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Abstract. We derive an amplitude equation for a stochastic partial dif-
ferential equation (SPDE) of Swift-Hohenberg type under the simpli-
fying assumption that the noise acts uniformly on the whole system.
Due to the natural separation of timescales, solutions are well approxi-
mated by a stochastic differential equation (SDE), the so called ampli-
tude equation, describing the evolution of the dominant pattern.

Although the slow dominant modes are not forced directly, via
the nonlinearity the noise gets transmitted through the system to those
modes, too, and multiplicative noise appears in the amplitude equation.
Moreover, additional linear and cubic terms appear due to averaging.
This leads to either noise induced stabilization or destabilization effects
in the dominating pattern.
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1. Introduction

The Swift-Hohenberg equation is a model equation used to study pattern for-
mation in driven systems. It was originally derived in [SH77] as a qualitative
description of the convective instability in the Rayleigh Benard model. Today
it is one of the celebrated models in pattern formation. In the simplest case
it takes the form

∂tu = ru− (1 +∇2)2u− u3 , (1)

where r ∈ R is the bifurcation parameter, corresponding to the Rayleigh
number in convection problems. At r = 0 is the change of stability that
corresponds to the convective instability. A variant, arising from a different



2 Klepel, Mohammed and Blömker

regime in the Rayleigh Benard model, is the so called generalized Swift-
Hohenberg model with quadratic and cubic nonlinearity:

∂tu = ru− (1 +∇2)2u+ αu2 − u3, (2)

where α > 0 is an additional parameter, measuring the strength of the qua-
dratic instability. Equation (2) is also derived, when a general nonlinearity is
expanded via Taylor’s formula. The dynamics of (2) was studied in [CH93],
[HMBD95], [BK06] and recently [BD12] among others. In these articles the
usual approach of amplitude equations is the derivation of a simplified model
in the vicinity of the change of stability at r = 0.
This technique is well-known in the physics literature, and it is a kind of
normal form, related to the center manifold, describing the essential dynamics
of the pattern forming system by a simple ordinary differential equation. To
be more precise, both (1) and (2) are very well approximated by

u(t, x) ≈
√
|r| ·A(|r|t) · eix +

√
|r| ·A(|r|t) · e−ix. (3)

where the complex amplitude A(T ) of the dominant mode eix is the solution
of

∂TA = sgn(r)A+ 3( 38
27α

2 − 1)|A|2A, (4)

which is accordingly named amplitude equation (AE, for short) of (2). Note
that T = |r|t denotes the slow time.
For the deterministic Swift-Hohenberg equation on an unbounded domain
solutions are approximated via the Ginzburg-Landau PDE, as a whole band
of uncountably many eigenvalues changes stability. This is also well-known
in the physics literature, but for rigorous results on the deterministic Swift-
Hohenberg equation, see for instance the results in [KMS92], [CE90], [MSZ00]
and [Sch96].
It is the aim of this article to provide rigorous error estimates and to verify
the existence of an amplitude equation for (2). We only add noise constant in
space, which does not cover the physically important case of thermal noise,
but only x-independent perturbations acting uniformly on the whole system.
This has the interpretation of shaking the whole Rayleigh-Bénard experiment
uniformly. The assumption on the noise is only for simplicity of presentation,
as noise with more spatial structure complicates the result significantly. Com-
pletely analogous, we could treat several different kinds of noise with spatial
dependence, which is not acting on the dominant modes directly. But here
the question arises, how this noise would be realized in experiments.
In contrast to that, if the additive noise acts on the dominant modes, then
we need to change scaling and consider smaller noise. See for example [BH04]
or [Blö07]. We comment later in section 3.1 on this in more detail.
Thus as an example, here we only consider the following stochastic generalized
Swift-Hohenberg equation:

∂tu = νε2u− (1 + ∆)2u+ αu2 − u3 + εσ∂tβ, (SH)

where β(t) is a real valued standard Brownian motion. For simplicity of pre-
sentation we focus only on one specific example of boundary conditions and
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consider (SH) with periodic boundary conditions on [0, 2π] only. Dirichlet
and Neumann conditions would yield similar results. We comment later in
Section 3.1 on other types of boundary conditions in more detail.

Here α, σ and ν are real-valued constants. The small parameter ε > 0 relates
the distance from bifurcation to the noise strength. In experiments the noise
strength is often considered to be given and the distance from bifurcation
can by adjusted, for example by changing the temperature and thus the
Reynolds number in Rayleigh-Bénard convection. Of course different scalings
are possible, but then in the final result for the amplitude equation, either
the noise or the linear term disappears.

We show that in our scaling, although the constant mode is non-dominant,
and does not play a role in the deterministic result, the noise appears also in
the amplitude equation through coupling between Fourier modes induced by
the nonlinear terms. Additional terms on the right-hand side are created and
the noise appears multiplicative. To be more precise, (SH) is well approxi-
mated by

u(t, x) ≈ εA(ε2t) · eix + εA(ε2t) · e−ix , (5)

where the complex-valued amplitude A(T ) solves the Itô differential equation

dA = (νA+ 3(α2 − 1
2 )σ2A+ 3( 38

27α
2 − 1)A|A|2)dT + 2ασAdβ̃ . (AE)

Here β̃(T ) := εβ(ε−2T ) is a rescaled version of β(t). It is an interesting
observation, that the equation contains only multiplicative noise instead of
additive noise. This is due to the fact that the noise acting not directly on
the dominant modes is mapped by the (in this case quadratic) nonlinearity
back to the dominant modes. In order to obtain additive noise only in the
amplitude equation, one needs to force directly the dominant modes. But in
that case it is essential to have smaller noise, in oder to have a meaningful
result. See [BH04] for Swift-Hohenberg without quadratic terms or [BM09]
for an equation of Burgers type.

A surprising observation is that due to our choice of the quadratic nonlinearity
unstable terms both cubic and linear arise in the amplitude equation. The
additional terms arise from nonlinear interaction, where squares of the noise
actually average to a constant.

This is has also interesting interpretation for the pattern formation in a phys-
ical system. Depending on the size of α, sufficiently strong noise has the po-
tential to either stabilize or destabilize the dominant pattern close to the
convective instability. Or in other words, adding a noise could lead either to
an earlier change of stability, or to a delay of the first instability.

This is significantly different to other models with quadratic nonlinearities
like Burgers equation, for example, where the additional linear terms are
always stabilizing. See [BHP07] for a rigorous treatment of a large class of
equations that contain the Burgers equation and [BMNW11] for numerical
experiments, showing that in some cases the approximation remains true for
surprisingly long times.
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Our research was initiated originally by the observations of Axel Hutt and
collaborators [HLSG07, Hut08, HLSG08], who treated the case with α = 0.
By numerical simulations of the equation on very large domains and formal
arguments based on the non-rigorous application of center manifold theory
they derived the amplitude equation for the standard Swift-Hohenberg equa-
tion with noise constant in space. Moreover, they already pointed out that
additive noise has the potential to stabilize the dynamics. For a rigorous
result in this direction see [BM12] on bounded domains and [MBK12] on
unbounded domains.
A similar stabilization effect of the Burgers equation was also observed by A.
Roberts [Ro03] with a single noise forcing the sine-Fourier mode. This was
later established rigorously in [BHP07], even in the case of higher dimen-
sional noise. The main difference for Burgers is that the amplitude equation
still contains multiplicative noise, while in the situation of standard Swift-
Hohenberg, no noise remains in the amplitude equation.
The case of quadratic nonlinearities (as in the Burgers equation) is much
more involved as the case of cubic nonlinearities (as in the standard Swift-
Hohenberg equation). For quadratic nonlinearities the interaction of the noise
and the nonlinearity complicates the problem significantly, as non-dominant
Fourier-modes have a significant impact on the dominant modes. See [BHP07].
While in [BM12] only the dominant modes survive and all other Fourier
modes are treated as error terms. Additional terms only arise due to averag-
ing of noise and nonlinear interaction of noise.
The paper is organized as follows. Section 2 provides the setting of the prob-
lem, while Section 3 states the main result. In Section 4 we collect all proofs.

2. Setting

We consider mild solutions of (SH) with values in the space C0 = C0
per([0, 2π]),

i.e. the space of 2π periodic continuous functions, defined by

Definition 1. A stochastic process u(t), t ∈ [0, T0] with continuous paths in
C0 is a mild solution of (SH) if the following variation of constants formula
holds in C0 for all t ∈ [0, T0]:

u(t) = e−t(1+∂
2
x)

2

u(0) +

∫ t

0

e−(t−s)(1+∂
2
x)

2

[νε2u(s) + αu2(s)− u3(s)]ds

+ ε

∫ t

0

e−(t−s)(1+∂
2
x)

2

σdβ(s) ,

(6)

where e−t(1+∂
2
x)

2

is the semigroup created by the operator −(1 + ∂2x)2 (cf.
[Paz83]).

Using standard theory given in [DPZ92], it is straightforward to verify that
such a mild solution exists. This is, for example, achieved via Banach’s fixed-
point theorem for unique local solutions and energy estimates for global so-
lutions.
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Remark 2. The stochastic integral on the right-hand side of (6) can be sim-
plified to

Z(t) := εσ

∫ t

0

e−(t−s)(1+∂
2
x)

2

1dβ(s) = εσ

∫ t

0

e−(t−s)dβ(s), (7)

which is a simple real-valued Ornstein-Uhlenbeck process.

Our approximation result states the error in terms of the distance to the
bifurcation point (r = ν = 0) using big O notation modified for random
variables. This is defined by the following:

Definition 3. Let Xε with ε > 0 be a family of stochastic processes and f(ε)
be a function of ε. Then Xε is of order f(ε), which we abbreviate by

Xε = O(f(ε)),

if and only if for every p-th moment of Xε there is a constant Cp such that
the following is valid for all ε > 0:

E (|Xε|p) ≤ Cp|f(ε)|p.

3. Main result

The main result is the following approximation theorem for the stochastic
generalized Swift-Hohenberg equation (SH).

Theorem 4. Let T0 > 0 be a time of order 1, α ∈ R with α2 < 27
38 and

0 < κ < 1
17 . Let u be a stochastic process with continuous paths in C0 that is

a mild solution of (SH) with ‖u(0)‖∞ = O(ε1−κ).
Furthermore, let A(T ), T ∈ [0, T0] be a stochastic process with continuous
paths in C that solves (AE) with

A(0) =
1

2π

∫ 2π

0

ε−1u(0, x)eixdx = O(ε−κ),

Then for all p ∈ N there is a constant Cp such that the following holds:

P

(
sup

t∈[0,T0/ε2]

‖u(t)−uA(t)−εZε(ε2t)−e−t(1+∂
2
x)

2

us(0)‖∞ > ε2−19κ
)
≤ Cpεp,

(8)
with the approximation

uA(t, x) = εA(ε2t)eix+εĀ(ε2t)e−ix

where Zε is the Ornstein-Uhlenbeck process defined by

Zε(T ) := ε−1σ

∫ T

0

e−ε
−2(T−s)dβ̃(s). (9)

Here we easily see that Zε(ε
2t) = Z(t) with Z defined in (7).

Let us comment that κ > 0 introduced in the theorem above mainly takes care
of the fact, that we cannot bound the fast stochastic convolution Zε uniformly
in time by a constant with high probability, but by a bound that is slightly
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worse depending on ε. As the final error bound will thus be slightly worse than
order O(ε2), we can also allow for initial conditions u(0) that are not of order
O(ε), but slightly worse. This in turn means that the amplitude equation can
be studied with slightly larger initial conditions than order O(1). It turns out
in the proofs that in combination with the stability of the nonlinearity, the
very weakly unstable linear part is not strong enough to prevent the solution
of the amplitude equation from being bounded at a slightly larger order than
O(ε−κ), at least on the timescales under consideration.

Let us finally remark, that although we think of κ being very small, the
previous theorem is still true for κ ∈ [1/19, 1/17], but useless, as we lose a
full order of ε in the final result.

Remark 5. We see in (AE) surprising deterministic terms induced by the
noise that can lead to stabilization or destabilization effects for the dominant
pattern.

There is a stabilizing linear term from the cubic term, that was already ob-
served in [Hut08]. The quadratic term leads to destabilizing terms both cubic
and linear. But if α is not too large, increasing the noise strength σ may lead
to a stabilization effect. Obviously, stabilizing the amplitude equation means
destroying the dominant pattern in the original equation, while destabiliza-
tion implies that the pattern arises due to the presence of noise. The origin
of these lie in the nonlinear interaction of the noise together with averaging
results (see Lemma 11).

Remark 6. In the case of α2 > 27
38 , which is not treated in Theorem 4, the

amplitude equation (AE) has an unstable cubic nonlinearity, and thus ex-
hibits blow up in finite time, while in the case α2 = 27

38 (AE) loses the cubic
completely. In both cases the scaling of the parameters is such that the model
turns unphysical, and different scalings should be considered.

Nevertheless as long as the solution A to (AE) is not too large (for example
|A(T )| ≤ ε−κ) our approximation result still holds, up to a stopping time,
where A fails to be bounded.

The proof is basically the same except the fixed time T0 > 0 is replaced ev-
erywhere by the stopping time τA = inf{t : |A(t)| ≥ ε−κ} ∧ T0. For simplicity
of presentation, we refrain from giving more details here.

Remark 7. The interesting case α2 = 27
38 was studied in the deterministic

case. See for example [BD12], where an even more general case was treated.
In this case (AE) loses its cubic nonlinearity, and turns out to be a linear
equation only. Thus we can consider larger solutions and hence larger noise.
By changing the scaling still a meaningful amplitude equation is obtained but
now with a quintic nonlinearity.

Using the methods presented in this paper it is straightforward but lengthy to
derive the quintic amplitude equation also in the stochastic case. We refrain
from giving details here.
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3.1. Possible extensions of the result

Let us remark on further extensions of the results presented here. First of
all, it is straightforward to consider different kinds of cubic or quadratic
nonlinearities, as was already done in [BM12] or [BHP07]. The main focus of
our result presented here was to discuss a specific example that exhibits the
potential destabilization of the amplitude equation via unstable cubic terms
that arise from the presence of the quadratic nonlinearity.

Closeness to bifurcation: An interesting new approach was presented in [KPPS11,
KPPS13]. While the linear perturbation shifting the bifurcation is mostly of
lower order, as the νε2u term in (SH), they consider a perturbation in the
differential operator of highest order. This seems to lead to similar results, as
the lower order perturbations, but the methods of proof have to be different.
A further interesting question, which is not yet fully settled, is whether it
causes major problems when the lower order forcing term does not commute
with the linear operator. In order to avoid this, discussion, we consider only
the somewhat simplest case of νε2u.

Boundary conditions and domains: Different boundary conditions in many
cases yield similar results. For instance, in the case of Dirichlet or Neumann
conditions for equation (SH) we can consider the Fourier basis given in terms
of sin(kx) or cos(kx), where only a single mode is changing stability. The
amplitude A of the dominant Mode k = 1 is in that case only real valued, but
apart from that the main result would be the same. The amplitude equation)
is only a one-dimensional ODE containing similar terms as (AE). Only the
constants do change.

We could also treat with similar methods other higher dimensional domains
for the underlying SPDE. The main feature for domain and boundary condi-
tions is that the linear operator (in our case −(1 + ∂2x)2) has a non-negative
spectrum and exhibits a basis of eigenfunctions, where the dominating space
is given by its finite dimensional kernel. Nevertheless, we then need additional
technical conditions, how the non-linearities interact with the eigenfunctions.
See [BHP07] for an example of Burgers type in full abstract generality. In
order to avoid these technicalities, we consider only our specific example
using complex Fourier series. The convolution structure of the nonlinearity
in Fourier-space simplifies the results slightly, but as seen in [BHP07], the
convolution structure is not essential for the results.

Noise: The assumption that the noise is spatially constant, is easily changed
to noise acting on any other Fourier-mode. Unless the dominant modes are
forced, the main result would be the same. Only constants in (AE) might
change. Nevertheless, the constant forcing has the nice physical interpretation
of uniformly shaking the whole experimental set up uniformly. If any other
Fourier-mode is forced, then it is not easy to see how a similar interpretation
can be given

Infinite dimensional noise, i.e. noise acting on infinitely many Fourier modes
like thermal fluctuations, can be treated by similar methods. However, one
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needs many assumptions that various infinite series appearing in the calcula-
tions do converge. This can be regarded as a sort of regularity assumptions on
the noise. Nevertheless there is a key problem with noise driven Fourier modes
interacting via the nonlinearity with other noise driven modes. In some cases
a fast OU-process inside stochastic integrals needs to be averaged. This can
not be averaged directly with strong error estimates as done here in Lemma
11, for example. The main result in principle remains still true, but only weak
convergence of approximation to the solution in the limit ε→ 0 is available.
A remarkable result was introduced in [BHP07]. If the dominant space is
one-dimensional one can verify a martingale-approximation lemma, which is
based on Levy-representation theorems of Brownian motions. Using this it is
possible in some cases to still verify an approximation result with explicit er-
ror terms. See [BHP07] or [BM12] for a detailed discussion. However, as there
are numerous nonlinear interactions of noise terms, the stochastic forcing in
the amplitude equation is of the type

√
c1|A|2 + c2 dβ, which is somewhat a

combination of additive and multiplicative noise.
Another crucial point in our approach is also that quadratic nonlinearities
do not map back noisy modes to the dominant ones. For example, if we
change the linear operator slightly to −(4+∂2x)2 such that the second Fourier-
mode is dominant and force only the first Fourier mode with a forcing term
εσ sin(x)∂tβ, then the approach presented here would fail, as new terms ap-
pear in the amplitude equation, that are much larger than order one.
In order to obtain a meaningful result we need to consider smaller noise or
larger distance from bifurcation. In that case we conjecture that this leads
to a constant deterministic forcing terms in the amplitude equation. This is
due to the fact that the quadratic nonlinearity maps the square of the noisy
Fourier mode to the dominant mode, which is then averaged to a constant.

4. Proof of the main result

We start by rescaling u(t, x) to the slow time-scale by

v(T, x) := ε−1u(ε−2T, x) .

Its stochastic differential is given by

dv = (−ε−2(1 + ∂2x)2v + νv + ε−1αv2 − v3)dT + ε−1σdβ̃ .

The mild formulation is:

v(T ) = e−Tε
−2(1+∂2

x)
2

v(0) + Zε(T )

+

∫ T

0

e−(T−s)ε
−2(1+∂2

x)
2

[νv(s) + ε−1αv2(s)− v3(s)]ds .
(10)

Here Zε is the fast Ornstein-Uhlenbeck process defined in (9). It is the solution
of

dZε = −ε−2ZεdT + σε−1dβ̃, Zε(0) = 0 . (11)

Also we define the stopping time

τ∗ = inf {T > 0 : ‖v(T )‖∞ > ε−κ0} ∧ T0, (12)
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where κ is defined in Theorem 4 and κ0 is any small real value with κ0 > κ,
which asserts that τ∗ > 0 almost surely. Later we fix κ0 = 9

8κ in the proof of
Theorem 4. Expanding v(T, x) as a complex Fourier series yields

v(T, x) =

∞∑
k=−∞

vk(T )eikx . (13)

Define a splitting of the Fourier modes into the non-dominant modes

vs(T, x) =
∑
|k|6=1

vk(T )eikx (14)

and the dominant modes

vc(T, x) = v(T, x)− vs(T, x) = v1(T )eix + c.c. . (15)

Finally for technical reasons, we define

v∞(T, x) =
∑
|k|≥3

[vk(T )− e−Tε
−2(1−k2)2vk(0)] · eikx (16)

For |k| ≥ 1 from the mild solution (10), each vk is given by

vk(T ) = e−ε
−2(1−k2)2T vk(0)

+

∫ T

0

e−ε
−2(1−k2)2(T−s)

[
νvk(s) + ε−1α(v̂2)k(s)− (v̂3)k(s)

]
ds,

(17)

where the hat indicates the discrete Fourier transform and the lower index k
denotes its k-th mode.

4.1. Removing non-dominant modes

We show first that the non-dominant modes (|k| 6= 1) can be approximated
by the fast OU-process Zε. With a slight abuse of the O-notation, our result
states:

vs(T ) = e−Tε
−2(1+∂2

x)
2

vs(0) + Zε(T ) +O(ε1−2κ0) .

Or, to be more precise:

Lemma 8. Under the assumptions of Theorem 4, with stopping time τ∗ defined
by (12) and vk as in (13), the following statements are true:

sup
T∈[0,τ∗]

‖
∑
|k|≥2

[vk(T )− e−Tε
−2(1−k2)2vk(0)] · eikx‖∞ = O(ε1−2κ0) , (18)

sup
T∈[0,τ∗]

‖v0(T )− Zε(T )− e−Tε
−2

v0(0)‖ = O(ε1−2κ0) . (19)

Proof. Since ‖v‖∞ ≤ ε−κ0 , it follows that for any k ∈ Z and n ∈ N

|(v̂n)k| ≤
(∑
k∈Z

|(v̂n)k|2
)1/2

= ‖v̂n‖L2
= ‖vn‖L2

≤
√

2π‖vn‖∞ ≤
√

2πε−nκ0 .

(20)
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In combination with the simple inequality (for |k| 6= 1)∫ T

0

e−ε
−2(1−k2)2(T−s)ds ≤ (1− k2)−2ε2,

we derive the following by bounding the integral term in (17)∣∣∣vk(T )− e−Tε
−2(1−k2)2vk(0)

∣∣∣ ≤ ε1−2κ0 · (1− k2)−2 · (2 + |ν|+ |α|). (21)

Therefore with
∑
|k|≥2(1− k2)−2 ≤

∑∞
k=1 k

−2 = π2

6 we obtain (using κ0 < 1

for the cubic term)∑
|k|≥2

∣∣∣vk(T )− e−Tε
−2(1−k2)2vk(0)

∣∣∣ ≤ ε1−2κ0 · π
2

3
(2 + |ν|+ |α|),

which proves (18). Projecting the mild solution (6), the constant mode v0
has the form

v0(T ) =e−ε
−2T v0(0) + Zε(T )

+

∫ T

0

e−ε
−2(T−s)(νv0(s) + ε−1α(v̂2)0(s)− (v̂3)0(s))ds .

(22)

Thus with similar arguments as before, for all T < τ∗ the left side of (19) is
bounded by∣∣∣v0(T )− Zε(T )− e−ε

−2T v0(0)
∣∣∣ ≤ ε1−2κ0(2 + |ν|+ |α|).

�

4.2. Rewriting the first Fourier-Mode

The next step is to show that the dominant mode v1(T ) is well approximated
by A(T ). For simplicity of presentation let us define the following functions:

a(T ) := v1(T ), Φ(T ) := ε−1
(
v2(T )− e−9Tε

−2

v2(0)
)
,

Ψ(T ) := ε−1
(
v0(T )− Zε(T )− e−Tε

−2

v0(0)
)
.

Lemma 9. Under the assumptions of Lemma 8, the stochastic differential of
a(T ) is given by

da = (νa+ 3( 38
27α

2 − 1)a|a|2 + 6(α2 − 1
2 )aZ2

ε )dT + 2ασadβ̃ + dR, (23)

where R(t) is a stochastic processes with supt∈[0,τ∗] |R(t)| = O(ε1−8κ0).

Proof. In Lemma 8 in (20) and (21) we established:

sup
T∈[0,τ∗]

|v1(T )| ≤ ε−κ0 (24)

sup
T∈[0,τ∗]

(
sup
|k|≥2

|vk(T )− e−ε
−2(1−k2)2vk(0)|

)
= O(ε1−2κ0). (25)

This readily implies

sup
T∈[0,τ∗]

|a(T )| = O(ε−κ0), sup
T∈[0,τ∗]

|Φ(T )| = O(ε−2κ0), sup
T∈[0,τ∗]

|Ψ(T )| = O(ε−2κ0).
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The slightly better bound on a unfortunately does not improve the final
result. We could just bound all three terms by O(ε−2κ0).
The infinite-dimensional part is bounded by

sup
T∈[0,τ∗]

‖v∞(T )‖∞= O(ε1−2κ0). (26)

The OU-process can be bounded by

sup
T∈[0,τ∗]

|Zε(T )| = O(ε−ζ) (27)

for all positive ζ > 0. For a proof of this well-known result see for example
[BM12] p. 9 (Lemma 14).
Now we can directly calculate the stochastic differentials da, dΦ and dΨ by
writing v as

v = aeix + εΦei2x + āe−ix + εΦ̄e−i2x + εΨ + Zε + v∞ + e−Tε
−2(1+ε2∂2

x)
2

vs(0)

and multiplying it with itself to bound (v̂2)k and (v̂3)k for k ∈ {0, 1, 2}. Note
that we can bound the Fourier transform by the L∞ norm. We have

v2 = 2(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)

+ (aeix + āe−ix + Zε)
2 + r1

v3 = (aeix + āe−ix + Zε)
3 + r2

(28)

with

r1 = (εΦei2x + εΦ̄e−i2x + εΨ + v∞)2 + (e−ε
−2TLvs(0))2

+ 2(aeix + εΦei2x + āe−ix + εΦ̄e−i2x + εΨ + Zε + v∞)e−ε
−2TLvs(0)

r2 = (εΦei2x + εΦ̄e−i2x + εΨ + v∞)3 + (e−ε
−2TLvs(0))3

+ 3(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)2

+ 3(aeix + āe−ix + Zε)
2(εΦei2x + εΦ̄e−i2x + εΨ + v∞)

+ 3(aeix + āe−ix + Zε)(e
−ε−2TLvs(0))2 + 3(aeix + āe−ix + Zε)

2(e−ε
−2TLvs(0))

+ 3(εΦei2x + εΦ̄e−i2x + εΨ + v∞)(e−ε
−2TLvs(0))2

+ 3(εΦei2x + εΦ̄e−i2x + εΨ + v∞)2(e−ε
−2TLvs(0))

+ 6(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)(e−ε

−2TLvs(0)).

Here we used for shorthand notation

L = −ε−2(1 + ε2∂2x)2 .

Because of

sup
T∈[0,τ∗]

‖εΦ(T )ei2x + εΦ̄(T )e−i2x + εΨ(T ) + v∞(T )‖∞ = O(ε1−2κ0),

sup
T∈[0,τ∗]

‖a(T )eix + ā(T )e−ix + Zε(T )‖∞ = O(ε−κ0),
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which follows from (24), (25), (26) and (27), together with

‖
∫ T

0

e−ε
−2sLvs(0)ds‖∞ ≤ ε2

∑
|k|6=1

(1− k2)−2|(v̂s(0))k|

≤ ε2
√

2π
∑
|k|6=1

(1− k2)−2‖vs(0)‖∞ = O(ε2−κ0)

we can bound the integral in time of r1 and r2 by

sup
T∈[0,τ∗]

‖
∫ T

0

r1dt‖∞ = O(ε2−6κ0)

sup
T∈[0,τ∗]

‖
∫ T

0

r2dt‖∞ = O(ε1−6κ0).

Analogously we can bound integrals of any power of ‖ri‖∞. Inserting (28)
into the mild solution formulas (17) respectively (22) gives

da = (νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε + ε−12αaZε +R1)dT (29)

dΦ = (−9ε−2Φ + ε−2αa2 +R2)dT (30)

dΨ = (−ε−2Ψ + ε−2α|a|2 + ε−2αZ2
ε +R3)dT (31)

where

R1(t) = ε−1α(r̂1)1 − (r̂2)1,

R2(t) = νΦ + 2ε−1αZεΦ− 3ε−1a2Zε + 2ε−2αv3ā+ ε−2α(r̂1)2 − ε−1(r̂2)2

and

R3(t) = νΨ + ε−1αΨZε − ε−1Z3
ε + 6ε−1|a|2Zε + ε−2α(r̂1)0 − ε−1(r̂2)0

are stochastic processes with

sup
T∈[0,τ∗]

∫ T

0

|R1|ds = O(ε1−6κ0), sup
T∈[0,τ∗]

∫ T

0

|R2|+ |R3|ds = O(ε−1−6κ0).

In order to eliminate Φ and Ψ on the right side of (29) we apply the Itô
formula to āΦ, aΨ and aZε. Note that there is no Itô correction at this
point, as a, Φ, and Ψ are random but differentiable, which follows from the
representation in (29) – (31).

d(āΦ) = (dā)Φ + ā(dΦ) = (ā(−9ε−2Φ + ε−2αa2) +R4)dT

d(aΨ) = (da)Ψ + a(dΨ) = (a(−ε−2Ψ + 2ε−2α|a|2 + ε−2αZ2
ε ) +R5)dT

d(aZε) = (da)Zε + a(dZε) = (ε−12αaZ2
ε − ε−2aZε +R6)dT + aε−1σdβ̃

where

R4(t) = āR2 + Φ(νā+ 2αaΦ̄ + 2αāΨ̄− 3ā|a|2 − 3āZ2
ε + ε−12αāZε + R̄1),

R5(t) = aR3 + Ψ(νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε + ε−12αaZε +R1)
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and

R6(t) = Zε(νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε +R1)

are stochastic processes with

sup
t∈[0,τ∗]

∫ T

0

|R4|+ |R5|ds = O(ε−1−8κ0), sup
t∈[0,τ∗]

∫ T

0

|R6|ds = O(ε−8κ0).

Therefore we have:

āΦdT = (
1

9
αa|a|2 +

1

9
ε2R4)dT − 1

9
d(ε2āΦ) (32)

aΨdT = (2αa|a|2 + αaZ2
ε + ε2R5)dT − d(ε2aΨ) (33)

ε−1aZεdT = (2αaZ2
ε + εR6)dT + σadβ̃(T )− d(εaZε). (34)

By substituting (32) – (34) into (29) we get the desired result for da with

dR = 2αε2((
1

9
R4dT +R5dT −

1

9
d(āΦ)− d(aΨ)) + 2αε(R6dT − d(aZ)).

�

4.3. Averaging with error bounds

Next we have to get the equation for da to match the amplitude equation
(AE). For this we need to remove aZ2

εdT . This is done in this section. First
we need the following technical Lemma:

Lemma 10. Let X(t, ω) ∈ C be a stochastic process with

X(t) =

∫ t

0

f(s)ds+

∫ t

0

g(s)dβ̃,

where supt∈[0,T0] |f(t)| = O(εγ) and supt∈[0,T0] |g(t)| = O(εγ) with γ ∈ R.

Then X(t) has the same bound as f(t) and g(t):

sup
t∈[0,T0]

|X(t)| = O(εγ) (35)

Let us remark that the same result is true, if we replace T0 by the stopping
time τ∗.

Proof. The proof is straightforward using Burkholder-Davis-Gundy, Hölder,
and Young’s inequality. �

Now we can substitute the aZ2 term in (23). This is done by using the
averaging property of Zε described in the next Lemma.

Lemma 11. Let X(t) ∈ C be a stochastic process with dX = f(T )dT+g(T )dβ̃,
where supT∈[0,T0] |f(T )| = O(ε−γ) and supT∈[0,T0] |g(T )| = O(ε−γ) with γ >

0. Then with Zε as defined by (11) the following holds:

sup
T∈[0,T0]

|
∫ T

0

X(s)Zε(s)
2ds−

∫ T

0

1

2
σ2X(s)ds| = O(ε1−κ0−γ). (36)

Again the same result is true, if we replace T0 by the stopping time τ∗.
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Proof. By using Itô’s formula we get

d(XZ2
ε ) = (dX)Z2

ε +X(dZ2
ε ) + (dX)(dZ2

ε )

and

d(Z2
ε ) = 2(dZε)Zε + (dZε)

2 = 2Zε(−ε−2ZεdT + ε−1σdβ̃) + ε−2σ2dT.

This gives

d(XZ2
ε ) = fZεdT + gZεdβ̃ − ε−22XZ2

εdT + ε−12σXZεdβ̃ + ε−2σ2XdT + ε−1σgdT.

We already know from the proof of Lemma 9 that supT∈[0,T0] |Zε(T )| =

O(ε−κ0) and it follows from Lemma 10 that supT∈[0,T0]|X(T )| = O(ε−γ).

Therefore d(XZ2
ε ) can be written as

d(XZ2
ε ) = −ε−22XZ2

εdT + ε−2σ2XdT +R7dT +R8dβ̃,

where R7(T ) and R8(T ) are stochastic processes with

sup
[0,τ∗]

|R7| = O(ε−1−κ0−γ), sup
[0,τ∗]

|R8| = O(ε−1−κ0−γ).

By multiplying with ε2 and integrating from 0 to T we get∫ T

0

1
2σ

2Xds−
∫ T

0

XZ2
εds = 1

2ε
2XZ2

ε

∣∣∣T
0
− ε2

∫ T

0

R7ds− ε2
∫ T

0

R8dβ̃

and the application of Hölder and Burkholder-Davis-Gundy yields the desired
result. �

4.4. SDE Lemma

With Lemma 11 we have closed the gap between the SDEs (AE) and (23)
down to some error on the right side which is of order ε1−8κ0 . But to be
able to compare the first Fourier mode a and the solution of the amplitude
equation A we need the following Lemma.

Lemma 12. Let X1(t), X2(t) ∈ C be stochastic processes given by

X1(t) = X1(0) +

∫ t

0

f(X1)ds+

∫ t

0

g(X1)dβ

X2(t) = X1(0) +

∫ t

0

f(X2)ds+

∫ t

0

g(X2)dβ +R(t)

(37)

with supt∈[0,τ0]|R(t)| = O(εγ), where γ ∈ R and τ0 ≤ T0 is a stopping time.

Let there be a constant C > 0 and a process R̂(t) with supt∈[0,τ0] |R̂(t)| =

O(εγ) such that the functions f and g satisfy the following conditions:

Re {(f(X1)− f(X2))ϕ} ≤ C(|ϕ|2 + |R̂(t)|2) (38)

∀x, y ∈ C : |g(x)− g(y)|2 ≤ C|x− y|2, (39)

where ϕ := X1 − (X2 − R). Then the difference between X1 and X2 can be
bounded by

sup
t∈[0,τ0]

|X1(t)−X2(t)| = O(εγ). (40)
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Note that condition (38) can be established by a bound of the type

Re{(f(x)− f(y))(x− y − z)} ≤ C|x− y − z|2 + p(y, z)

with polynomial p provided we have additional bounds on the process X2.

Proof. Because of the unknown derivative of R it is much easier to split
X1 −X2 into

X1 −X2 = ϕ−R (41)

and bound |ϕ| rather than the actual term.
Due to the stopping time the process ϕ is not easily bounded directly. Thus
we extend all processes to [0, T0] and define

R̃(t) :=

{
R(t) for t ≤ τ0
R(τ0) for t > τ0

and modify X1 and X2:

X̃1(t) := X1(0) +

∫ τ0∧t

0

f(X̃1)ds+

∫ t

0

g(X̃1)dβ

X̃2(t) := X1(0) +

∫ τ0∧t

0

f(X̃2)ds+

∫ t

0

g(X̃2)dβ + R̃(t).

With this we can define a suitable replacement for ϕ:

ϕτ0(t) := X̃1(t)− (X̃2(t)− R̃(t))

=

∫ τ0∧t

0

(f(X1)− f(X2))ds+

∫ τ0∧t

0

(g(X̃1)− g(X̃2))dβ.

Note that supt∈[0,T0] |R̃(t)| = O(εγ) and for any stopping time τ ≤ τ0 we

have ϕτ0(τ) = ϕ(τ), X̃1(τ) = X1(τ) and X̃2(τ) = X2(τ). This means

sup
t∈[0,τ0]

|ϕ(t)| = sup
t∈[0,τ0]

|ϕτ0(t)|.

Now in order to bound the moments of supt∈[0,τ0] |ϕτ0 | we first need a bound

on the moments of |ϕτ0 |. We start by taking the differential of |ϕτ0 |2p for
p ∈ N:

d|ϕτ0 |2p = d(ϕτ0ϕτ0)p = p(ϕτ0ϕτ0)p−1d(ϕτ0ϕτ0)

= p|ϕτ0 |2p−2 ((dϕτ0)ϕτ0 + ϕτ0(dϕτ0) + (dϕτ0)(dϕτ0)) .

The derivative of ϕτ0 is given by

dϕτ0 = χ[0,τ0∧t](f(X1)− f(X2))dt+ (g(X̃1)− g(X̃2))dβ .

Therefore

d|ϕτ0 |2p = p|ϕτ0 |2p−2[χ[0,τ0∧t]2 Re {ϕτ0(f(X1)− f(X2))} dt

+ 2 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ + |g(X̃1)− g(X̃2)|2dt].
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Next we integrate and split the right side into three parts:

|ϕτ0(t)|2p =

∫ τ0∧t

0

p|ϕτ0 |2p−22 Re {ϕτ0(f(X1)− f(X2))} ds

+

∫ t

0

p|ϕτ0 |2p−22 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ

+

∫ t

0

p|ϕτ0 |2p−2|g(X̃1)− g(X̃2)|2ds

:= I1 + I2 + I3

For the first part we can exchange ϕ and ϕτ0 freely because the integral goes
only up to the stopping time τ0. Doing this and using (38) we get

I1 =

∫ τ0∧t

0

p|ϕ|2p−22 Re {ϕ(f(X1)− f(X2))} ds

≤
∫ τ0∧t

0

p|ϕ|2p−22C(|ϕ|2 + |R̂|2)ds

≤
∫ τ0∧t

0

Cp(|ϕτ0 |2p + |R̂|2p)ds ≤ Cp(
∫ t

0

(|ϕτ0 |2pds+

∫ τ0

0

|R̂|2p)ds,

where Cp is a constant depending on p and we used Young’s inequality in
the last step. The third part can be bounded from above by using (39) and
a simple application of the triangle inequality:

I3 ≤
∫ t

0

p|ϕτ0 |2p−2|X̃1 − X̃2|2ds

≤
∫ t

0

p|ϕτ0 |2p−2(|ϕτ0 |2 + |R̃|2)ds ≤
∫ t

0

Cp(|ϕτ0 |2p + |R̃|2p)ds

Again we used Young’s inequality in the last step. Now since stochastic inte-
gration preserves the local martingale property, taking the expectation value
of |ϕτ0 |2p yields, for all t ≤ T0,

E(|ϕτ0(t)|2p) = E(I1) +E(I2)

≤ CpE
(∫ t

0

|ϕτ0 |2p + |R̃|2pds+

∫ τ0

0

|R̂|2pds
)

≤
∫ t

0

CpE(|ϕτ0 |2p)ds+ CpT0R
2p
sup,

where R2p
sup := E(supt∈[0,τ0] |R̂(t)|2p + supt∈[0,T0] |R̃(t)|2p). We apply Gron-

wall’s Lemma to get

E(|ϕτ0(t)|2p) ≤ CpT0R2p
sup +

∫ t

0

C2
pT0R

2p
supe

(T0−s)Cpds

≤ CpT0R2p
sup + C2

pT
2
0R

2p
supe

T0Cp . (42)
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With this we can now bound the moments of supt∈[0,τ0] |ϕτ0(t)|. We start

with E(supt∈[0,τ0] I3(t)):

E( sup
t∈[0,τ0]

I3(t)) = E sup
t∈[0,τ0]

(

∫ t

0

2 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ)

≤ E
( ∫ τ0

0

C2
p |ϕτ0 |4p−2|g(X̃1)− g(X̃2)|2ds

)1/2
≤
(
E

∫ T0

0

C2
p |ϕτ0 |4p−2(|ϕτ0 |2 + |R̃|2)ds

)1/2
≤ Cp

(
E

∫ T0

0

|ϕτ0 |4p + |R̃|4pds
)1/2

,

where we used the Burkholder Davis Gundy theorem in the second step, the
Hölder inequality in the third and Young’s inequality in the last step.
The whole term is now easily bounded by

E( sup
t∈[0,τ0]

|ϕ(t)|)2p = E( sup
t∈[0,τ0]

(I1 + I2 + I3))

≤ CpE(

∫ T0

0

(|ϕτ0 |2p + |R̃|2p)ds+

∫ τ0

0

|R̂|2pds)

+ Cp
(
E

∫ T0

0

|ϕτ0 |4p + |R̃|4pds
)1/2

≤ Cp(
∫ T0

0

E|ϕτ0 |2pds) + Cp(

∫ T0

0

E|ϕτ0 |4pds)1/2

+ Cp(T0 + T
1/2
0 )R2p

sup.

Using (42) we get

E( sup
t∈[0,τ0]

|ϕτ0(t)|)2p ≤ CpT0(CpT0R
2p
sup + C2

pT
2
0R

2p
supe

T0Cp)

+ CpT
1/2
0 (C2pT0R

4p
sup + C2p

2T 2
0R

4p
supe

T0C2p) + CpT
3/2
0 R2p

sup.

Finally any moment can be bounded by even moments through Hölder inter-
polation, which proves that supt∈[0,τ0] |ϕ(t)| = supt∈[0,τ0] |ϕτ0(t)| = O(εγ). By

assumption we also have that supt∈[0,τ0] |R(t)| = O(εγ), so the result follows

from (41). �

From what we have proven it is easily shown that the theorem holds at least
until the time τ∗, but we still need to show that τ∗ is large enough. For this
we prove bounds on moments of A which are a direct application of Lemma
12.

Corollary 13. Let A(t) be the solution to the amplitude equation (AE) from
Theorem 4, then the following holds:

sup
t∈[0,T0]

|A(t)| = O(ε−κ). (43)

Note that κ was defined in Theorem 4 such that A(0) = O(ε−κ).
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Proof. We define f , g and R by

R(t) := −A(0)

f(A) := νA+ 3( 38
27α

2 − 1)A|A|2 + 3(α2 − 1
2 )σ2A

g(A) := 2σαA.

(44)

With this we can write A and zero as in (37):

A(t) = A(0) +

∫ t

0

f(A)dt+

∫ t

0

g(A)dβ

0 = A(0) +

∫ t

0

f(0)dt+

∫ t

0

g(0)dβ +R.

Since f(0) = g(0) we obtain supt∈[0,T0] |R(t)| = supt∈[0,T0] |A(0)| = O(ε−κ),
and we derive the desired result directly from Lemma 12, provided we can
prove the conditions (38) and (39). Because g is linear (39) is readily verified:

|g(x)− g(y)|2 = |2σ(x− y)|2 ≤ 4σ2|x− y|2. (45)

This leaves (38). For better readability we write f as

f(X) = C1X − C2|X|2X

with positive constants C1 and C2. For the linear part of f we are in the
same position as for g, there is no dependency on X1 or X2:

Re{(X1 − (X2 −R))(C1X1 −X2)} ≤ 3C1(|X1 − (X2 −R)|2 + |R|2). (46)

For the cubic term, to keep this proof simple, we note that it is sufficient to
bound it here just for the special case X1 = A and X2 = 0.

Re{(A− (0−R))(−C2|A|2A− 0)} = −C2|A|4 + Re{RA}
≤ 2(|A− (0−R)|2 + |R|2)

�

4.5. Removing the error

Combining the lemmas of the previous sections, we are now able to prove
Theorem 4.

Proof of theorem 4. By Lemma 8 u(t) can be approximated by a = v1 and
Zε until the time τ∗:

sup
t∈[0,τ∗]

‖u(t)−εa(ε2t)eix−εa(ε2t)e−ix−εZε−eTε
−2(1+∂2

x)
2

vs(0)‖∞ = O(ε2−8κ0).

Now we bound the difference between a and A until time τ∗. The initial
condition A(0) is exactly the coefficient of the first Fourier mode of v(0, x)).
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This means A(0) = a(0), thus by Lemma 9 and Lemma 10 we know that a
is given by

a(t) = A(0) +

∫ t

0

(νa+ 3( 38
27α

2 − 1)a|a|2 + 6(α2 − 1
2 )aZ2

ε )ds

+

∫ t

0

2σadβ̃ +R9,

where sup[0,τ∗] |R9| = O(ε1−8κ0). Next we split the aZ2
ε term into

aZ2
ε = (a−R9)Z2

ε +R9Z
2
ε .

The second part is bounded by sup[0,τ∗] |R9Z
2
ε | = O(ε1−10κ0) and the first

part can be exchanged by using Lemma 11. Set as indicated after (12) κ0 =
9
8κ. Because

sup
[0,τ∗]

|νa+ 3(
38

27
α2 − 1)a|a|2 + 6(α2 − 1

2 )aZ2
ε | = O(ε−6κ0) (47)

sup
[0,τ∗]

|2σa| = O(ε−6κ0) (48)

and 10κ0 = 45
4 κ ≤ 12κ we get

a(t) = A(0) +

∫ t

0

(νa+ 3( 38
27α

2 − 1)a|a|2 + 3(α2 − 1
2 )σ2a)ds

+

∫ t

0

2σadβ̃ +R10,

where supt∈[0,τ∗] |R10(t)| = O(ε1−12κ).

With f and g defined as in (44) we show that there exists a process R̂ with

sup
t∈[0,τ∗]

|R̂(t)| = O(ε1−18κ) (49)

such that the conditions (38) and (39) are fulfilled and we can apply Lemma
12. Since supt∈[0,τ∗] |R10| = O(ε1−9κ) the condition on g and the linear term

of f are already covered by (45) respectively (46). Because of this we only

need show that there is a positive constant C and a process R̂ conforming to
(49) such that

ρ := Re
{
−C2(A− (a−R10))(|A|2A− |a|2a)

}
≤ C(|A− (a−R10)|2 + |R̂|2),

where C2 = −3( 38
27α

2 − 1) is a positive constant. We do this by splitting ρ
into two parts:

ρ = Re
{
−C2

(
A− (a−R10)

) (
|A|2A− |a|2a

)}
= Re

{
−C2

(
A− (a−R10)

) (
|A|2A− |a−R10|2(a−R10)

)}
+ Re

{
−C2

(
A− (a−R10)

) (
|a−R10|2(a−R10)− |a|2a

)}
=: ρ1 + ρ2.
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The first term is negative because for any two complex numbers z, w we have

2 Re{(z − w)(|z|2z − |w|2w}
= 2|z − w|2(|z|2 + |w|2) + 2 Re{(z − w)2zw}
≥ 2|z − w|2(|z|2 + |w|2)− |z − w|2(|z|2 + |w|2)

≥ |z − w|2(|z|2 + |w|2) ≥ 0.

This means ρ1 can be bounded from above by 0. The second term can be
bounded by

|ρ2| ≤ C2|A− (a−R10)|(3|a|2|R10|+ 3|a||R10|2 + |R10|3)

≤ C2(|A− (a−R10)|2 + (3|a|2|R10|+ 3|a||R10|2 + |R10|3)2)

and since supt∈[0,τ∗] |a(t)| = O(ε−3κ) we obtain (as κ < 1
17 )

sup
t∈[0,τ∗]

(
3|a|2|R10|+ 3|a||R10|2 + |R10|3

)
= O(ε1−18κ).

Therefore Lemma 12 yields the following bound on |A− a|:

sup
t∈[0,τ∗]

|A(t)− a(t)| = O(ε1−18κ).

Combining this with Corollary 13 we obtain

sup
t∈[0,τ∗]

|a(t)| ≤ sup
t∈[0,τ∗]

|A(t)− a(t)|+ sup
t∈[0,τ∗]

|A(t)| = O(ε−κ). (50)

Next we show that the probability P(τ∗ < T0) is small. Define the following
subset of the probability space Ω:

M := {ω ∈ Ω : τ∗(ω) < T0}.
If ω ∈M then it follows from the definition of τ∗ that ‖v(τ∗(ω))‖∞ = ε−κ0 .
Therefore the moments of ‖v(τ∗)‖∞ can be written as follows

E‖v(τ∗)‖p∞ =

∫
Mc

‖v(τ∗)‖p∞dP+

∫
M

(ε−κ0)pdP ≥ P(M)ε−pκ0 ,

where M c := Ω \M is the complement set of M . From (50), (27),(19) and
(18) we have

E‖v(τ∗)‖p∞ ≤ CpE sup
t∈[0,τ∗]

(|a(t)|p + |Zε(t)|p + |v0(t)− Zε(t)− e−ε
−2T v0(0)|p)

+ CpE sup
t∈[0,τ∗]

‖
∑
k≥2

vk − e−ε
−2T (1−k2)2vk(0))eikx‖p∞

+ CpE sup
t∈[0,τ∗]

‖e−ε
−2TL

∑
k 6=1

(vk(0))eikx‖p∞

≤ Cpε−pκ

with a constant Cp depending on p, where we used that there is a constant
C such that for all u ∈ C0,

‖e−ε
−2TLu‖∞ ≤ C‖u‖∞.
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This is a direct consequence of Lemma 4.5 in [MBK12] which follows the
ideas of Collet and Eckmann in [CE90]. Therefore the probability of M is
bounded by

P(M) ≤ Cpεp(κ0−κ).

Define

ξ := sup
t∈[0,T0]

‖u(t)− εA(ε2t)eix − εĀ(ε2t)e−ix + εZε(ε
2t)− e−t(1+∂

2
x)

2

us(0)‖∞

The last step is now to bound the probability of supt∈[0,T0]‖ξ‖∞ being too

large (i.e. P(supt∈[0,T0]‖ξ‖∞ > ε2−19κ)). We can split this into

P( sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)) = P(M ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)})

+P(M c ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)})

=: P1 + P2.

P1 is easily bounded by

P(M ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)}) ≤ P(M) ≤ Cpεp(κ0−κ),

so the only thing left to do is to bound P2. We get

P2 = P(M c ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ}) ≤ P( sup
t∈[0,T0]

‖ξ‖ > ε2−19κ).

Using the Chebychev inequality gives

P2 ≤ Cq
1

εq(2−19)κ
E( sup

t∈[0,T0]

‖ξ‖q) ≤ Cqεqκ,

where q is any positive number and Cq is a constant depending on q. By
choosing q = p/κ we get the desired result. �
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