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Abstract. – By use of a stochastic generalization of the Hodgkin-Huxley model we investigate
both the phenomena of stochastic resonance (SR) and coherence resonance (CR) in variable
size patches of an excitable cell membrane. Our focus is on the challenge: how internal noise
stemming from individual ion channels does affect collective properties of the whole ensemble.
We investigate both an unperturbed situation with no applied stimuli and one in which the
membrane is stimulated externally by a periodic signal and additional external noise. For the
nondriven case, we demonstrate the existence of an optimal size of the membrane patch for
which the internal noise causes a most regular spike activity. This phenomenon shall be termed
intrinsic CR. In the presence of an applied periodic stimulus, we demonstrate that the signal-
to-noise ratio (SNR) exhibits SR vs. decreasing patch size, or vs. increasing internal noise
strength, respectively. Moreover, we demonstrate that conventional SR vs. the external noise
intensity occurs only for sufficiently large membrane patches, when the intensity of internal noise
is below its optimal level. Thus, biological SR is seemingly rooted in the collective properties
of large ion channel ensembles rather than in the individual stochastic dynamics of single ion
channels.

During the last decade, the effect of stochastic resonance (SR) —a cooperative phenomenon
wherein the addition of external noise improves the detection and transduction of signals in
nonlinear systems (for a comprehensive survey and prominent references, see ref. [1])— has
been studied experimentally and theoretically in various biological systems [2–6]. For example,
SR has been experimentally demonstrated within the mechanoreceptive system in crayfish [2],
in the cricket cercal sensory system [3], for human tactile sensation [4], visual perception [5],
and response behavior of the arterial baroreflex system of humans [6]. The importance of this
SR-phenomenon for sensory biology is by now well established; yet, it is presently not known
to which minimal level of the biological organization the stochastic resonance effect can ulti-
mately be traced down. Presumably, SR has its origin in the stochastic properties of the ion
channel clusters located in a receptor cell membrane. Indeed, for an artificial model system,
Bezrukov and Vodyanoy have demonstrated experimentally that a large parallel ensemble of
the alamethicin ion channels does exhibit stochastic resonance [7]. This in turn provokes
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the question as to whether a single ion channel is able to exhibit SR, or whether stochastic
resonance is the result of a collective response from a finite assembly of channels. Stochastic
resonance in single, biological potassium ion channels has also been investigated both theo-
retically [8] and experimentally [9]. This very experiment did not convincingly exhibit SR in
single voltage-sensitive ion channels. Nevertheless, the SR phenomenon can occur in a single
ion channel if only the parameters are within a regime where the channel is predominantly
dwelled in the closed state, as demonstrated within a theoretical modeling for a Shaker potas-
sium channel [8]. This prominent result, i.e. the manifestation of SR on the single-molecular
level, is not only of academic interest, but is relevant also for potential nanotechnological
applications, such as the design of single-molecular biosensors. The origin and biological
relevance of SR in single ion channels, however, remains still open. Indeed, biological SR
can be a manifestation of collective properties of large assemblies of ion channels of different
sorts. To display the phenomenon of excitability, these assemblies must contain a collection of
ion channels of at least two different kinds —such as, e.g., potassium- and sodium-channels.
The corresponding mean-field–type model has been put forward by Hodgkin and Huxley in
1952 [10] by neglecting the mesoscopic fluctuations which originate from the stochastic open-
ing and closing of channels. SR due to external noise in this primary model and related models
of excitable dynamics has extensively been addressed [11]. These models further display an-
other interesting effect in the presence of noise, namely the so-termed coherence resonance
(CR) [12]: even in the absence of an external periodic signal the stochastic dynamics exhibits
a surprisingly more regular behavior solely due to an optimally applied external noise inten-
sity. A challenge though still remains: Does internal noise play a constructive role for SR and
CR? Internal noise is produced by fluctuations of individual channels within the assembly, and
diminishes with increasing number of channels. For a large, macroscopic number of channels
this noise becomes negligible. Under the realistic biological conditions, however, it may play
a crucial role.

Our starting point is due to the model of Hodgkin and Huxley [10], i.e. the ion cur-
rent across the biological membrane is carried mainly by the motion of sodium, Na+, and
potassium, K+, ions through selective and voltage-gated ion channels embedded across the
membrane. Besides, there is also a leakage current present which is induced by chloride and
other remaining ions. The ion channels are formed by special membrane proteins which un-
dergo spontaneous, but voltage-sensitive, conformational transitions between open and closed
states [13]. Moreover, the conductance of the membrane is directly proportional to the number
of open ion channels. This number depends on the potential difference across the membrane,
V . The different concentrations of the ions inside and outside the cell are encoded by corre-
sponding reversal potentials ENa = 50mV, EK = −77mV and EL = −54.4mV, respectively,
which give the voltage values at which the direction of partial ion currents is reversed [13].
Taking into account that the membrane possesses a capacitance C = 1µF/cm2, Kirchhoff’s
first law reads, in the presence of an external current Iext(t) stimulus,

C
d
dt

V + GK(n) (V − EK) + GNa(m, h) (V − ENa) + GL (V − EL) = Iext(t) . (1)

Here, GNa(m, h), GK(n) and GL denote the conductances of sodium, potassium, and the other
remaining ion channels, respectively. The leakage conductance is assumed to be constant,
GL = 0.3mS/cm2; in contrast, those of sodium and potassium depend on the probability to
find the ion channels in their open conformation. To explain the experimental data, Hodgkin
and Huxley did assume that the conductance of a potassium channel is gated by four indepen-
dent and identical gates. Thus, if n is the probability of one gate to be open, the probability
of the K+ channel to stay open is PK = n4. Moreover, the gating dynamics of sodium channel
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is assumed to be governed by three independent, identical gates with opening probability m
and an additional one, being different, possessing the opening probability h. Accordingly, the
opening probability of the Na+ channel (or the fraction of open channels) reads PNa = m3h.
The conductances for potassium and sodium thus read

GK(n) = gmax
K n4, GNa(m, h) = gmax

Na m3h , (2)

where gmax
Na = 120mS/cm2 and gmax

K = 36mS/cm2 are the maximal conductances. Further-
more, the gating variables (probabilities) m, h and n obey the two-state, “opening-closing”
dynamics,

ṁ = αm(V ) (1 − m) − βm(V ) m,

ḣ = αh(V ) (1 − h) − βh(V ) h , (3)
ṅ = αn(V ) (1 − n) − βn(V ) n ,

with the experimentally determined voltage-dependent transition rates, reading [10,14]

αm(V ) =
0.1(V + 40)

1 − exp[−(V + 40)/10]
, βm(V ) = 4 exp[−(V + 65)/18] ,

αh(V ) = 0.07 exp[−(V + 65)/20], βh(V ) = {1 + exp[−(V + 35)/10]}−1 , (4)

αn(V ) =
0.01 (V + 55)

1 − exp[−(V + 55)/10]
, βn(V ) = 0.125 exp[−(V + 65)/80] .

These nonlinear Hodgkin-Huxley equations (1)-(4) present a cornerstone model in neurophys-
iology. Within the same line of reasoning, this model can be generalized to a mixture of
different ion channels with various gating properties [14, 15]. An essential drawback of this
model, however, is that it operates with the average number of open channels, thereby dis-
regarding corresponding number fluctuations (or the so-called channel noise [16]). Thus, it
can strictly be valid only within the limit of very large system size. We emphasize, however,
that the size of an excitable membrane patch within a receptor cell is realistically finite. As
a consequence, the role of internal fluctuations cannot be a priori neglected; as a matter of
fact, as shown below, they do play a key role for SR and CR.

The role of channel noise for the neuron firing has been studied by Lecar and Nossal as early
as in 1971 [17]. The corresponding stochastic generalizations of Hodgkin-Huxley model (within
a kinetic model which corresponds to the above-given description) has been put forward by
DeFelice et al. [18] and others; see [16] for a review and further references therein. The main
conclusion of these previous studies is that the channel noise can be functionally important
for neuron dynamics. It particular, it has been demonstrated that channel noise alone can
give rise to a spiking activity even in the absence of any stimulus [16,18].

The stochastic kinetic scheme [16, 18], however, necessitates extensive numerical simula-
tions [19]. To aim at a less cumbersome numerical scheme we use a short-cut procedure
that starts from eq. (3) in order to derive a corresponding set of Langevin equations for a
stochastic generalization of the Hodgkin-Huxley equations of the type put forward by Fox and
Lu [20]. Following their reasoning we substitute eqs. (3) with the corresponding Langevin
generalization:

ṁ = αm(V ) (1 − m) − βm(V ) m + ξm(t) ,

ḣ = αh(V ) (1 − h) − βh(V ) h + ξh(t) , (5)
ṅ = αn(V ) (1 − n) − βn(V ) n + ξn(t) ,
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with independent Gaussian white-noise sources of vanishing mean. The noise autocorrelation
functions depend on the stochastic voltage and the corresponding total number of ion channels,
as follows:

〈ξm(t)ξm(t′)〉 =
2

NNa

αmβm

(αm + βm)
δ(t − t′) ,

〈ξh(t)ξh(t′)〉 =
2

NNa

αhβh

(αh + βh)
δ(t − t′) , (6)

〈ξn(t)ξn(t′)〉 =
2

NK

αnβn

(αn + βn)
δ(t − t′) .

In order to confine the conductances between the physically allowed values between 0 (all
channels closed) and gmax (all channels open) we have implemented numerically the constraint
of reflecting boundaries so that m(t), h(t) and n(t) are always located between zero and
one [20].

Moreover, the numbers NNa and NK depend on the actual area S of the membrane patch.
With the assumption of homogeneous ion channels densities, ρNa = 60µm2 and ρK = 18µm2,
the following scaling behavior follows:

NNa = ρNaS, NK = ρKS . (7)

Upon decreasing the system size S, the fluctuations and, hence, the internal noise increase.
Before integrating the system of stochastic equations (1), (5), (6) numerically, the external

stimulus Iext(t) must be specified. We take a periodic stimulus of the form

Iext(t) = A sin(Ωt) + η(t) , (8)

where the sinusoidal signal with amplitude A and angular frequency Ω is contaminated by the
Gaussian white noise η(t) with the autocorrelation function

〈η(t)η(t′)〉 = 2Dext δ(t − t′) , (9)

and noise strength Dext. The numerical integration is carried out by the standard Euler
algorithm with the step size ∆t ≈ 2 · 10−3 ms. The “Numerical Recipes” routine ran2 is
used for the generation of independent random numbers [21] with the Box-Muller algorithm
providing the Gaussian distributed random numbers. The total integration time is chosen
to be a multiple of the driving period TΩ = 2π/Ω, as to ensure that the spectral line of the
driving signal is centered on a computed value of the power spectral densities. From the
stochastic voltage signal V (t) we extract a point process of spike occurrences {ti}:

u(t) :=
N∑

i=1

δ(t − ti) , (10)

where N is the total number of spikes occurring during the elapsed time interval. The occur-
rence of a spike in the voltage signal V (t) is obtained by upward-crossing a certain detection
threshold value V0. It turns out that the threshold can be varied over a wide range with
no effect on the resulting spike train dynamics. The power spectral density of the spike
train (PSDu), the interspike interval histogram (ISIH) and the coefficient of variation (CV)
have been analyzed. The coefficient of variation CV, which presents a measure of the spike
coherence, reads:

CV :=

√〈T 2〉 − 〈T 〉2
〈T 〉 , (11)
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Fig. 1 – (a) The coefficient of variation (CV) in (11) is plotted vs. the area S in the absence of
external noise Dext = 0 for periodic driving with A = 1.0 µA/cm2 and Ω = 0.3 ms−1 (solid line) and
without any stimulus (dotted line). The ISIH are depicted in the presence of the periodic signal for
S = 1 µm2 (b), see downward arrow in (a), and S = 32 µm2 (c), see upward arrow in (a). The vertical
lines denote the driving period and its first two multiples.

where 〈T 〉 := limN→∞ 1
N

∑
(ti+1 − ti) and 〈T 2〉 := limN→∞ 1

N

∑
(ti+1 − ti)2 are the mean

and mean-squared interspike intervals, respectively. From the PSDu we obtain the height of
the spectral line of the periodic stimulus as the difference between the peak value and its
background offset. The signal-to-noise ratio (SNR) is then given by the ratio of signal peak
height to the background height (in the units of spectral resolution of signals).

We have analyzed the spike coherence in the autonomous, nondriven regime (i.e., we use
Iext = 0) as a function of the decreasing cluster size. Our simulation reveals, cf. fig. 1(a),
the novel phenomenon of intrinsic coherence resonance, where the order in the spike sequence
increases; i.e. the CV is decreasing, solely due to the presence of internal noise. The fully
disordered sequence (which corresponds to a Poissonian spike train) would assume the value
CV = 1. We note, however, that near S = 1µm2 (optimal dose of internal noise), CV ≈ 0.44,
i.e. the spike train becomes distinctly more ordered! For S < 1µm2, the internal noise
increases further beyond the optimal value and destroys the order in spiking again. It is
worth noting that for S < 1µm2 the model reaches limiting validity; in that regime the
kinetic scheme [16, 18, 19] should be used instead. Such a corresponding study, however,
has been put forward independently by Jung and Shuai [19]; their results are in qualitative
agreement with our findings. Next we switch on an external sinusoidal driving: Interestingly
enough the interspike intervals distribution is not affected for small patch sizes, cf. fig. 1(b) for
S = 1µm2. In this case, the spike-activity possesses an internal rhythm which dominates over
the external disturbances. For larger patch sizes the internal noise decreases and the periodic
drive induces a reduction of the CV as compared to the undriven case, note the right arrow
in fig. 1(a). In this latter regime the external driving rules the spiking activity as depicted
with the characteristic peaks in the ISIH in fig. 1(c) at multiple driving periods.

Next, the focus is on the SNR in the absence of external noise, see fig. 2(a). Here we
discover the novel effect of genuine intrinsic stochastic resonance, where the response of the
system to the external stimulus is optimized solely due to internal, ubiquitous noise. For
the given parameters it occurs at S ≈ 32µm2. For S < 32µm2 growing internal noise
monotonically deteriorates the system response. Under such circumstances, one would predict
that the addition of an external noise (which corresponds to the conventional situation in
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Fig. 2 – The signal-to-noise ratio (SNR) for an external sinusoidal stimulus with amplitude A =
1.0 µA/cm2 and angular frequency Ω = 0.3 ms−1 for different observation areas: (a) No external
noise is applied; (b) SNR vs. the external noise for the system sizes indicated by the arrows in (a).
S = 8 µm2 (NK = 144, NNa = 480): solid line through the diamonds, S = 16 µm2 (NK = 288,
NNa = 960): long-dashed line connecting the circles, S = 32 µm2 (NK = 576, NNa = 1920): short-
dashed line through the triangles, S = 64 µm2 (NK = 1152, NNa = 3840): dotted line connecting the
squares. The situation with no internal noise (i.e., formally S → ∞) is depicted by the dotted line
connecting the filled dots.

biological SR studies) cannot improve SNR further, i.e. conventional SR will not be exhibited.
Our numerical simulations, fig. 2(b), fully confirm this prediction. Conventional stochastic
resonance therefore occurs only for large membrane patches beyond optimal size, and reaches
saturation in the limit S → ∞ (limit of the deterministic Hodgkin-Huxley model). Thus, the
observed biological SR [2,3] is rooted in the collective properties of large ion channels arrays,
where ion channels are globally coupled via the common membrane potential V (t).

In conclusion, we have investigated stochastic and coherence resonance in a noisy gener-
alization of the Hodgkin-Huxley model for excitable biological cell membrane patches. The
spontaneous fluctuations of the membrane conductivity due to the individual channel dynam-
ics has systematically been taken into account. We have shown that the excitable membrane
patches with an observation area around S ≈ 1µm2 exhibit a rhythmic spiking activity op-
timized by omnipresent internal noise. In other words, the collective dynamics of globally
coupled ion channels become more ordered solely due to internal noise. This new effect can
be regarded as the intrinsic coherence resonance phenomenon; it presents a first important
result of our work. This very finding has also been confirmed independently within a dif-
ferent approach by Jung and Shuai [19]. A second main result of this study refers to the
phenomenon of intrinsic SR; thereby the internal noise alone gives rise to a SR behavior, see
fig. 2(a). Conventional SR vs. the external noise intensity takes place as well for sufficiently
large membrane patches where the internal noise strength alone is not yet at its optimal value.
We hence conclude that observed biological SR likely is rooted in the collective properties of
globally coupled ion channel assemblies.
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