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Transport of particles for a spatially periodic stochastic system with correlated noises
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The transport of particles for a spatially periodic stochastic system driven by two multiplicative noises and
one additive noise ~between which there are correlations! is investigated for the overdamped and underdamped
cases. It is shown that ~i! the probability current can be positive, zero, or negative; ~ii! the movement of the
particles represents the phenomenon of resonance as a function of the additive noise strength. For the under-
damped case, the particles with different mass can be separated by controlling the system or the noise param-
eters. In particular, a reversal of the flux can be induced by controlling the correlations between the additive
and multiplicative noises.
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I. INTRODUCTION

Recently, there has been increasing interest in studying
the noise-induced transport of Brownian particles for sys-
tems with a spatially periodic potential field. It has been
shown that the asymmetry of the potential @1,2#, the asym-
metry of the driving noise @3#, and the input signal ~no noise,
time correlation, or constant! @1,4# are ingredients for the
transport.

The recent burst of this work is motivated in part by the
challenge of explaining the unidirectional transport of mo-
lecular motors in the biological realm @5#. Another source of
motivation arises from the new methods of separation or
segregation of Brownian particles @6#, and more recently in
the recognition of the ‘‘ratchet effect’’ @1,7#. Now the idea of
noise-caused transport has been applied to biomolecular mo-
tor systems, Brownian motor systems, and quantum systems
@including surface electromigration, Josephson-junction ar-
rays, cold atoms ~with an asymmetric optical lattice!, super-
conductors, and semiconductor heterstructures ~with rocked
electron ratchets!#.

However, most of the models ~classical, not quantum! so
far deal with overdamped Brownian particles in which the
inertial term due to the finite mass of the particles is ne-
glected. The transport of underdamped particles in systems
driven by noise has been studied only in a few works @8# that
consider the mass of the particle. In this paper, we shall
consider a model with a spatially periodic potential driven by
one additive noise and two multiplicative noises, which are
correlated, and investigate the transport of particles in the
overdamped and underdamped cases.

II. MODEL

We consider a model whose Langevin equation is ~in di-
mensionless form!

mẍ1 ẋ5 f ~x !2j1~ t !g1~x !2j2~ t !g2~x !1h~ t !, ~1!

where f (x)52J1 sin(x/2)2J2 sin(x1x0), g1(x)5sin(x/2),
and g2(x)5sin(x1x0). @The common period of the functions
f (x), g1(x), and g2(x) is 4p .# The multiplicative noises
j i(t) (i51,2) and the additive noise h(t) represent Gaussian
white noises, and m is the value of dimensionless mass for
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the particle. ~Here the viscous friction strength is assumed to
equal 1.! In general, we express the influence of internal
fluctuations on the system as additive noise and the effect of
external environmental fluctuations on the system as multi-
plicative noise. Here we assume that the external environ-
mental fluctuations can influence the internal fluctuations. So
the additive and multiplicative noises are not independent
~there are correlations between them!. The statistical proper-
ties of j i(t) (i51,2) and h(t) are ^j i(t)& f5^h(t)& f50,
^j i(t)j j(t8)& f52D id i jd(t2t8), ^h(t)h(t8)& f52Dd(t2t8),
and ^h(t)j i(t8)& f52l iADD id(t2t8) (21<l i<1), where
^& f represents the average over noise. In this paper, Eq. ~1! is
given in dimensionless form, so the variables x and t and the
parameters D, D i , l i , and m are dimensionless.

Equation ~1! can be transformed into

mẍ1 ẋ5 f ~x !1j1~ t !@2sin~x/2!1l1AD/D1#

1j2~ t !@2sin~x1x0!1l2AD/D2#1h8~ t !, ~2!

in which h8(t)5h(t)2l1AD/D1j1(t)2l2AD/D2j2(t).
The statistical properties of h8(t) are ^h8(t)&50 and
^h8(t)h8(t8)&52D(12l1

22l2
2)d(t2t8). Here the noises

j i(t) and h8(t) are no longer correlated.

III. OVERDAMPED CASE

For the overdamped case, one can use the adiabatic ap-
proximation ẍ50. Then Eq. ~2! becomes

ẋ5 f ~x !1j1~ t !@2sin~x/2!1l1AD/D1#

1j2~ t !@2sin~x1x0!1l2AD/D2#1h8~ t !. ~3!

The Stratonovich interpretation of the stochastic differential
equation ~3! yields the Fokker-Planck equation @9#

] tP~x ,t !52]xA~x !P~x ,t !1]x
2B~x !P~x ,t !, ~4!

where A(x)52J1sin(x/2)2J2sin(x1x0)1(D1/4)sin x1(D2/
2)sin@2(x1x0)#2(l1ADD1/2)cos(x/2)2(l2ADD2)cos(x1x0),
and B(x)5D1sin2(x/2)1D2sin2(x1x0)1D22l1ADD1
3sin(x/2)22l2ADD2sin(x1x0). The periodic boundary
condition for Eq. ~4! is P(a ,t)5P(a14p ,t) ~here we take
a50).
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FIG. 1. The average velocity versus the additive noise strength in the overdamped case for the model ~1!. ~a! corresponds to the average
velocity versus the additive noise strength for different values of J1 (J150.3, 0.5, 0.7 and 1, respectively! with J251,x05p/2, D15D2
50.3, and l15l250.3; ~b! to that for different values of J2 (J250.3, 0.5, 0.7 and 1, respectively! with J151,x05p/2, D15D250.3, and
l15l250.3; ~c! to that for different values of l1 (l150.9, 0.5, 20.5, and 20.9, respectively! with J15J251,x05p/2, and D15D2
50.3, and l250.3; ~d! to that for different values of l2 (l250.9, 0.5, 20.5, and 20.9, respectively! with J15J251,x05p/2, D15D2
50.3, and l150.3.
The average velocity is given by

^V~ t !&5^^V~x ,t !&x& f5^^ ẋ&x& f , ~5!

where ^ &x stands for the average over x.
Under periodic boundary conditions, the stationary solu-

tion of Eq. ~4! is @9#

Ps~x !5N
eF(x)

B~x !
E

0

4p

dx8e2F(x8)2F(4p)u(x2x8). ~6!

Here F(x)5*0
x@A(x8)/B(x8)#dx8, u(x2x8) is the Heavi-

side step function, and N a normalized constant.
From Eqs. ~5! and ~6!, we obtain

^V&s5^ ẋ&s

5 lim
t→`

1
t E0

t
^^V~x ,t !&x& fdt

5^A~x !&s
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5NE
0

4p

dx
A~x !eF(x)

B~x !
E

0

4p

dx8e2F(x8)2F(4p)u(x2x8)

54pN@12e2F(4p)# . ~7!

The probability current J can be obtained from ]xJ
52]xAP1]x

2BP , i.e., J52AP1]xBP . It is easy to obtain

J5N@12e2F(4p)#5^V&s /~4p !. ~8!

Equations ~7! and ~8! show that the condition under which
the flux changes sign is that the value F(4p) can vary from
positive to negative or vice versa.

In Fig. 1 we plot the average velocity versus the additive
noise strength D from Eq. ~7!. The Fig. 1~a! corresponds to
the average velocity versus the additive noise strength for
different values of J1 (J150.3, 0.5, 0.7 and 1, respectively!
with J251, D15D250.3, and l15l250.3; Fig. 1~b! to
that for different values of J2 (J250.3, 0.5, 0.7, and 1, re-
spectively! with J151, D15D250.3, and l15l250.3; the
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Fig. 1~c! to that for different values of l1 (l150.9, 0.5,
20.5, and 20.9, respectively! with J15J251, D15D2
50.3, and l250.3; and Fig. 1~d! to that for different values
of l2 (l250.9, 0.5, 20.5, and 20.9, respectively! with J1
5J251, D15D250.3, and l150.3. The figures show that
~a! the absolute value of the average velocity is a nonmono-
tonic function of the additive noise strength and has a clear
peak value, which is a manifestation of the phenomenon of
resonance; and ~b! the average velocity may be negative,
zero, or positive.

Here we wish to give some explanation for the origin of
the average velocity. First, when j i(t)50 (i51,2) no aver-
age velocity can be produced. A nonzero average velocity
with j i(t)50 means that only thermal fluctuation is con-
verted into work and implies a violation of the second law of
thermodynamics. Second, if l15l250 and the function
f (x) is symmetric, no average velocity can be caused, since
no symmetry breaking happens. So the multiplicative noises,
the correlations between the additive and multiplicative
noises, and the asymmetry of f (x) @or the asymmetry of the
potential, which is U(x)52*x f (x8)dx8] are ingredients for
the average velocity for the model ~1!. The reason for pro-
ducing the average velocity is that the symmetry of the sys-
tem is broken by the function f (x), or the correlations be-
tween the additive and multiplicative noises. Now the
asymmetry of the system makes the probability of fluctua-
tions on the two sides of the potential barrier different, so
that an average velocity arises. The energy in response to the
average velocity stems from the noise.

The phenomenon of resonance happening here is ana-
lyzed below. In Figs. 1~a!–1~d!, the additive noise plays a
twofold role. On one hand, it stimulates directional motion of
the particle in response to the asymmetric condition of the
system. On the other hand, it reduces the asymmetry of the
system, which is the cause of directional motion of the par-
ticle. The competition of these two apparently opposite roles
produces a peak at which a phenomenon of resonance ap-
pears.

The characteristics of the constant force I versus the av-
erage velocity can be calculated from Eq. ~7! if A(x)1I is
used to replace A(x) „including A(x8) in F(x)
5*0

x@A(x8)/B(x8)#dx8…. In Figs. 2~a! and 2~b! we plot the
characteristics of the average velocity versus the constant
force for different values of the additive noise strength. Fig-
ure 2~a! corresponds to D50.2, 0.5, 0.7, and 1, and Fig. 2~b!
to D51, 2, 3, and 4 @in Fig. 2~b!, the diagonal line is without
noise#. From these figures, we find the following. ~a! With
increase of the additive noise strength, the curve for the av-
erage velocity versus the value of the constant force is nearer
and nearer to the one without noise. This is because of the
cooperative action of the multiplicative noises, the correla-
tions between the additive and multiplicative noises, and the
asymmetry of the potential. ~b! One can manipulate the be-
havior of the average velocity versus the constant force by
controlling the additive noise strength. Now one can appro-
priately adjust the temperature to make the average velocity
versus the constant force fit one’s demands ~since the ther-
mal additive noise strength D is proportional to the tempera-
ture!. In addition, further study shows that when the constant
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force is not zero the average velocity versus the additive
noise strength presents the same phenomena of resonance as
in Figs. 1~a!–1~d!.

IV. UNDERDAMPED CASE

In this section we shall consider the transport of particles
in the case of mÞ0. For the convenience of analysis and
calculation, we write Eq. ~1! as

ẋ5y ,

ẏ52
1
m y1 f 8~x !1g1~x !j1~ t !1g2~x !j2~ t !1

1
m h8~ t !, ~9!

where f 8(x)52(1/m)@J1sin(x/2)1J2sin(x1x0)#, g1(x)
5(1/m)@2sin(x/2)1l1AD/D1# , and g2(x)5(1/m)@2sin(x
1x0)1l2AD/D2# . In the Stratonovich case, the Fokker-
Planck equation for the probability density P(x ,y ,t) corre-
sponding to Eq. ~9! is

FIG. 2. The average velocity versus the constant force in the
overdamped case for the model ~1!. ~a! corresponds to D50.2, 0.5,
0.7, and 1, and ~b! to D51, 2, 3, and 4 ~ the diagonal line is the
case without noise!, with D15D250.3, x05p/2, l15l250.3,
and J15J251.
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FIG. 3. The current J versus the additive noise strength in the underdamped case for the model ~1!. ~a! is for different values of J1
(J150.1,0.7, and 2, respectively! with D15D250.3, J251, x05p/2, l15l250.3, and m55; ~b! is for different values of J2 (J2
50.2,0.5, 2 and 10, respectively! with D15D250.3, J151, x05p/2, l15l250.3, and m55; ~c! is for different values of l1 (l1
520.9,20.5,0.5, and 0.9, respectively! with D15D250.3, x05p/2, J15J251, l250.3, and m55; ~d! is for different values of l2
(l2520.9, 20.5, 0.5, and 0.9, respectively! with D15D250.3, x05p/2, J15J251, l150.3, and m55.
] tP52y]xP2]yF2
1
m y1 f 8~x !GP

1H 1
m D~12l1

22l2
2!1D1@g1~x !#2

1D2@g2~x !#2J ]y
2P . ~10!

Equation ~10! cannot be solved analytically even for the sta-
tionary case since detailed balance is broken and the prob-
ability flow is not zero, but it can be solved by applying
numerical methods. In the following we carry out our nu-
merical simulation directly using the Langevin equation ~9!.
From Ref. @10# we can get the numerical algorithm

x~ t1Dt !5x~ t !1yDt ,

y~ t1Dt !5y~ t !1S 2
1
m y~ t !1 f 8„x~ t !…DDt

1x1~ t ,Dt !1x2~ t ,Dt !, ~11!
01111
FIG. 4. The current J as a function of the natural logarithm of
the mass with D15D250.3,J15J251,x05p/2,l15l250.3, and
D50.3.
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where

x1~ t ,Dt !5HD1g1„x~ t !…
]g1„x~ t !…

]x f1
2

1D2g2„x~ t !…
]g2„x~ t !…

]x f1
2

1AD1D2Fg1„x~ t !…
]g2„x~ t !…

]x

1g2„x~ t !…
]g1„x~ t !…

]x Gf1f2

1ADD1 /m
]

]
g1„x~ t !…ff1

1ADD2 /m
]

]
g1„x~ t !…ff2J Dt ,

and

x2~ t ,Dt !5g1„x~ t !…A2D1Dtf11g2„x~ t !…A2D2Dtf2

1A2DDt/mf ,

with three independent Gaussian random numbers f1 , f2,
and f of zero mean and variance 1. Here we define the
current J which is averaged over an ensemble of initial con-
ditions for the average velocity. Therefore, the current has
two different averages. The first average is over M initial
conditions, which we take equally distributed in space ~from
x50 to x54p), and with a zero initial velocity. For a fixed
time t j , we can obtain the first average v j

5(1/M )( i51
M ẋ i(t j). The second average is a time average.

Since we take a discrete time for the numerical simulation,
we have a discrete finite set of N different times t j . Then the
current is defined as J5(1/N)( j51

N v j .
The numerical results are plotted in Figs. 3~a!–3~d! for

the current versus the additive noise strength. Every point in
the figures is calculated by taking the average of the
01111
M5400 initial conditions and the N5105 different discrete
times ~averaged by 43107 points!. Here the time step is
taken as Dt50.01. In order to guarantee that the system is in
the stationary state, we take the time average after t
51000. This average is taken from t51000 to t52000. The
space from x50 to x54p is divided into 400 (x i
54pi/400, i51,2, . . . ,400). The initial conditions are x i(t
50)50 (i51,2,3, . . . ,400). From the figures we can see
that ~a! the current can be negative, zero, or positive; ~b! for
the transport there are the phenomena of resonance. It is
interesting that Figs. 3~a!–3~d! and Figs. 1~a!–1~d! ~over-
damped case! have the same characteristics ~a! and ~b!. In
addition, they have other similar features @these are less im-
portant than the above ~a! and ~b!#. ~1! With the increase of
J1 or J2, the peaks move to the right. ~2! With increase in the
absolute value of l1 or l2, the transport can be strengthened.
It is also interesting that by varying the value of l1 or l2 the
flux can be reversed, that can be observed in Figs. 3~c! and
3~d!. If the additive noise strength is large enough, a reversal
can also be induced @cf. Fig. 3~c!#. The phenomenon of trans-
port and its resonance happening here have the same origins
as the ones analyzed in the overdamped case.

Finally, let us consider the transport of particles with dif-
ferent mass. The result of a simulation for the current J ver-
sus the natural logarithm of the mass is depicted in Fig. 4
with the parameters D15D250.3, J15J251, x05p/2, l1
5l250.3, and D50.3. From Fig. 4 we see that with de-
creasing mass of the particle, the particle moves more and
more quickly. Thus we can separate the particles with differ-
ent values of mass by controlling the parameters of the noise
~i.e., D, D1 , D2 , l1, and l2) or the parameters of the po-
tential ~i.e., J1 , J2, and x0). For the parameters given in Fig.
4, the particles with small inertia move to the negative direc-
tion quickly, while the particles with strong inertia move
slowly or almost remain in the original position.
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