗]

|a− b|p = E sup
[0,τ∗]

|Q+ R̃|p ≤ E sup
[0,τ∗]

|Q|p + E sup
[0,τ∗]

|R̃|p.

�
Now, we can use the results previously obtained to prove the main result

of Theorem 16 for the approximation of the solution (24) of the SPDE (1).
Proof of Theorem 16. We follow the same steps of the proof of

Theorem 13. �

6.1 Application of Approximation Theorem II

Note that for Burgers equation we can not apply our approximation The-
orem II because the condition Bc(ek, ek) 6= 0 for k ∈ {n + 1, ....N} is not
satisfied. In the case of Ginzburg-Landau equation, as this contains only
cubic nonlinearities, the noise does not effect the amplitude equation. thus
we do not treat this in detail here.

We apply our Theorem II to the generalized Swift-Hohenberg equation
and we study different cases depending on the type of the noise.

6.1.1 Generalized Swift-Hohenberg equation

We study the generalized stochastic Swift-Hohenberg equation given as

∂tu = −(4 + ∂2x)2u+ νε2u+ γu2 − u3 + ε3/2∂tW. (57)

For this model we note that

A = −(4 + ∂2x)2, L = νI, F(u) = −u3, B(u, u) = γu2.

Later we need that γ2 < 54/5. Define as the orthonormal set of eigenfunc-
tions of A

ek(x) =


1√
π

sin(kx) if k > 0,
1√
2π

if k = 0,
1√
π

cos(kx) if k < 0,

then
N = span{sin(2x), cos(2x)}, and λk = (4− k2)2.

For noise, we consider three different cases, but in all cases the main the-
orem gives that the solution u(t, x) = εv(ε2t, x) of (57) is well approximated
by

v(T, x) = b2(T ) sin(2x) + b−2(T ) cos(2x) +O(ε1/2−),
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where b2 and b−2 are the solution of the amplitude equation
First case. If the noise takes the form W (t, x) = σ∂tβ cos(x), then

b′2 = νb2 − (34 −
5
72γ

2)b2(b
2
2 + b2−2)

b′−2 = νb−2 − (34 −
5
72γ

2)b−2(b
2
2 + b2−2) +

γσ2

72
.

Second case. If the noise acts on sin(x), then

b′2 = νb2 − (34 −
5
72γ

2)b2(b
2
2 + b2−2)

b′−2 = νb−2 − (34 −
5
72γ

2)b−2(b
2
2 + b2−2)−

γσ2

72
,

Third case. If the noise takes the form

W (t, x) =

−N∑
k=−1,k 6=−2

αk∂tβk cos(kx) +
N∑

k=1,k 6=2

σk∂tβk sin(kx),

then in this case

b′2 = νb2 − (
3

4
− 5γ2

72 )b2(b
2
2 + b2−2)

b′−2 = νb−2 − (
3

4
− 5γ2

72 )b−2(b
2
2 + b2−2) +

γ

72
(α2

1 − σ21) .

We note that if we choose σ1 = ±α1, then there is no effect of noise on the
solution.

Note that in the first two cases any little contribution of noise leads to a
pattern cos(2x), as the solution of the amplitude equation is always driven
out of 0.
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