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1. Introduction

In the broadest sense, synchronization terms the ten-
dency of two or more appropriately coupled dynami-
cal systems to undergo resembling evolution in time.
As shown in a seminal paper by Pecora and Carroll [1]
in 1990, synchronization can also be achieved if the
uncoupled dynamical systems exhibit chaotic time-
evolution. Their basic idea was to take two (identical)
replicas of a three-dimensional dynamical system ẋ =
V(x) with x = (x, y, z)T and V(x) being the vector
field, to use one of them, the drive system ẋd = V(xd),
as an unconstraintly developing system and to couple
the second one, the response system ẋr = V(xr), uni-
directionally to the drive system by a suitable replace-
ment of the dynamical variables in the response sys-
tem.

* Corresponding author.
E-mail address: linz@physik.uni-augsburg.de (S.J. Linz).

The signature of synchronization is given by the
time evolution of the difference between drive and
response variables, commonly called the error [1,2],

(1)e = xd − xr .

If e(t)→ 0 as t → ∞, the dynamics of the response
system approaches the time evolution of the drive
system and synchronization of these two systems is
guaranteed. Pecora and Carroll [1] demonstrated such
a behavior, e.g., by using the Lorenz flow and, as
coupling scheme, (i) identical dynamics of xd and xr ,
and (ii) replacement of xr by xd in the y and z compo-
nents of the vector field of the response system.

Achieving synchronization between two chaotic
systems, however, is far from being straightforward. It
sensitively depends on the considered dynamical sys-
tems and the specific coupling method. In the wake of
the study by Pecora and Carroll, a variety of alterna-
tive coupling schemes have been studied (for a review
see [2]), among them the Cuomo–Oppenheim [3], BK-
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coupling [2,4] schemes and the active passive decom-
position (APD) [5–7], and also extensions to gen-
eralized synchronization of nonidentical chaotic sys-
tems [2]. Besides the Lorenz model, specific applica-
tions of synchronization have been mostly investigated
for the Rössler model, the piece-wise Rössler model
and Chua’s oscillator [2].

On the other hand, there has been recently progress
in identifying and classifying the elementary chaotic
flows and finding necessary, albeit not sufficient cri-
teria for the emergence of elementary chaotic dynam-
ics. Here, the key point was to start from third-order
differential equations

...
x = J (x, ẋ, ẍ) in one scalar

variable x(t) [8–15], commonly called jerky dynam-
ics because of the direct mechanical interpretation of
...
x as time rate of change of the acceleration,

...
x =

J (x, ẋ, ẍ). Setting y = ẋ and z= ẍ , a jerky dynamics
is equivalent to the vector field ẋ = V(x) with V(x)=
(y, z, J (x, y, z))T. Within the last several years, in-
tensive numerical search [9,12,15] and also analyti-
cal reduction techniques to jerky dynamics for known
vector fields [10,11] have lead to a fairly complete
list of elementary functional forms of jerky dynam-
ics that exhibit chaotic behavior in some parameter
ranges. These systems are not only restricted to poly-
nomial nonlinearities, but also cover piece-wise linear
forms of jerk functions J (x, ẋ, ẍ) that fulfill a Lip-
schitz condition, i.e., the corresponding vector field
satisfies |V(x1) − V(x2)| � L|x1 − x2| with L being
a finite, positive constant. This guarantees local exis-
tence and uniqueness of the solutions of the considered
systems. Particularly the piece-wise linear jerky dy-
namics [12,13] are attractive candidates for synchro-
nization since they are both functionally simple and
easily realizable as electronic circuits [13].

The most elementary chaotic jerky dynamics with
modulus nonlinearity is determined by the model
equation by Linz and Sprott [12]

(2)
...
x = −Aẍ − ẋ + |x| − 1

that is chaotic, e.g., for A= 0.61. It constitutes a min-
imal dissipative chaotic system in the sense that no
term entering in (2) can be omitted without loosing
potentially chaotic behavior [14]. The dynamics of
(2) can also be electronically realized with high ac-
curacy [13].

The purpose of this Letter is at least three-fold.
First, taking a special form of a jerky dynamics

...
x =

J (x, ẋ, ẍ), we investigate whether the most popu-
lar synchronization methods, the Pecora–Carroll [1,
2] and the Cuomo–Oppenheim schemes [3] are ap-
plicable to chaotic jerky dynamics to obtain synchro-
nization (cf. Section 2). Moreover, we show that the
BK- and APD-coupling schemes do generally work
(cf. Sections 3 and 4) for arbitrary jerky dynamics.
Second, we derive general estimates for the decay be-
havior of simplified versions of the latter two schemes
in order to determine criteria for effective, i.e., rather
rapid synchronization. Third, we demonstrate our gen-
eral results by applying it to and numerically vali-
dating it for the specific case of the minimal chaotic
model with modulus nonlinearity, Eq. (2).

2. Simple synchronization methods

In this section we inspect whether the two most
elementary synchronization schemes by Pecora and
Carroll [1,2] and by Cuomo and Oppenheim [3] do
work for jerky dynamics. Since a general discussion
for arbitrary functional forms of jerky dynamics,

...
x =

J (x, ẋ, ẍ) does not seem to be feasible, we only con-
sider here the important subclass of a jerky dynamics
that only possesses nonlinear terms in x , i.e.,

(3)
...
x= −Aẍ −Bẋ + g(x)
with g(x) being a nonlinear function of x only and
Eq. (2) being a special case. For this class, an extensive
list of functional forms of g(x) and parameter values
of A and B leading to chaotic behavior of Eq. (3)
has been recently published [13] and also necessary
(analytical) criteria for the appearance of dissipative
chaos, most importantly A > 0 and B > 0, have been
discovered [14].

Adapting the idea of the synchronization scheme
of Pecora and Carroll [1], i.e., keeping the identical
x-dynamics of the drive and the response system
and replacing xr = xd in the remaining yr and zr
dynamics, one obtains for the drive system

ẋd = yd ,
ẏd = zd ,

(4)żd = −Byd −Azd + g(xd ),
whereas the response system takes on the form

xr = xd ,
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ẏr = zr ,
(5)żr = −Byr −Azr + g(xd).

Since the x-component of the drive and the response
system undergo identical dynamics, only the subsys-
tem of the y and z components have to be consid-
ered to obtain the error dynamics. This yields the au-
tonomous linear system

ėy = ez,
(6)ėz = −Bey −Aez.

Therefore, the error dynamics is determined by the
eigenvalues λ of the characteristic equation [λ(A +
λ) + B] = 0 that are given by λy,z = −A/2 ±√
A2/4 −B . Using the aforementionednecessary con-

ditions for the appearance of chaos in system (3)
(A > 0,B > 0), we conclude that the real parts of
both eigenvalues of the error dynamics are negative
if Eq. (3) displays chaotic dynamics and, as a con-
sequence, the class (3) can be synchronized by the
Pecora–Carroll method.

Applying the Cuomo–Oppenheim scheme [3] to
Eq. (3), i.e., keeping the drive system (4) and substi-
tuting xr by xd in the corresponding vector field of the
response system, Eq. (5) is replaced by

ẋr = yr ,
ẏr = zr ,

(7)żr = −Byr −Azr + g(xd).
The corresponding error dynamics is determined by
the autonomous linear system

ėx = ey,
ėy = ez,

(8)ėz = −Bey −Aez.
As a consequence, the eigenvalues determining the
growth/decay of the error e result from the character-
istic equation λ[λ(A+ λ)+ B] = 0. Since one eigen-
value is always equal to zero, chaotic synchroniza-
tion of system (3) cannot be achieved by the Cuomo–
Oppenheim method. The modulus of the error |e| ap-
proaches a constant non-zero value as t → ∞ that is
determined by the initial conditions.

Although the Pecora–Carroll scheme is applica-
ble to achieve synchronization of chaotic models of
type (3), there are at least two drawbacks. First, there

is no way to speed up the synchronization since the de-
cay rate is bounded by the eigenvalue of (6) with the
largest real part, and, therefore, directly determined by
the control parameter combinations A,B where (3) is
chaotic. Second, focusing on applications to private
communication, only one component of the drive sys-
tem is transmitted. Even if an information I (t) is su-
perposed to xd(t), it might be possible to reconstruct
the drive system because of the intimate relation of the
drive variables yd = ẋd and zd = ẍd with the trans-
mitted signal xd . To avoid these two drawbacks, we
discuss in the next two sections two variants of syn-
chronous coupling schemes that also apply to arbi-
trary jerky dynamics.

3. BK-coupling

The BK-coupling scheme [2] is a variant of a syn-
chronous substitution scheme where several or all vari-
ables of the drive system are coupled to the response
system. The general idea behind BK-coupling is as
follows [2]: synchronization can be directly achieved
if there is a negative feedback between drive and re-
sponse system, i.e., ẋr = V(xr)+ c(xd − xr) with an
appropriately chosen scalar constant c. Such a scheme,
however, would require the transmission of all three
components of the drive system xd . However, if the
constant c is replaced by a matrix of the specific form
BKT with B = (B1,B2,B3)T and K = (K1,K2,K3)T

being vectors with constant and so far arbitrary co-
efficients, the coupling term BKT(xd − xr) can be
rearranged to yield B(K · xd − K · xr). The latter
shows that, in principle, only the scalar combination
K · xd needs to be transmitted to the response sys-
tem to achieve synchronization. The major problem,
however, is to find appropriate combinations of the
six parameters in B and K. The BK-coupling ap-
proach originally stems from control theory and it is
known [16] that, in principle, it works for so-called
Brunowsky canonical forms, i.e., nth-order dynamical
systems that can be directly rewritten as nth-order dif-
ferential equations in one scalar variable.

Specifically, for a jerky dynamics, the BK-coupling
scheme is determined by the drive system

ẋd = yd ,
ẏd = zd ,
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(9)żd = J (xd, yd , zd ),
and the response system

ẋr = yr +B1(s − s̃),
ẏr = zr +B2(s − s̃),

(10)żr = J (xr , yr , zr )+B3(s − s̃),
where s = K · xd is the transmitted signal and s̃ =
K · xr . The second term on the rhs of the response sys-
tem is the linear feedback term that basically contains
the weighted difference of s determined by the drive
system and s̃ by the response system.

Is there a simple and generally applicable choice of
the coefficients of B and K that ensures synchroniza-
tion for all types of jerky dynamics? In the remainder
of this section, we will show by considering a repre-
sentative example and using rigorous mathematical ar-
guments that the specific form of the matrix BKT,

(11)BKT =
(
a 1 1/a
a2 a 1
a3 a2 a

)
,

or, equivalently, the choice B = (a0, a1, a2)T and K =
(a1, a0, a−1)T, that contains only one adjustable, ap-
propriately chosen real parameter a leads to a decay-
ing error dynamics and, therefore, to synchronization.

As a representative example, we use in the coupling
scheme (9) and (10) the jerk function J (x, ẋ, ẍ) of
the model equation (2) with the control parameter
A = 0.61 (where Eq. (2) displays chaotic behavior)
and two distinct parameter values for a entering into
B and K, namely a = 13 and a = 42. The numerical
computation of the corresponding Euclidean length of
the error dynamics |e| =

√
e2x + e2y + e2z as function of

time is depicted in Fig. 1. In both cases we observe a
rapid convergence of |e| to zero with time that decays
oscillatory, but faster than exponential in time. For a =
13 the decay rate is bounded by exp(−t), whereas for
a = 42 by exp(−10t). Notably, the synchronization is
faster, the larger the value of a is. The fact that this
type of synchronization works for these specific cases
raises the questions whether it applies to any type of
jerky dynamics and what restrictions on the value of a
hold.

To proof the general validity of the synchronization
scheme for the afore-mentioned form of the matrix
BKT, Eq. (11), and any jerky dynamics, we consider

Fig. 1. Numerically computed time evolution of the synchronization
error |e| for jerky dynamics coupled via the BK scheme, Eqs. (9)
and (10), the chaotic jerky dynamics, Eq. (3) with A = 0.61, and
the two representative values of the a in the BK-coupling scheme,
(a) a = 13 and (b) a = 42. Dashed lines represent corresponding
upper bounds of the error being proportional to exp (−t) in (a) and
exp (−10t) in (b).

its error dynamics of Eqs. (9) and (10) given by

(12)ė = −BKTe +
(

ey
ez

J (xd)− J (xr)

)
.

Next, we use the trick to formally rewrite the third
component of the second vector on the rhs of Eq. (12)
as a scalar product of the error e and a vector (J x,
J y, J z)T containing some real-valued functions that
depend both on xd and xr ,

J (xd)− J (xr)
(13)= (

J x(xd ,xr), J y(xd ,xr ), J z(xd ,xr)
)Te.

The functions J x, J y, J z are determined by

J x(xd ,xr)= J (xr , yr , zr )− J (xd , yr , zr )
xr − xd ,

xd �= xr ,
J y(xd ,xr)= J (xd , yr , zr )− J (xd, yd , zr )

yr − yd ,

yd �= yr ,
J z(xd ,xr)= J (xd , yd , zr )− J (xd, yd , zd )

zr − zd ,

(14)zd �= zr .
As a mathematical side-remark we note that if J
fulfills a Lipschitz condition on a subset C ⊂ R

3 with
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a Lipschitz constant LC , the functions J x , J y and J z
are continuous on N = {�y = (y1, . . . , y6)T ∈ R

6: y1 �=
y4, y2 �= y5, y3 �= y6}. Moreover, J x , J y, J z can be
extended continuously ‘from one side’ approaching
R

6 −N and are bounded by LC on the bounded subset
C×C ⊂ R

6. This implies that J x, J y, J z are bounded
by LC in the limits xd → xr , yd → yr and zd → zr ,
respectively.

Using (14), we are in the position to rearrange
Eq. (12) in the form

(15)ė = Ae + Be,

with

A= −BKT +
(0 1 0

0 0 1
0 0 0

)

(16)= −
(
a 0 1/a
a2 a 0
a3 a2 a

)

being a matrix with time-independent coefficients, and

(17)B=
( 0 0 0

0 0 0
J x J y J z

)

containing time-dependent contributions via the dy-
namics of xd and xr .

To proceed, we take advantage of the Poincare–
Lyapunov theory for asymptotic stability [17] and
modify it appropriately to find conditions to ensure
synchronization. Calculating the eigenvalues of the
matrix A, given by λ1,2 ≈ −0.337a ± i0.562a, λ3 =
−2.324a and the corresponding eigenvectors, one can
construct the matrix S that transforms A into diagonal
form D = S−1AS. To estimate the time evolution of
the error dynamics, we can take advantage of S as
follows. Multiplying (15) by S−1 and introducing the
transformed error dynamics ẽ = S−1e yields

(18)˙̃e = Dẽ + B̃ẽ

with B̃= S−1BS. Formal integration of (18) leads to

(19)ẽ(t)= eDt ẽ(0)+
t∫

0

eD(t−s)B̃(s)ẽ(s) ds

and, after taking the norm, to the inequality∥∥ẽ(t)
∥∥ �

∥∥eDt∥∥
M

∥∥ ẽ(0)
∥∥

(20)+
t∫

0

∥∥eD(t−s)B̃(s)∥∥
M

∥∥ ẽ(s)
∥∥ ds,

where ||A= (ai,j )||M is the maximum of
∑ 3
j=1 |ai,j |

of the rows of the matrix A. Since D is diagonal, the
norm of eDt is bounded by e−qt , where q is the eigen-
value of the matrix A with the largest real part, i.e.,
q < a/3. Therefore, (20) can be recast into∥∥ẽ(t)

∥∥ � e−qt
∥∥ẽ(0)

∥∥
(21)+

t∫
0

e−q(t−s)
∥∥B̃T(s)

∥∥
M

∥∥ẽ(s)
∥∥ ds.

Multiplying (21) by eqt and introducing the abbrevia-
tion f (t)= eqt ||ẽ(t)||, we obtain

(22)f (t)= ∥∥ẽ(0)
∥∥ +

t∫
0

f (s)
∥∥B̃T(s)

∥∥
M
ds.

Since f (t) is strictly positive, one can apply Gron-
wall’s inequality [17] yielding

(23)f (t)�
∥∥ẽ(0)

∥∥ exp

( t∫
0

∥∥B̃T(s)
∥∥
M
ds

)
.

Therefore, the transformed error dynamics fulfills∥∥ẽ(t)
∥∥ � f (t)e−qt

(24)�
∥∥ẽ(0)

∥∥ exp

( t∫
0

(∥∥B̃T(s)
∥∥
M

− q)ds
)
.

Using the supremum of ||B̃T||M , b= supt ||S−1B(t)×
S||M , the error dynamics is bounded by

(25)
∥∥ẽ(t)

∥∥ �
∥∥ẽ(0)

∥∥ exp

( t∫
0

(b− a/3) ds
)

and vanishes asymptotically if b − a/3 is negative. It
remains to calculate b. An upper bound for b can be
found by splitting B in a sum of three matrices which
have each only one non-zero component (either J x, J y
or J z), multiplying these by S−1 (from the left) and
S (from the right) and using the fact that J x, J y, J z
are bounded by the Lipschitz constant LC . With the
help of computer algebra one obtains that b < 4LC
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if the additional condition a > 1 holds. Therefore,
synchronization of (9) and (10) is guaranteed if

(26)a >max{12LC,1}.
This is the central result of this section. Moreover, if
one requests that the decay of the error should decay
faster than e−ct with a prescribed constant c > 0, then
the stronger condition

(27)a >max
{
3(4LC + c),1}

holds.
Several remarks are in order: (i) The different func-

tions J x, J y, J z contribute in a different way to the
constant b. Looking at one of them and neglecting
the others we find the following behavior: J x : b ∼
LCa

−2, J y : b ∼ LCa−1 and J z: b ∼ LC . For a > 1,
this reflects the fact that it is much more difficult to
reduce a disturbance in z than in y or x . (ii) As a gen-
eralization, the above derivation of the choice of the
parameter a can be extended to other types of cou-
plings that might be nonlinear. Although such a gener-
alized coupling does not, in general, increase the speed
of synchronization, it might be useful for potential
applications of more secure communication schemes
since it is more difficult to determine all relevant pa-
rameters using autosynchronization for parameter es-
timation [18]. For example, if one transmits a signal
s = p(xd) instead of s = Kxd and uses the parameters
(B1,B2,B3) = (1, a, a2), the function p only has to
satisfy the conditions

(28)|px/a − 1|, |py − 1|, |apz − 1| � LC/a
by using the linearized functions px ,py ,pz defined
analogously to the J x, J y, J z in Eq. (14). If these
conditions are satisfied we obtain the inequality b �
(4 + 12)LC with b = supt ||S−1B(t)S||M . Here, the
term 4LC arises from the influence of J , whereas the
term 12LC reflects the contribution of the nonlinear
function p. With this bound for b we then obtain the
generalized estimate

(29)a � max{48LC + 3c,1}
for the parameter a if the error should decay faster than
e−ct . Looking at inequality (28) we can see that the
influence of pz, the disturbance of the ‘second deriv-
ative’, is larger than the disturbance coming from px

for large values of a, i.e., high decay rates. A simple

Fig. 2. Numerically computed time evolution of the synchronization
error |e| (full line) for jerky dynamics (2) with A = 0.61 using the
modified BK-coupling scheme (31) and a = 27. The synchroniza-
tion error decays faster than exp(−t) (dashed line).

example for this modified BK-coupling scheme is to
substitute

(30)s = p(xd )= axd + yd + a−1zd + |xd |,
(31)s̃ = p(xr )= axr + yr + a−1zr + |xr |

in Eq. (10), respectively. This choice of p satisfies
inequalities (28). Since only px is non-zero we get
the estimate a = 24LC + 3c. For the piecewise linear
jerky dynamics (2) a plot of the numerically calculated
error dynamics vs. time is shown in Fig. 2. Since this
jerky dynamics is piecewise linear the relation LC = 1
holds for all subsets C ⊂ R

3 (global synchronization).
Requiring a decay of the error that is faster than
exp(−t), implies that a � 27. In the plot in Fig. 2,
a = 27 has been used and one consistently recovers
the desired decay of this modified BK-coupling.

4. Active–passive decomposition (APD)

In a nutshell, active–passive decomposition (APD)
used by Kocarev and Parlitz [5–7] works as follows.
Consider two functionally identical dynamical sys-
tems, the active system v̇d = V(xd , s) and the pas-
sive system ẋr = V(xr , s). Both systems only differ
by the entering drive and response variables xd and
xr , respectively. Otherwise, the functional form of the
vector field V and the additional coupling, the drive



96                                                

vector s = h(xd), that functionally depends only on
the drive variables xd , are the same. The error dy-
namics ė = V(xd, s) − V(xd − e, s) linearized about
e = xd − xr = 0 obeys the generally nonautonomous
equation ė = DV(xd , s) · e with DV(xd , s) being the
Jacobian of the vector field V(xd , s). Obviously, if the
specific form of the Jacobian allows for a decay of the
error e to zero in the long time limit, synchronization
of the active and the passive systems takes place. Since
the active system should be the unconstraintly evolv-
ing, chaotic system, its vector field V(xd , s(xd)) is just
an appropriate decomposition of the original vector
field V(xd).

Next, we want to adopt this scheme specifically to
chaotic jerky dynamics and, in addition to that, also
require that only a purely scalar signal s(t) is trans-
mitted to the passive system. This can be achieved by
the following scheme with

ẋd = yd ,
ẏd = zd ,

(32)żd = −axd − byd − czd + s(t)
for the active system,

ẋr = yr ,
ẏr = zr ,

(33)żr = −axr − byr − czr + s(t)
for the passive system, and

s(t)= s(xd)
(34)= J (xd, yd , zd )+ axd + byd + czd

for the transmitted signal. Here a, b and c are so far ar-
bitrary real constants that have to be suitably adjusted
in order to obtain synchronization. Note that (32) is
in fact the dynamical system associated with the jerky
dynamics

...
x = J (x, ẋ, ẍ); the only difference is that

the same term, axd + byd + czd , has been artificially
added and subtracted. Moreover, this coupling scheme
differs from BK-coupling by the fact that not only a
linear combination of the drive variables xd enters in
the transmitted signal, but also the full dynamical in-
formation on the chaotic system, namely the jerk func-
tion J (xd, yd , zd )= ...

xd .
As in the previous section, we first apply the scheme

to the jerky dynamics (2) with A= 0.61. In Fig. 3 we

Fig. 3. Numerically computed time evolution of the synchronization
error |e| (full line) for the jerky dynamics (2) with A = 0.61 using
the APD-coupling scheme (32)–(34). The parameters are a = 2.184,
b = 5.06, c = 3.9 in (a) and a = 1320, b = 362, c = 33 in (b).
The synchronization error decays faster than exp(−t) in (a) and
exp(−10t) in (b) (dashed line).

show the time evolution of the modulus of the error dy-
namics |e| = |xd−xr | for this model and two represen-
tative sets of adjustable parameters (a, b, c), namely
(2.184,5.06,3.9) in Fig. 3(a) and (1320,362,33) in
Fig. 3(b). In both cases, synchronization of the active
and passive system occurs; for the first parameter set
the decay is faster than exp(−t), for the second faster
than exp(−10t).

The reason why the coupling scheme (32)–(34)
effectively leads to synchronization for any (bounded)
jerky dynamics can be substantiated by looking at the
corresponding error dynamics

(35)ė = Ae

with the matrix

(36)A=
( 0 1 0

0 0 1
−a −b −c

)
.

Since Eq. (35) constitutes an autonomous linear prob-
lem, the error e = xd − xr approaches the stable equi-
librium e = 0 if A possesses only negative eigenvalues.
All the information of the jerk function J (x, ẋ, ẍ) is
hidden in the signal s = J (xd , yd, zd )+ axd + byd +
czd . Looking at the characteristic equation associated
with A,

(37)λ3 + cλ2 + bλ+ a = 0,
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and taking into account that a, b, c are freely ad-
justable parameters, it is always possible to choose
these parameters in a way that all eigenvalues of A are
negative and smaller than a given value −k with k > 0.
Denoting the eigenvalues of A by −λ1, −λ2 and −λ3,
then the specific selection

a = λ1λ2λ3,

b= λ1λ2 + λ1λ3 + λ2λ3,

(38)c= λ1 + λ2 + λ3

obviously fulfills Eq. (37). The afore-mentioned repre-
sentative examples have been selected by this method;
in Fig. 3(a) the eigenvalues have been chosen to be
−λ1 = −1.2, −λ2 = −1.3 and −λ3 = −1.4, whereas
in Fig. 3(b) −λ1 = −10, −λ2 = −11 and −λ3 = −12
have been used. This corresponds to the choice a =
2.184, b = 5.06, c = 3.9 and a = 1320, b = 362,
c= 33.

The so far discussed decomposition scheme can also
be generalized by using a nonlinear function G(xd)
in order to complicate the determination of all rele-
vant parameters using autosynchronization [18] and
to make the corresponding communication schemes
more secure. Then the transmitted signal is given by
s = J (xd)−G(xd) and the differential equations for
the drive and response system are determined by

ẋ = y,
ẏ = z,

(39)ż=G(x,y, z)+ s.
For the corresponding error dynamics of e = xd − xr
one obtains

(40)ė =
( 0 1 0

0 0 1
Gx Gy Gz

)
e

with the functionsGx ,Gy andGz defined analogously
to the J x, J y, J z in Eq. (14) by exchanging the role of
J and G. Rewriting Eq. (40) as

(41)ė = Ae + Be
with

A=
( 0 1 0

0 0 1
−a −b −c

)
,

(42)B=
( 0 0 0

0 0 0
Gx + a Gy + b Gz + c

)

Fig. 4. Numerically computed time evolution of the synchronization
error |e| for the jerky dynamics (2) with A= 0.61 using the modified
APD scheme (39) and (43) for different values of the parameter q
in Eq. (43) with a = 2.184, b = 5.06, c= 3.9. The synchronization
error decays faster than exp(−t) (solid line) for q = 1. Even if the
parameter q is larger than 1, q = 100, the system synchronize with
an error which decays faster than exp(−t).

we can again adapt the Poincare–Lyapunov technique
used in the previous section to obtain estimates of the
parameters a, b, c that guarantee synchronization.As a
representative example for the outcome of such a mod-
ified APD for jerky dynamics, we take as nonlinear
function

(43)G(xd)= −axd − byd − czd + q|xd |/1000

with a = 2.184, b = 5.06, c = 3.9, the free parame-
ter q and the jerk model (2). Using the Poincare–
Lyapunov technique, one can show that a decay of the
modulus of the error |e| which is faster than exp(−t)
is guaranteed for q � 1. As corresponding numerical
calculations of |e| based on Eqs. (39) and (43) for dif-
ferent values of q (shown in Fig. 4) exemplify, the
bound for exponential decay proportional to exp(−t)
is rather crude and even for q = 100 still fulfilled. Only
for larger values of q , e.g., q = 1000, there is a signif-
icant deviation from an exponential decay.

5. Conclusion

Using a variety of different well-known schemes,
we have investigated if and under what circumstances
elementary flows in form of jerky dynamics can be
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synchronized. Most remarkably, we have shown that
the BK-coupling scheme and the APD decomposition
can be used for that purpose for any functional form
of a chaotic jerky dynamics. By using a specific,
rather simple form of the BKT matrix or a specific
selection of the eigenvalues of the error matrix in the
APD case, we were able to derive estimates for the
corresponding decay of the synchronization error. We
also exemplified our findings by using the piece-wise
linear chaotic model (2). Due to its simple functional
form, its realization as an electronic circuit does
not involve nonlinear elements, but only an inverter,
leading to a highly accurate analog representation of
the dynamical behavior for the whole chaotic control
parameter range and, therefore, serving as an ideal
candidate for potential applications of synchronization
to private communication.

So far our discussion has focused on the synchro-
nization of chaotic jerky dynamics. In a far wider con-
text, however, our investigation is directly applicable
to any three-dimensional dynamical system that can be
transformed to a jerky dynamics. Examples for such
systems are the jerky dynamics of the y-component of
the Rössler model [10] and the variety of jerky dynam-
ics [11] corresponding to Sprott’s algebraically simple
chaotic models [19].
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