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Spatially periodic stochastic system with infinite globally coupled oscillators
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In this paper we study a spatially periodic stochastic system with infinite globally coupled oscillators driven
by a constant force F. With two typical models we show that when F=0 there is a nonequilibrium transition
between the state with zero mean field (s=0) and the state with nonzero mean field (s #0). For model I, the
transition is not a phase transition, while for the model II it is (second order). In addition, we find that for
coupled oscillators driven only by additive noises, when F=0 a transport may emerge if the nonzero mean
field breaks the symmetry of the systems. With varying /' a continuous or discontinuous transition between
state s>0 and state s<<0 will appear. The mean field or current sometimes exhibits hysteresis as a function

of F.
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I. INTRODUCTION

Noise-induced nonequilibrium phenomena in nonlinear
systems have recently attracted a great deal of attention in a
variety of contexts [1]. In general, these phenomena involve
a response of the system that is not only produced or en-
hanced by the presence of the noise, but is optimized for
certain values of the parameters of the noise. One example is
the phenomenon of stochastic resonance [2], wherein the re-
sponse of a nonlinear system to a signal is enhanced by the
presence of noise, and maximized for certain values of the
noise parameters. Another is the ‘‘Brownian motor,”’
wherein for Brownian motion in stochastic spatial periodic
potentials the spatial asymmetry or noise asymmetry leads to
a systematic transport whose magnitude and even direction
can be tuned by the parameters of the noise [3]. A third is the
nonequilibrium transition for systems with finite or infinite
coupled oscillators, which is probably a phase transition (of
first or second order) [4—6] or not [6,7]. For these systems,
the most exciting factor is that a reentrant second order phase
transition was found for a general spatially extended model
by Van den Broeck et al. [4]. Afterward, this phenomenon
was found in many systems with coupled oscillators. A
fourth such phenomenon is resonant activation [8]. Here the
mean first passage time (MFPT) of a particle driven by (usu-
ally white) noise over a fluctuating potential barrier exhibits
a minimum as a function of the parameter of the fluctuating
potential barrier (usually the flipping rate of the fluctuating
potential barrier).

In this paper, we will study a spatially periodic system
with infinite noise-driven overdamped oscillators which are
globally coupled by the mean field and driven by a constant
force. The nonequilibrium transition [4—7] and the transport
[3] that probably occurs will be studied in detail. The setup
of the problem is arranged as follows: We first consider a
general model consisting of infinite globally coupled oscilla-
tors. Then, using formulas obtained by us, with two typical
models we study the nonequilibrium transition and transport
of particles.

II. A GENERAL MODEL

We consider a model whose Langevin equations of oscil-
lators are (in dimensionless form)
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xi=f(x;)+g(x)es+n(t)+F,

dUy(x;)

f(xi)z—T, i:1,2,3,... (1)

where U, (x;) is spatially periodic function of x with a period
L, g(x;) is a linear or nonlinear function of x, #;(¢) are
Gaussian white noises with zero mean and correlation func-
tions (7;(¢)n,(t'))=2D5;6(t—1t"), e is a positive cou-
pling constant, the mean field s=1imNHw(l/N)25V: J(x),
and F is the constant force.

A coupling term such as the one in Eq. (1) appeared in
some models for the coupled oscillators [6,7]. Now the cou-
pling between the oscillators is not a constant, but a function
of x (linear or nonlinear). In Sec. V, we will give a reason
why g(x) is taken as a function of x and not as a constant in
the paper.

In the case of N—oo, all the oscillators have an identical
evolution given by the nonlinear stochastic equation

x=f(x)+g(x)es+n(1)+F, 2

where s(7)=(f(x(t))), which represents the time-dependent
order parameter.

The Stratonovich interpretation of Eq. (2) yields the
Fokker-Planck equation [9]

(?[P(x,s,t)=—(?xJ(x,s,t), (3)
with the probability current J(x,s,t) given by
J(x,5,0)=A(x,5)P(x,5,1) =, B(x,5) P(x,s,1),  (4)

where 4(x,s)=f(x)+g(x)es+F and B(x,s)=D.

In the stationary state, the distribution P(x,s,?)
—P(x,s), and the current J(x,s,t)—J(x,s)=const. Then
we have

J=A(x,s)P(x,s)—d.DP(x,s). (5)

Below we derive the constant probability current and
the stationary probability density. The effective potential
for Eq. (2) is U(x,s)=Uy(x)+sU,+U,, with U,
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=—[fx)dx, U=~ [yeg(x)dx, and U,=—Fx. From Eq.
(5), and using the periodic boundary condition P(0,s)
=P(L,s) and J(0)=J(L)=J=const, we can easily obtain

J=M{1—exp[sU,(L)/D—FL/D]}, (6)

where M= P(L,s)B(L)/fdx exp[U(x,s)/D], which is the
normalization constant for the stationary probability distribu-
tion. Here it needs to be explained that the symmetry or
asymmetry of the original spatial potential Uy(L) does not
affect the transport, since Uy(L)=0. Substituting Eq. (6)
into Eq. (5), and noting that P(0,s)=P(L,s), we can obtain
the stationary probability density

P(x,s)=M

—U(x)/D
exp[l)¢ é exp[U(x,)/D_U(L)n(x

—x")/D]dx". (7)

In the limit of N— o, the self-consistent Weiss mean-field
approach of Desai and Zwanzig is valid [4-7,10—12], and
the Weiss mean field has to comply with the condition

L —
szf S(x)P(x,s)dx=F(s); (8)
0

this is a self-consistency equation, whose solution yields the
dependence of s with the system parameters.

First we consider the case of F=0. In the presence of
spatial symmetry, Eq. (8) always has a solution s =0. With
the appearance of multiple solutions, we can find s#0. If
U,(L)=0, there is a nonequilibrium transition between the
state s =0 and the state s # 0, which is not a phase transition
since the symmetry is not broken; if U(L)#0, a nonequi-
librium phase transition with symmetry breaking will appear.
For the former case, the current is zero; for the latter
case, the current is probably not [the current J=N[1
—exp(U,(L)s/D)]; please see Secs. III and IV]. In the pres-
ence of spatial asymmetry, Eq. (8) does not have the solution
s=0, but only the solution s #0. So there is not a nonequi-
librium transition between the state s =0 and the state s #0
(the system only has a state s #0). Now the current of the
transport is also determined by J= N[ 1 —exp(U,(L)s/D)]. [If
U(L)=0, we have J=0; if U;(L)#0, we probably have
J#0.]

If the inputting constant force is not zero, the system has
only one state s #0 with asymmetry. Now from correspond-
ing formulas we can investigate the dynamic characteristic
features of the system, including the nonequilibrium transi-
tion and the transport of particles (see the studies below). It
needs to be explained that if F is large, the effect of the
coupling between oscillators on the system will become
small, in contrast with the case for a small value of F.

Below we consider two typical models. One is the case
when U (L)=0; the other is the one when U;(L)#0. In
order that we can clearly illustrate the effect of the mean
field on the system, we only consider the spatially symmetric
case.
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III. MODEL I: CASE OF U,(L)=0

In this section, we focus on the simplest possible ex-
amples: f(x;)=cosx; and g(x;)=—sinx; (in dimension-
less form). From corresponding formulas in Sec. II, we
can obtain J=0, P(x,s)=N{exp[(—Uy(x)/D—sU(x))/
D — Uy(x)/D]}$exp[Uyx")/D +sU,(x")/ D+ Uy(x")/D]dx’,
and s=¢f(x)P(x,s)dx=F(x), with Uy(x)= —sin(x), U,
=—(cosx—1), and U,=—Fx.

First we study the case of F/=0. It can be verified that the

function }?(s) =¢f(x)P(x,s)dx is a smooth, monotonic, and
odd function. When 8S17(s)$ 1, the function F= I«T(s)
crosses the function F=s at s=0 (stable); when ﬁ_J7 >1, the
function F= 14?(s) crosses the function F=s at s=0 (un-
stable) and s = + 59 (stable, s°>0). In Fig. 1(a) we plot the
function F= F(s) versus s with D=0.5, and e=1, 5, and
10, respectively. In this figure the diagonal line is determined

by F=s. It is clear that the condition that the system transits

from state s=0 to state s#0, or vice versa, is d,F(s)|,—
=1. The transition line is plotted in Fig. 1(b). The region
below the curve corresponds to the zero mean field state, and
that above the curve to the symmetric nonzero mean field
state. At the transition line there is a bifurcation of the prob-
ability density. The nonzero value of the mean field is rep-
resented in Fig. 1(c) by the equation s =$f(x)P(x,s)dx (the
order parameter of this transition is m =|s|). The transition
has the following characteristic features: (1) The transition is
not a phase transition, since there is no symmetry breaking
even if the order parameter changes continuously. (2) The
state s#0 is a bistable one with s=*+s5© (5(9>0). (3)
With the increase of the noise strength (or the coupling con-
stant) the transition occurs at a larger value of the coupling
constant (or the noise strength).

If F#0, superficially the particles will move along the
direction of the force. However, owing to the coupling
among different particles, some anomalous properties, such
as negative mobility, hysteresis, and so on, probably appear
[11]. Now the mean field is also determined by the equation
s=6¢f(x)P(x,s)dx=F(x) with the parameters F, e, and D.
We have studied the mean field as a function of / when the
noise strength is definite but the coupling is varied. Studies
showed that there are two kinds of coupling: in one, the
mean field is a continuous function of F [see Fig. 2(a)]; in
the other, the mean field is a discontinuous function of F [to
see Figs. 2(b) and 2(c)]. For the former, there is a continuous
transition from state s>0 to state s<<0, or vice versa [see
Fig. 2(a)]. For the latter, there is a discontinuous transition
from state s>0 to state s<<0, or vice versa [see Fig. 2(b)].
The transition diagram (or the transition line) is given in Fig.
3(a). In the upper region the system is in state s>0; in the
lower region it is in state s<<0; in the shadowed region it is
a state composed of s>0 and s <0, where hysteresis for the
mean field versus the constant force appears. Below we give
the characteristic features of the transitions. (1) There is a
critical value e, of the coupling e. When e<<e( a continuous
transition occurs; while when e>¢ a discontinuous transi-
tion occurs. The critical value e, for the appearance of the
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FIG. 1. When F=0 for model I, (a) the function F= F(s) VS s
with D=0.5and e=1, 5, and 10, respectively (the diagonal line is
determined by F- =s); (b) the transition line for e vs D; and (c) the
nonzero mean field vs e with D=0.5.

discontinuous transition as a function of the noise strength D
is depicted in Fig. 3(b). From this figure we can find that
increasing the noise strength leads to a raise of the critical
value e. (2) The transition is not a phase transition, since
with the appearance of the transition there is no symmetry
breaking. (3) The discontinuous transition is doubly unidi-

PHYSICAL REVIEW E 64 011106

(a)

w
-1 1 L 1 I 1
-4 -2 0 2 4
F
1 T T T T T
\ ®
0.5 1
e=3
%) or B
=051 b
-1 I 1 1 I 1
-4 -2 0 2 4
F
1 T T T T T
©
0.5F 1
e=
%) Or B
-05F 1

FIG. 2. The mean field vs F for model I for different values of
e, (a) e=1, (b) e=3, and (c) e=5, with D=0.5.

rectional, which can be observed from Fig. 2(b). The line for
the mean field versus the constant force presents an anoma-
lous hysteresis loop. (4) The transitions from state s>0 to
state s <0, and vice versa, are symmetric with respect to F
=0. (5) For the discontinuous transition, with increasing
coupling strength the transition requires a greater value of
the constant force F (correspondingly, the anomalous hyster-
esis will grow with the increase of the coupling). In addition,
if the coupling strength is large enough, in addition to the
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FIG. 3. F#0 for model 1. (a) The transition diagram for the
transition between the state s<<0 and the state s>0, where the
dashed line presents the continuous transition and the solid lines the
discontinuous one transition. (b) The critical value e, vs D for the
appearance of the discontinuous transition.

original discontinuous transition from state s>0 to state
s<<0, or vice versa, two other double discontinuous transi-
tions will appear which are in state s>0 and state s<<O0,
respectively [see Fig. 2(c)]. In the case of large F, the abso-
lute value of the mean field will become small, and there will
be no doubly discontinuous transition for the mean field.
The transport of particles is also studied for the current
versus the constant force. It is shown that when the coupling
is not large enough, there are no hysteresis and negative
mobility for the current versus the constant force, as ob-
served in Ref. [7] [see Figs. 4(a) and 4(b)]. However, when
the coupling is large enough, normal and anomalous hyster-
esis will appear [see Figs. 4(c), 5(a) and 5(b); Figs. 5(a) and
5(b) are enlargements or the corresponding parts in Fig.
4(c)], but no negative mobilities appear. From Figs. 2(c),
4(c), 5(a), and 5(b), we can note that the appearance of the
hysteresis for the current is due to the hysteresis for the mean
field, and the direction of the hysteresis for the current is
opposite to that for the mean field. In Fig. 2(b), a hysteresis
for the mean field appears, but owing to the fact that the
spatial coupling among different oscillators is not large
enough, there is no hysteresis for the current. If F is large,
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FIG. 4. The probability current J vs F for different values of e.
(a) e=1, (b) e=3, and (¢) e=5, with D=0.5 for model I.

the particles will move along the direction of the force, and
there will be no hysteresis for the current.
IV. MODEL II: CASE OF U{(L)#0
Now we consider the case of U;(L)#0. The special ex-
ample studied by us is (in dimensionless form)

x;=cosx;+ (—sinx;+ 1)es+ 5;(t)+F, 9)

where i=1,2,3, ..., and the mean field s and noises {7;(7)}
are the same as those in Eq. (1). Then we can obtain U,
=—ginx, U=—e(cosx—1+x/(2m)), and U,=—Fx; here
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FIG. 5. Enlargements for the corresponding parts (surrounded
by dashed lines) in Fig. 4(c). (a) corresponds to the left part of Fig.
4(c) and 4(b) to the right part.

we have dropped the subscript i for simplicity, since, when
N— oo, all the oscillators have an identical evolution.

We now turn to a more detailed analysis of Eq. (8) in the
case of F=0. Obviously, the trivial solution s=0 always
exists (the system is in a symmetric state). With the appear-
ance of multiple solutions, we can find ‘‘ordered’’ phases
with an order parameter m=|s|#0 (the symmetry of the
system is broken). The critical condition should be

F'(s=0)=1. (10)

In Fig. 6(a), we plot the phase transition line in light of Eq.
(10). The nonzero mean field is depicted in Fig. 6(b) with
D=0.5 (the dashed line is that of model I). From Figs. 6(a)
and 6(b) we can observe that the transition line and its order
parameter line are basically similar to those of model I. But
there are differences between them. (1) The former is a phase
transition (of second order); while the latter is not. (2) For
the former, in the state s # 0, the current is probably not zero,
while for the latter it is.

The probability current versus the coupling constant is
plotted in Fig. 6(c) with different values of D (D=0.5, 2,
and 5, respectively) and F=0. The figure shows the follow-
ing. (1) For given values of the noise and coupling strength,
the nonzero current J does not have a definite sign (J
=%Jy, Jy>0). One unavoidably wants to ask a question,
i.e., if the noise and the coupling constant are definite, will
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the current be positive or negative? To answer this question,
we must first consider the hysteresis or the current versus the
constant force F. In Fig. 6(d), we plot the line for the current
as a function of the constant force with D=0.5 and e=1.5.
From the figure we can see that there is a normal hysteresis
for the current versus the constant force. Thus, if the constant
force changes from positive to zero, when =0 we have J
>0; otherwise, i.e., if the constant force changes from nega-
tive to zero, when F'=0 we have J<0. If the constant force
F is not added to every oscillator, the net current will be
zero. The reason for this is that there are two currents (J,
=*Jy, Jo>0) produced for the oscillators, and conse-
quently the net current must be that J,,,=(J,—Jy)=0. (2)
Only in the symmetry-breaking phase state (s #0) is there a
nonzero current. (3) The current versus the coupling constant
attenuates to zero very quickly. Thus, even if in the state s
#0, when e is large enough, the current is almost zero (for
example, when D=0.5, if e>4, the current J~0). (4) In the
phase state s # 0, the small value e of the coupling constant
plays a role of destructive influence on the asymmetry of the
system, so the |J|-e response curve will have a positive
slope. However, for a larger value of e, the central role will
be to produce coherent motion with increases as e increases;
then the |J|-e curve goes down. Thus, finally, we can obtain
a peaked |J|-e response curve, at the peak of which a phe-
nomenon of resonance will occur. (5) With increasing noise
strength greater values of the coupling constant are required
to induce the current.

Below we analyze the current that emerges when F=0.
For uncoupled oscillators, we know that, if a spatially peri-
odic system is driven by only thermal additive noises (the
temperature is a constant), no transport can occur [transport
occurring with thermal additive noises means that thermal
fluctuation (only one heat source) is converted into work,
and implies a violation of the second law of thermodynam-
ics]. This is only for uncoupled oscillators. If the oscillators
are coupled together globally or locally with the mean field,
and the nonzero mean field can break the symmetry of the
system, transport will probably be produced even if the sys-
tem is only driven by the additive noises. Now the energy for
the transport stems from the noises and the nonzero constant
force. Superficially, it seems that when F=0, an isolated
system can transfer energy to the surroundings. Obviously,
this is very incorrect, since it violates the second law of
thermodynamics. For the current to be nonzero when F=0
requires a precondition. This is that the constant force
changes from nonzero to zero. If there is not this condition,
when F'=0 no transport occurs. With the change of the con-
stant force, when F'=0 there are still some energies con-
tained in the system, which are produced when F#0. Thus a
nonzero net jet still exists when F=0. The reason for this
phenomenon occurring here is that when =0 the nonzero
mean field can break the symmetry of the system.

With varying F, there are still the same continuous and
discontinuous transitions for the mean field as studied in Sec.
II1. Here, in order to avoid unnecessary repetition, we do not
present corresponding figures that are basically similar to the
ones in Sec. III; nor do we give discussions of the continuous
and discontinuous transitions occurring here.
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FIG. 6. Model II. (a) The phase transition line when F=0. (b) The nonzero mean field vs e (the solid line); the dashed line stands for
the model I, with D=0.5 and F=0. (¢) When F=0, the current vs e for different values of D (D=0.5, 2, and 5, respectively). (d) The

normal hysteresis for the current vs ' with e=1.5 and D=0.5.

The transport of particles for the current versus the con-
stant force is studied. We find the following. (1) There is no
negative mobility for the current versus the constant force.
(2) If the coupling strength is small, there are also no hys-
teresis. (3) When the coupling strength is near a critical value
e=e, where when F'=0, the absolute value of the current
has a peak as the function of e, and a normal hysteresis will
arise [see Fig. 6(d)]. (4) When the coupling strength is large
enough, normal and anomalous hysteresis will appear simul-
taneously. We note that for the above features of the current
versus the constant force of model II, only feature (3) is
different from that of model I. This is because when F=0 a
nonzero current for model II will be produced, owing to the
symmetry breaking induced by the nonzero mean field.

V. CONCLUSION AND DISCUSSION

In conclusion, we have studied a spatially periodic sto-
chastic system with infinite globally coupled oscillators sub-
ject to a constant force F. With two typical models we have
found that when F=0 there is a nonequilibrium transition
between state s =0 and state s # 0. For model I, the transition

is not a phase transition, since the symmetry of the system
has not been broken, even though it is between the “‘disor-
der’’ state and the ‘‘order’’ state. For model II, the transition
is second order, since the symmetry of the system has been
broken and the order parameter changes continuously, and
possesses features similar to those observed at the second
order equilibrium phase transitions: a divergence of the cor-
relation length and the susceptibility, a critical slowing
down, and a scaling behavior. In addition, we have found
that for coupled oscillators, even if they are only driven by
additive symmetric noises (in this paper, we set them as
Gaussian white noises), when F=0 a net current for the
particles may emerge if the current versus F has a hysteresis
near F=0. With varying F a continuous or discontinuous
transition between state s>0 and state s<<0 will appear.
This transition is not a phase transition, since no symmetry
breaking occurs even though the order parameter changes
continuously or discontinuously. Moreover, hysteresis for
the mean field or the current can sometimes be found as
functions of F. This is because a nonzero mean field can
break the symmetry of the system.

Model (1) given in the paper is theoretically mathematical
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and physical. It makes us reminiscent of the work of Shiino
[12]. In Ref. [12], Shiino proved the H theorem in an
asymptotic approach, and showed a critical slowing down of
order-parameter fluctuations for a bistable ensemble and
g(x)=1. We suppose that our models also satisfy the H
theorem (we will give the proof elsewhere). For our model
II, when F=0 there is a nonequilibrium second phase tran-
sition, which has an interesting feature: a critical slowing
down (since this feature is general for the second order phase
transition).

In our paper, the function g(x) is set as a linear or non-
linear function of x. If g(x)=const, Eq. (8) in the case of
F=0, has only the trivial solution s=0, and there is no
nonequilibrium transition between state s=0 and state
s#0 for the system (see Secs. Il and IV); when F#0, al-
though s is nonzero and is a function of F, e, and D, the
appearance of characteristic features such as the discontinu-
ous transition between s>0 and s<<0 and the hysteresis for
the mean field and the current (see Secs. III and IV) will not
exist; this is because the coupling between the oscillators is
too simple, and there is not enough effect on the system with
changing x. We have made a numerical simulation in the
case of g(x)=1, and found no phenomena of discontinuous
transition and hysteresis.

For a single oscillator we can find spontaneous oscilla-
tions (a running solution). The effect of the coupling term
[i.e., esg(x)] on this behavior depends on the structure of the
effective potential when adding the coupling. For example,
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in the case of the same period for an effective potential with
coupling and the one without coupling, when adding the cou-
pling, if the potential barrier becomes lower and the potential
well more shallow, the coupling term can enhance the spon-
taneous oscillations; if the barrier becomes higher and the
well deeper, the coupling term can weaken this behavior. If
the external constant force is large, the effective potential
function will have a large average slope, and the spontaneous
oscillations will become weaker.

The system considered here consists of an infinite number
of globally coupled oscillators driven by noises. When the
oscillators are finite, the features of the system will change.
For example, in Ref. [7], when the oscillators are finite, the
system has a transition between a state with zero mean field
and a state with nonzero mean field. However, when the
oscillators are infinite, no transition occurs in the system.
Thus, in our paper, the case when the oscillators are finite
remains to be studied. In addition, the systems we studied in
this paper are globally coupled and driven only by additive
noises. If the oscillators are locally coupled, the results are
the same. If introducing multiplicative noises in our systems,
we suppose that the reentrant transition found by Broeck
et al. [4] will probably appear.
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