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Amorphous thin film growth: Effects of density inhomogeneities
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A nonlinear stochastic growth equation for the spatiotemporal evolution of the surface morphology of
amorphous thin films in the presence of potential density variations is derived from the relevant physical
symmetries and compared to recent experimental results. Numerical simulations of the growth equation exhibit
a saturation of the surface morphology for large film thickness originating from the inclusion of the density
inhomogeneities. Furthermore, we argue why moundlike surface structures observed on vapor deposited amor-
phous films are not the result of the Grinfeld instability.
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I. INTRODUCTION

Recently, there has been increasing interest in the under-
standing of the kinetics of surface growth processes ~e.g., see
in Ref. @1#!. The evolution of the surface morphology, as it
appears in molecular beam epitaxy or physical vapor depo-
sition experiments is determined by the interplay of the
deposition of particles and surface diffusion effects that re-
sult in a competition between surface roughening and
smoothening processes @2–6#. Experimental studies on
amorphous thin films deposited by electron beam evapora-
tion exhibit the formation of a moundlike surface structure
on a mesoscopic length scale @7–11#. Despite the complexity
of the growth process on an atomic scale, this indicates that
continuum models based on stochastic field equations @1#
serve as a useful tool for the understanding of the kinetics of
amorphous thin film growth.

The typical form of such a stochastic growth equation is
given by

] tH5G@¹W H#1F1h , ~1!

where H(xW ,t) represents the height of the surface above a
given substrate position xW ~see Fig. 1!. G@¹W H# comprises all
surface relaxation processes, F denotes the mean deposition
rate, and h is the deposition noise that represents the fluc-
tuations of the deposition around its mean F. These fluctua-
tions are assumed to be Gaussian white, i.e.,

^h~xW ,t !&50; ^h~xW ,t !h~yW ,t8!&52Dd2~xW2yW !d~ t2t8!,
~2!

where the brackets denote ensemble averaging and D the
fluctuation strength. Transformation in a frame comoving
with the deposition rate F, h(xW ,t)5H(xW ,t)2Ft , yields the
equation

] th5G@¹W h#1h . ~3!

The functional form of G@¹W h# can be obtained by using the
physical symmetries governing the growth process. In the
context of amorphous thin film growth, these symmetries are
translational invariance in space and time and rotational and
mirror invariance in the plane perpendicular to the growth
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direction, cf. Fig. 1. An additional symmetry principle that
we have applied in a recent study @12# was the condition of
no excess velocity. This means that the functional G@¹W h#

can be written in the form G@¹W h#52¹W • jW . By using these
symmetries we proposed the stochastic growth equation
@12,13#

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h !21h , ~4!

with a1 , a2 , a3 being negative as the minimal model equa-
tion for amorphous thin film growth in the absence of excess
velocity.

In the light of a recent comparison to experimental data
@14# the condition of no excess velocity needs to be reexam-
ined. It is only fulfilled if ~i! particle desorption does not
occur, i.e., no particles leave the surface, and if ~ii! the film
growth takes place with constant density r0. While in fact
particle desorption is negligible during the growth of amor-
phous films since it requires much higher energies, the as-
sumption of film growth with density variations cannot be
excluded a priori. Moreover, a careful comparison of Eq. ~4!
with experimental results for amorphous Zr65Al7.5Cu27.5 film
growth @14# has indicated the necessity of the inclusion of
density inhomogeneities. These density variations result in
an additional term of Kardar-Parisi-Zhang form @15# in the
deposition equation, yielding

FIG. 1. Sketch of the vapor deposition of an amorphous film on
a substrate.
©2001 The American Physical Society06-1



MARTIN RAIBLE, STEFAN J. LINZ, AND PETER HÄNGGI PHYSICAL REVIEW E 64 031506
] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h !21a4~¹W h !21h , ~5!

with a4 being positive @12,13#.
The previous work @12# was restricted to a detailed analy-

sis of Eq. ~4! and our comparison of Eq. ~5! with the experi-
mental results @14# was also limited by the available data and
the chosen material. Hence, there is a need for a thorough
investigation of Eq. ~5! with the inclusion of density inho-
mogeneities. In the Appendix, we also address the question
whether the pattern forming processes in vapor deposited
amorphous films might be, alternatively, interpreted as the
consequence of a Grinfeld instability.

II. MODEL

In this section, we first present a coherent derivation of
the simplest functional form of the stochastic field equation
using the symmetry principles governing the growth of
amorphous films. Subsequently, we relate the constituents of
this equation to the underlying microscopic processes.

The absence of particle desorption implies a balance
equation

] tc5r0@2¹W • jW1F1h# , ~6!

where c(xW ,t) denotes the number of atoms of the amorphous
film per substrate area above a given substrate position xW .
Here, the current jW is given by the combination of all surface
relaxation processes. Mass transport inside the amorphous
material can be neglected. Invariance under translation in
time and space rules out any explicit appearance of time t,
space coordinate xW or height H in 2¹W • jW . Therefore, the cor-
responding functional Gc@¹W H#52¹W • jW for the concentra-
tion c depends only on gradients and higher spatial deriva-
tives of the height function H(xW ,t). Moreover, the isotropy of
the amorphous phase implies rotational and mirror invari-
ance in the plane perpendicular to the growth direction, cf.
Fig. 1. Therefore, Gc@¹W H# must be a scalar under these
transformations. By using the afore-mentioned symmetries
we expand the possible terms of Gc@¹W H# in a power series
of ¹W and ¹W H up to O„¹W 3,(¹W H)2

… and obtain the functional
form

Gc~¹W H !5a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a5M ~7!

with

M5detS ]x
2H ]y]xH

]x]yH ]y
2H D , ~8!

or, equivalently the continuity equation

] tc5r0@a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a5M1F1h# .
~9!

Allowing for density variations depending on the surface
inclination, the rate of change of c is related to the rate of
03150
change of H by ] tc5r(¹W H)] tH . Here r(¹W H) denotes the
density of the film close to the surface. Dividing Eq. ~9! by
r(¹W H) leads to

] tH5
r0

r~¹W H !
@a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !2

1a5M1F1h# . ~10!

The density variations can then be expanded in the gradi-
ents of H yielding @r(¹W H)#215r0

21@11(a4 /F)(¹W H)2

1O„(¹W H)4
…# with a4 being necessarily positive due to the

additional volume increase at oblique particle incidence.
Then, expanding the deterministic part on the right-hand side
~RHS! of Eq. ~10! up to the order O„¹W 3,(¹W H)2

… and neglect-
ing all corrections to the deposition noise yields

] tH5a1¹W 2H1a2¹W 4H1a3¹W 2~¹W H !21a4~¹W H !2

1a5M1F1h . ~11!

Finally, using the transformation h(xW ,t)5H(xW ,t)2Ft
with h(xW ,t) being the surface profile in the comoving frame,
one obtains the stochastic growth equation

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h !21a4~¹W h !21a5M1h .
~12!

The first and the fifth term on the RHS of Eq. ~12! are
related to the deflection of the initially perpendicular incident
particles caused by interatomic attraction. When the particles
are close to the surface their trajectories are bent towards the
surface. As a consequence, more particles arrive at places
with ¹W 2h,0 than at places with ¹W 2h.0 @16#. In a simpli-
fied model, this deflection ~in a direction perpendicular to the
surface! happens instantaneously when a particle arrives at a
distance b from the surface, as shown in the upper part of
Fig. 2. b characterizes the typical range of the interatomic
force. A detailed mathematical analysis of this simplified
model yields the explicit relations a152Fb and a55Fb2

@12#. Since b is very small ~typically of the order 1021 nm)
compared to the radius of the surface curvature the term
proportional to a5 in Eq. ~12! can safely be neglected. On the
other hand, the negative coefficient a1 represents the growth
instability that results in the experimentally observed mound-
like surface structure on vapor deposited amorphous films
@7–11#.

The second term on the RHS of Eq. ~12! represents the
surface diffusion suggested by Mullins @17#. The particles
arrive at the surface, diffuse there and relax at surface sites
that offer a sufficiently strong binding. Because these bind-
ing places are more frequent on surface areas with positive
curvature ¹W 2h , the surface diffusion results in a current of
the form jW;¹W (¹W 2h), as shown in the middle part of Fig. 2.
This surface current adds the term 2¹W • jW;2¹W 4h to the
growth equation. Therefore, the sign of a2 is negative. Rost
@18# has recently suggested the explicit expression a25
22l2ln(l/a)F(Vg/e0) where l denotes the diffusion length of
6-2
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the particles, a the average distance of the potential minima
seen by the diffusing particles, V the atomic volume, g the
surface tension, and e0 the width of the distribution of the
depths of the potential wells.

The third term on the RHS of Eq. ~12! is related to the
equilibration of the inhomogeneous concentration of the dif-
fusing particles on the surface, as suggested in @3,19#. If only
the just deposited particles diffuse before their relaxation,
their surface concentration is weighted by the surface incli-
nation, n;1/A11(¹W h)2'12(¹W h)2/2 @19#, as shown in the
lower part of Fig. 2. This causes a diffusion current of the
type jW;2¹W n;¹W (¹W h)2 and leads to the a3¹W 2(¹W h)2 term
with a3,0. A detailed discussion of the concentration equili-
bration @12# yields the explicit relation a352Fl2/8 where l2
represents the mean square of the diffusion length of the
particles.

The term proportional to a4 is related to the afore-
mentioned density variations. It is the only term in the deter-
ministic part of the RHS of Eq. ~12! that cannot be written in
the form 2¹W • jW . Therefore, it leads to a nonzero excess ve-
locity, i.e., there is a nonlinear relation between the mean

FIG. 2. Microscopic effects of amorphous thin film growth. Up-
per part: Deflection of particles due to interatomic forces. Middle
part: Surface diffusion of deposited particles to places with larger
curvature. Lower part: Equilibration of the inhomogeneous particle
concentration due to the geometry of the surface.
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layer thickness ^H&(t)5^(1/L2)*d2xH(xW ,t)& and time

^H&~ t !5Ft1E
0

t
dt8K 1

L2E d2xa4~¹W H !2U
xW ,t8

L . ~13!

By neglecting the term proportional to a5 we obtain the mini-
mal deposition equation for amorphous thin film growth in
the presence of significant density variations @12,13#

] th5a1¹W 2h1a2¹W 4h1a3¹W 2~¹W h !21a4~¹W h !21h ,
~14!

with a1 , a2 , a3 being negative and a4 being positive.
A comparison with experimental data for amorphous

Zr65Al7.5Cu27.5 film growth @14# has recently shown a good
quantitative agreement between this model equation ~14! and
the experiment for a layer thickness up to 480 nm. For this
specific system at room temperature, the coefficients entering
in Eq. ~14! at a deposition rate of F50.79 nm/s have been
identified as @14#

a1520.0826 nm2/s, a2520.319 nm4/s,

a3520.10 nm3/s, a450.055 nm/s, ~15!

D50.0174 nm4/s.

Using the relations a152Fb , a2522l2ln(l/a)F(Vg/e0),
a352Fl2/8, @r(¹W h)#215r0

21@11(a4 /F)(¹W h)2# , and 2D
5FV @12#, one can infer that every coefficient given in Eq.
~15! has a realistic order. Therefore, Eq. ~14! constitutes a
reliable theoretical model for amorphous thin film growth, at
least for the considered range of the layer thickness.

III. RESULTS

A. Comparison with experimental results

In this section, we carry on our comparison @14# with the
experimental results on the surface morphology of amor-
phous Zr65Al7.5Cu27.5 films prepared by electron beam
evaporation @7–10#. The correlation length Rc(t) and the sur-
face roughness w(t) are determined by the experimentally
accessible height-height correlation function

C~r ,t !5K K 1
L2E d2x@h~xW ,t !2 h̄~ t !#@h~xW1rW ,t !

2 h̄~ t !#L L
urWu5r

, ~16!

where h̄(t)5(1/L2)*d2xh(xW ,t) denotes the spatially average
of the height, and ^^•••&& urWu5r denotes a combined ensemble
and radial average. Specifically, Rc(t) is given by the first
maximum of C(r ,t) occuring at nonzero values of r and the
square of the surface roughness results from taking the limit
r50 in C(r ,t), i.e., w2(t)5C(0,t). The quantities w(t) and
Rc(t) characterize the typical height and periodicity length
6-3
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scales of the surface structure. Another related quantity is the
height-difference correlation function

H~r ,t !5K K 1
L2E d2x@h~xW ,t !2h~xW1rW ,t !#2L L

urWu5r

.

~17!

Since the relation

H~r ,t !52w2~ t !22C~r ,t ! ~18!

holds, it connects the two different correlation functions and,
moreover H(r ,t)→2w2(t) results in the limit of large radii
r→` .

In the afore-mentioned comparison with experimental re-
sults @14#, a quantitative agreement of Rc(t) and w(t) be-
tween the model equation ~14! and the experimental data has
been achieved up to a layer thickness of 480 nm by using the
coefficients given in Eq. ~15!. Here, we extend this investi-
gation by comparing theoretical data on H(r ,t) obtained by
numerical simulations of Eq. ~14! with the coefficients ~15!
using the method explained in Appendix C of @12# and cor-
responding experimental data @7,9,10#. The height-difference
correlation function H(r ,t) resulting from Eq. ~14! for vari-
ous values of Ft is shown in Fig. 3. Note that, despite the
presence of a nonzero excess velocity, the difference between
the mean layer thickness ^H& and Ft is less than 1.1% even
for the largest layer thickness. Therefore, the different values
of Ft in Fig. 3 represent the mean film thickness ^H& in first
approximation. We obtain a good quantitative agreement
with the experimentally observed height-difference correla-
tion function H(r ,t) on amorphous Zr65Al7.5Cu27.5 films ~cf.
Fig. 6 in @7#, Fig. 3 in @9#, and Fig. 5 in @10#!. For large radii,
this agreement is a result of the coincidence of the surface
roughnesses w(t) since H(r ,t) saturates at 2w2(t) for r

FIG. 3. Height-difference correlation function H(r ,t) for vari-
ous values of Ft calculated from the nonlinear stochastic growth
equation ~14! on an interval @0,L#2 of the length L5200 nm sub-
ject to periodic boundary conditions. The parameters are given in
Eq. ~15!. For reference, the dashed lines indicate the different
power-law behaviors.
03150
→`. More interesting is the behavior of H(r ,t) for small
radii r. From the numerical results in Fig. 3 one can infer that
the increase of H(r ,t) follows a power-law behavior

H~r ,t !;rk(^H&), ~19!

where the exponent k explicitly depends on the layer thick-
ness and increases monotonically from k51 for ^H&
'5 nm up to k51.8 for ^H&'480 nm. A similar behavior
can also be read off from the experimental results in Ref.
@9,10# where the corresponding exponent k varies from k
51.4 for ^H&'100 nm to k51.6 for ^H&'480 nm. More-
over, also the nonmonotonic crossover of H(r ,t) to a satu-
ration for large r in form of a local maximum and a subse-
quent minimum ~over and undershooting! coincides with the
experimental finding @9,10#. C(r ,t) possesses a first maxi-
mum at r5Rc(t). Therefore, using Eq. ~18!, the position of
the first local minimum of H(r ,t) is determined by the cor-
relation length Rc(t). From the experimental data for
Zr65Al7.5Cu27.5 films obtained by scanning tunneling micros-
copy, also direct visualizations of the surface morphology of
individual samples at different stages of growth processes
have been obtained @8–10#, cf. also the right row in Fig. 4.
For comparison, the surface morphology resulting from a
numerical integration of Eq. ~14! with the coefficients ~15!
for one individual growth process starting from a flat sub-
strate h(xW,0)50 is shown in the left row of Fig. 4. Obvi-
ously, the visual comparison of the evolution of the surface
structures between theory and experiment shows a striking
similarity. In particular, the evolution of the moundlike struc-
tures and their typical length scale are caused by the compe-
tition between the growth instability a1¹W 2h and the surface
diffusion represented by the a2¹W 4h term. Only for the largest
layer thickness 480 nm the calculated surface morphology is
a little bit coarser than the experimentally observed structure
despite the coincidence of the correlation length Rc(t) @14#.

B. Effects of density inhomogeneities at larger film thicknesses

The good agreement between numerical simulations of
Eq. ~14! and the available experimental data on
Zr65Al7.5Cu27.5 films for a layer thickness up to 480 nm raises
the question whether the growth process has already reached
the asymptotic time evolution or not. In order to investigate
this point in detail, we perform numerical simulations of the
nonlinear stochastic growth equation ~14! up to a layer thick-
ness of approximately 5000 nm. We also discuss the impact
of both nonlinear terms in Eq. ~14!.

The solid lines in Fig. 5 correspond to the resulting cor-
relation length Rc(t) and surface roughness w(t) using the
coefficients given in Eq. ~15!. As a general consequence, the
nonlinear terms lead to a drastic slow down of the increase of
the surface roughness w(t) above the largest experimentally
observed film thickness ^H&5480 nm. We find a growth
behavior of the surface roughness given by w(t);t0.045 in
the thickness interval 480 nm<^H&<5000 nm. For small
layer thicknesses ^H&<240 nm the linear parts of Eq. ~14!
dominate the growth behavior and result in an exponential
growth of w(t) due to the presence of a linear instability
6-4
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FIG. 4. Left row: Surface mor-
phologies for Ft5100 nm, 200
nm, 360 nm, 480 nm ~from top to
bottom! calculated from Eq. ~14!
on an interval @0,L#2 of the size
L5200 nm subject to periodic
boundary conditions. The param-
eters are given in Eq. ~15!. Right
row: Experimentally recorded sur-
face morphologies of vapor de-
posited amorphous Zr65Al7.5Cu27.5
films of ^H&5100 nm, 200 nm,
360 nm, 480 nm thickness ~from
top to bottom!, taken from
@8–10#. The maxima ~minima! of
the height profiles h(xW ,t) are
marked in white ~black!.
@14#. The correlation length Rc(t) possesses a maximum at
^H&'360 nm followed by an initially strong decrease until
it saturates in a very slow decrease for layer thicknesses
^H&>600 nm. At these later stages the value of the correla-
03150
tion length Rc(t) lies in the range of the wavelength of the
most unstable mode 2pA2a2 /a1517.5 nm. By setting a3
50 we observe that the slow down of the increase of w(t)
occurs at a larger value of w(t), see the dashed line in Fig. 5.
6-5
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In this case, the growth behavior of w(t) at large film thick-
nesses 480 nm<^H&<5000 nm is given by w(t);t0.06. In
addition, we note that the correlation length Rc(t) now
ceases to exist above ^H&'300 nm ~not shown!, because
the first maximum of the height-height correlation function
C(r ,t) vanishes.

To demonstrate the important impact of the term a4(¹W h)2

that represents the potential density variations on the evolu-
tion of the surface structure we present, for comparison, re-
sults by setting a450, given by the solid lines in Fig. 6. In
this case, we obtain a linear increase of the surface roughness
w(t);t and an algebraic growth law Rc(t);At for the cor-
relation length @12#. This behavior can be attributed to a
coarsening of the moundlike surface structure, that ends in a
final state with only one mound on any finite interval @0,L#2

subject to periodic bounding conditions @12#. Figure 6 also
shows the correlation length Rc(t) and roughness w(t) that
result from Eq. ~14! using various different values of the
coefficient a4, while the other parameters are kept at their
values given in Eq. ~15!. As a general result, we observe that
decreasing a4 increases the values of Rc(t) and w(t) at large
layer thicknesses. At the smallest nonzero a4 , a4
50.0016 nm/s, a saturation of Rc(t) and w(t) has not yet
happened at the end of the simulation.

FIG. 5. Correlation length Rc and surface roughness w as func-
tions of the layer thickness calculated from the nonlinear growth
equation ~14! using the parameters given in Eq. ~15! ~solid lines!.
To demonstrate the significant influence of the nonlinear growth
term }¹W 2(¹W h)2, we show for comparison the surface roughness w
that results by setting a350 ~dashed line!.
03150
The height-difference correlation function H(r ,t) result-
ing from Eq. ~14! including the nonlinear term a4(¹W h)2 is
shown in Fig. 7 and exhibits a saturation at small radii r,

H~r ,t !;r1.8. ~20!

The increase of H(r ,t) with time at large radii corresponds
to the very slow increase of the surface roughness w(t)
above a film thickness of ^H&'480 nm as shown in Fig. 5.

In Fig. 8 the different evolutions of the surface morpholo-
gies with and without the impact of the density inhomogene-
ities are compared by visualizing the images of the height
profiles being calculated from Eqs. ~14! and ~4!. Again, the
coefficients given in Eq. ~15! were used. Setting a4 equals
zero the moundlike surface structure coarsens with time and
develops into a final state ~not shown! that possesses only
one mound on the interval @0,L#2 @12#. Moreover, the height
profile at Ft5480 nm now looks rather different from its
experimentally observed counterpart that is shown in Fig. 4.
For nonzero a4 the surface morphology becomes stationary
above a film thickness of approximately 480 nm at a typical
mound size that is independent from the size L of the interval

FIG. 6. Correlation length Rc and surface roughness w as func-
tions of the layer thickness calculated from the nonlinear growth
equation ~4! without the inclusion of the a4(¹W h)2 term ~solid lines!.
To demonstrate the significant influence of the nonlinear term
(¹W h)2, we show for comparison the prediction that results from Eq.
~14! using various values of a450.0016 nm/s, 0.016 nm/s, and
0.055 nm/s ~dash-dotted lines, from top to bottom!. All other pa-
rameters are as given in Eq. ~15!. The dashed lines are calculated
from Rc;At and w;t .
6-6
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@0,L#2 and is basically given by the critical wavelength
2pA2a2 /a1. Yet the spatial distribution of individual
mounds and valleys is always in change. The latter is not a
consequence of the deposition noise h . Similar to the related
Kuramoto-Sivashinsky equation, ] th5a1¹W 2h1a2¹W 4h
1a4(¹W h)2, the irregular change of the moundlike surface
structure results from the nonlinear term a4(¹W h)2 @20#. If
Eq. ~14! is applied small mounds vanish and large mounds
grow at the expense of their smaller neighbors, until they
split into smaller mounds. On the other hand, in the absence
of the term proportional to a4 the large mounds do not split.

To estimate the impact of the deposition noise h , we in-
tegrated Eq. ~14! using the parameters given in Eq. ~15!, but
we ‘‘switched off’’ the noise term h at Ft5100 nm. We
obtained the same irregularly changing moundlike surface
structure. As only significant difference, the mounds then
look smoother on a smaller length scale. The differences in
the behavior of Rc(t), w(t), and H(r ,t) are only quantita-
tive, but not qualitative: the surface roughness w(t) is about
7% smaller and the correlation length Rc(t) is about 5%
larger than in the stochastic case at layer thicknesses ^H&
>800 nm. The small influence of the deposition noise is not
too surprising due to the smallness of the coupling constant
g54Da4

2/a1
3520.378, that results from the parameters

given in Eq. ~15!.
Next, we investigate the size of the density variations re-

sulting from Eqs. ~14! and ~15! and their temporal evolu-
tions. On an inclined surface area the local density is de-
creased by

r~¹W h !5r0 /g with g511~a4 /F !~¹W h !2, ~21!

where a4 /F is in the range of about 0.07 if the experimen-
tally determined parameters F50.79 nm/s and a4

FIG. 7. Height-difference correlation function H(r ,t) for vari-
ous values of Ft calculated from the nonlinear stochastic growth
equation ~14! on an interval @0,L#2 of the length L5200 nm sub-
ject to periodic boundary conditions. The parameters are given in
Eq. ~15!.
03150
FIG. 8. Surface morphologies for Ft5100 nm, 480 nm, 1000
nm, 2000 nm, and 5000 nm ~from top to bottom! calculated from
Eq. ~14! ~left row! and Eq. ~4! ~right row! on an interval @0,L#2 of
the size L5200 nm subject to periodic boundary conditions. The
parameters are given in Eq. ~15!. The maxima ~minima! of the
height profiles h(xW ,t) are marked in white ~black!.
6-7



MARTIN RAIBLE, STEFAN J. LINZ, AND PETER HÄNGGI PHYSICAL REVIEW E 64 031506
50.055 nm/s are used. In Fig. 9 we show the density reduc-
tion averaged over the surface

^g&s215 K ~1/L2!E d2x~a4 /F !~¹W h !2L ~22!

and averaged over the entire film

^g&215^H&/~Ft !21, ~23!

that result from Eq. ~14! with and without the inclusion of
the other nonlinearity a3¹W 2(¹W h)2. Similar to the roughness
w(t) the density reduction ^g&s21 first rapidly increases and
then remains constant in the interval 700 nm<^H&
<5000 nm. This also leads to a slow down of the increase
of ^g&21 since the evolution of ^g&21 is delayed in com-
parison with the evolution of ^g&s21. The nonlinear term
a3¹W 2(¹W h)2 lessens the density reduction. We also find that
the standard deviation of g on the surface (Š@g
2^g&s#

2
‹s)1/2 first increases and later, at film thicknesses

FIG. 9. Upper part: Density reduction g215(a4 /F)(¹W h)2 cal-
culated from Eq. ~14! averaged over the surface ~dashed line! and
averaged over the entire film ~solid line!. The coefficients are given
in Eq. ~15!. Lower part: Density reduction g215(a4 /F)(¹W h)2

that results from Eq. ~14! by setting a350, averaged over the sur-
face ~dashed line! and averaged over the entire film ~solid line!. All
other coefficients are as given in Eq. ~15!.
03150
480 nm<^H&<5000 nm, reaches a constant value of 0.017
with and 0.047 without the inclusion of the term proportional
to a3.

Finally we ascertain that even for the smallest nonzero
value of a4 that was applied in this study, a4
50.0016 nm/s ~see Fig. 6!, a saturation of the surface mor-
phology will occur. Therefore, we numerically solved Eq.
~14! using this value of a4 and the other parameters given in
Eq. ~15! on an interval @0,L#2 of the size L5400 nm subject
to periodic boundary conditions. In order to accelerate the
calculation we now ‘‘switched off’’ the deposition noise h at
Ft5100 nm. We obtained a drastic slow down of the in-
crease of the roughness w(t) and the correlation length Rc(t)
at very large layer thicknesses 20 000 nm<^H&
<120 000 nm ~not shown!. Hence the smallness of a4 re-
sults in a delay of the saturation of the moundlike surface
morphology. In addition, we note that at these later stages the
correlation length ~and typical mound size! Rc(t) is in the
range of Rc(t)'46 nm and is therefore larger than the criti-
cal wavelength 2pA2a2 /a1517.5 nm.

C. Discussion

The numerical simulations of Eq. ~14! using the experi-
mentally determined parameters given in Eq. ~15! indicate
that the nonlinear term a4(¹W h)2 basically leads to a satura-
tion of the surface structure, at least within the investigated
range of time. The surface morphology consists of mounds
that change irregularly in time and space. Their typical size,
however, is given by the wavelength of the most unstable
mode 2pA2a2 /a1 if a4 is not too small. It might be possible
that the surface still roughens on length scales larger than the
mound size, as in the case of the Kuramoto-Sivashinsky
equation @20#.

It has not been rigorously proven yet that a saturation of
the typical mound size occurs for any positive value a4.
However, this seems reasonable since at large length scales
the term a4(¹W h)2 becomes much larger in comparison to the
other nonlinearity a3¹W 2(¹W h)2 which is responsible for the
coarsening process ~see the right row in Fig. 8!. If a4 is
small, the nonlinear term a4(¹W h)2 does not become relevant
before a coarsening of the moundlike surface morphology
has occured. This explains why the surface structure satu-
rates at later stages and larger length scales if a4 is small.
The growth behavior of the solutions of Eq. ~14! depends
basically on the dimensionless constant n5(a2a4)/(a1a3).

The previous considerations hold in the physically rel-
evant case, i.e., a1 and a2 are negative and a3 and a4 have
opposite signs. On the other hand, if a3 and a4 had the same
signs, the two nonlinear terms in Eq. ~14! would compensate
each other at the wavelength 2pAa3 /a4. If, additionally, the
absolute value of a4 was small enough, this wavelength
would be larger than 2pAa2 /a1 and would therefore belong
to an unstable mode. Then, the surface roughness w(t)
would increase at least exponentially.

IV. CONCLUSIONS

In this study, we have presented a nonlinear stochastic
field equation ~14! for amorphous film growth that can serve
6-8
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as a minimal model if the possibility of density inhomoge-
neities is taken into account. Starting from the condition of
no particle desorption, using the symmetries relevant for
amorphous film growth and allowing for density variations
depending on the surface slope we derived the simplest func-
tional form of an equation capable for describing the growth
of amorphous films. A detailed comparison of available ex-
perimental data with the numerical simulations of the statis-
tical measures of the surface morphology, Rc(t), w(t), and
the height-difference correlation function H(r ,t) and also
with direct visualizations of the surface evolution reveals a
very good agreement in the considered range of the layer
thickness. For the not yet experimentally explored range of
layer thicknesses ^H&>480 nm, we gave detailed predic-
tions for the expected surface morphology on the basis of
Eqs. ~14! and ~15!. Most remarkably, the suggested density
variations that are represented by a nonlinear term propor-
tional to (¹W h)2 in Eq. ~14! stabilize the surface morphology
to a typical moundlike structure. We hope that our study
motivates further experimental studies on amorphous film
growth.
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APPENDIX: AMORPHOUS SURFACE GROWTH: THE
ROLE OF THE GRINFELD INSTABILITY

As experiments @19# show, the growth of vapor deposited
amorphous transition metal alloy films is accompanied with
the occurrence of lateral stresses of the order p'1 GPa.
This poses the question if the formation of the experimen-
tally observed moundlike surface structure on the amorphous
films can be the result of an elastic instability, namely the
Grinfeld instability @21–23,18#. Here, we show that this pos-
sibility is not taking place by comparing the decrease of the
elastic energy and the increase of the surface energy that are
caused by the occurrence of the moundlike surface structure
at the observed wavelength.

Amorphous films grow under lateral stresses, implying in
first approximation that the corresponding stress tensor s ik
possesses only two nonzero components sxx5syy5p . If the
amorphous film has an uneven surface, however, this stress
tensor s ik does not fulfill the boundary conditions on the
surface and needs to be supplemented by a correction t ik .
Then, the boundary conditions on the surface are determined
by

~s ik1t ik!nk5g¹W •S ¹W h
A11~¹h !2D n i ~A1!

for i51,2,3, where
03150
nW 5
1

A11~¹h !2 S 2¹W h
1 D ~A2!

denotes the unit vector perpendicular to the surface and the
RHS of Eq. ~A1! represents the surface tension. The correc-
tion t ik depends in lowest order linearly on the gradient ¹W h .
If only such terms in Eq. ~A1! that are linear in ¹W h are taken
into consideration one obtains the simplified boundary con-
ditions

2p
]h
]x 1txz50 for i5x , ~A3!

2p
]h
]y 1tyz50 for i5y , ~A4!

tzz5g¹W 2h for i5z . ~A5!

If the viscosity of the amorphous material is not too large,
the additional stress field t ik leads to motion inside the film.
Due to energy dissipation these motions quickly fade away
to a state where the mechanical stresses compensate each
other. Therefore, the additional stress field t ik fulfills the
conditions

]t ik
]xk

50 i51,2,3 ~A6!

inside the film and follows quasistatically the alterations of
the height profile h(xW ,t).

The additional stress field t ik is related to an additional
deformation u i by Hooke’s law

t ik5Ku lld ik12mS u ik2 1
3 u lld ikD , ~A7!

where the strain tensor u ik is defined by

u ik5
1
2 S ]u i

]xk
1

]uk
]x i

D . ~A8!

Since the interface between the film and the substrate is
even, the components txz , tyz , tzz , ux , uy , and uz are
continuous functions on this interface.

By using the boundary conditions on the surface ~A3!–
~A5! and on the film-substrate interface and the Eqs. ~A6!–
~A8!, one can determine the deformation u i and the stress
field t ik inside the film @24#. To simplify the calculation we
assume that the elastic moduli K and m have the same values
in the film and in the substrate @18#. Note that the surface
morphologies on vapor deposited Zr65Al7.5Cu27.5 films were
found to be independent from the details of the substrate,
even if the substrate consisted of a relaxed Zr65Al7.5Cu27.5
film ~prepared at higher temperature! @8,19#.

Since Eqs. ~A3!–~A8! are linear they can be solved by a
Fourier transformation in the x and y coordinates
6-9
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t̃ ik~kx ,ky ,z ,t !5E
0

L
dxE

0

L
dyt ik~x ,y ,z ,t !exp@2i~kxx

1kyy !# , ~A9!

ũ i(kx ,ky ,z ,t) and ũ ik(kx ,ky ,z ,t) are given by analogous
definitions. Next, we put the x axis in the direction of the
wave vector kW5(kx ,ky), yielding kx5k and ky50. Then,
the resulting deformation in Fourier space is given by ũy
50 and

S ũx
ũz

D 5
p

2m S i
K14m/3
K1m/3 1ikz

2
m

K1m/3 1kz
D h̃ekz

1
gk
2m S i

m

K1m/3 1ikz

2
K14m/3
K1m/3 1kz

D h̃ekz. ~A10!

Using Eq. ~A8! we obtain the strain tensor

ũxx52
p

2m SK14m/3
K1m/3 1kz D kh̃ekz2 gk

2m S m

K1m/3

1kz D kh̃ekz, ~A11!

ũzz5
p

2m SK22m/3
K1m/3 1kz D kh̃ekz1 gk

2m S 2
m

K1m/3

1kz D kh̃ekz, ~A12!

ũxz5
ip
2m

~11kz !kh̃ekz1
igk
2m

k2zh̃ekz, ~A13!

ũyy5 ũxy5 ũyz50. ~A14!

Finally, Eq. ~A7! yields the additional stress field

t̃xx52p~21kz !kh̃ekz2gk~11kz !kh̃ekz, ~A15!

t̃yy52~p1gk !
K22m/3
K1m/3 kh̃e

kz, ~A16!

t̃zz5pk2zh̃ekz1gk~211kz !kh̃ekz, ~A17!

t̃xz5ip~11kz !kh̃ekz1igk3zh̃ekz, ~A18!

t̃xy5 t̃yz50. ~A19!

One can verify that this stress tensor fulfills the Eqs. ~A3!–
~A6! in Fourier space. Note that in this calculation the origin
of the z axis (z50) coincides with the mean surface height.
031506
The additional stress and strain fields t ik and u ik result in
an additional elastic energy per volume, s iku ik1t iku ik/2. In-
sertion of the solutions given in Eqs. ~A11!–~A19! and inte-
gration over the film yields the change of the elastic energy,
that is caused by the height variations h(xW ,t) on an interval
@0,L#2 subject to periodic boundary conditions @24#

Eel~ t !5
1
L2 (

kW
F2E

11s

12s
a2k1

g2k3

E ~12s2!G uh̃~kW ,t !u2.

~A20!

Here, h̃(kW ,t)5*d2xh(xW ,t)exp(2ikW•xW) denotes the height
profile in Fourier space, E denotes Young’s modulus, s
P@0,1/2# the Poisson number, a5uxx

0 5uyy
0 5(12s)p/E

the lateral deformation in the case of an even surface, g the
surface tension, and k5ukW u52p/l the wave number. The
negative term on the RHS of Eq. ~A20! is caused by the
lateral stress p and represents the Grinfeld instability.

On the other hand, an uneven surface results in an in-
crease of the surface energy

Es f~ t !5
1
L2 (

kW

1
2 gk2uh̃~kW ,t !u2. ~A21!

The addition of elastic energy and surface energy yields the
total change of the free energy of the film resulting from the
occurrence of an uneven surface profile on the interval
@0,L#2

E~ t !5Es f~ t !1Eel~ t !5
1
L2 (

kW

1
2 B~k !uh̃~kW ,t !u2

~A22!

with

B~k !5gk222E
11s

12s
a2k1

2g2k3

E ~12s2!. ~A23!

This expression for B(k) is different from a similar expres-
sion that has been suggested in @18#. From Eq. ~A23! it can
be seen, that the free energy of the film is decreased, i.e.,
E(t) is negative, if the film possesses a periodic surface pro-
file with a sufficiently large wavelength l or small wave
number k. On the other hand, B(k) is positive if the
condition

k.
2E
g

11s

12s
a2 ~A24!

is fulfilled. Insertion of the experimental parameters g
'2 J/m2 @19#, E'100 GPa @19#, p'1 GPa @19#, s50,
and a5(12s)p/E'0.01 in Eq. ~A24! yields the condition
k.107/m or equivalently l,630 nm. Note that inserting a
nonzero Poisson number s would decrease the lateral defor-
mation a and the RHS of Eq. ~A24! and would thereby
-10
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expand the range of the wavelengths with positive B(k).
Since the experimentally observed surface morphologies on
amorphous Zr65Al7.5Cu27.5 films have a typical wave length
of only l'20 nm @7–10#, B(k).0 holds at this wave-
length. Hence, the free energy of the amorphous films is
increased by the observed moundlike surface structure,
031506
E(t).0. We estimate that the increase of the surface energy
is at least one order of magnitude larger than the decrease of
the elastic energy at the experimentally observed wave-
length. Therefore, the moundlike surface structures seen on
vapor deposited amorphous films cannot be interpreted as a
consequence of an elastic instability.
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