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Time-scale invariance of relaxation processes of density fluctuation in slow neutron scattering
in liquid cesium
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The realization of the idea of time-scale invariance for relaxation processes in liquids has been performed by
the memory functions formalism. The best agreement with experimental data for the dynamic structure factor
S(k ,v) of liquid cesium near melting point in the range of wave vectors (0.4 Å21<k<2.55 Å21) is found
with the assumption of concurrence of relaxation scales for memory functions of third and fourth orders.
Spatial dispersion of the first four points in the spectrum of the statistical parameter of non-Markovity e i(k ,v)
at i51,2,3,4 has allowed us to reveal the non-Markov nature of collective excitations in liquid cesium,
connected with long-range memory effect.
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The dynamic structure factor S(k ,v) of liquid metals
~lithium, sodium, rubidium, lead, cesium, aluminum, potas-
sium! represents unique information on the collective excita-
tions in these systems ~see Ref. @1#!. Most of existing theo-
ries for S(k ,v) are based on models of the linearized and
generalized hydrodynamics @2#. Despite much effort and
considerable recent progress, understanding of experimental
data for liquid metals remains an interesting challenge. Here
adequate understanding and explanation of high-frequency
collective excitations does not exist. The reason is that the
nature of such excitations in liquid metals is not described by
any of hydrodynamic models. On account of specific short-
range and oscillatory behavior of ion-ion potential in liquid
metals, the hydrodynamics here is not applicable.

In the present work, for an explanation of a specific nature
of high-frequency collective excitations in liquid cesium @3#
we use one of most fundamental ideas of modern physics—
the idea of invariance. In particular, we suggest the idea of
time-scale invariance of relaxation processes in liquids. Ex-
perimental data on S(k ,v) give direct information about re-
laxation processes of density fluctuation in liquids. Under the
assumption, for any experimentally observable relaxation
process, there corresponds a multilevel hierarchy of intercon-
nected relaxation processes. Actually, in experiment the
‘‘top’’ of its relaxation ‘‘iceberg’’ is observed only. On a
certain relaxation level, an invariance ~equiscaling! of two
nearest interconnected relaxation processes can exist. Such
invariance can be easily taken into account by the memory
functions formalism, which most adequately describes non-
equilibrium statistical processes in condensed matter physics.

Later we consider a normalized time correlation function
~TCF! a(t)5^dA*(0)dA(t)&/^udA(0)u2& of particle-density
fluctuation in liquid metal dA(t)5A(t)2^A(t)&, where
dA(t)5N21/2( j51

N exp(ikrj), k is wave vector, and r j defines
the position of the j th particle of the liquid. With the help of
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Zwanzig and Mori’s projection operators method @4,5# it is
possible to construct the infinite chain of connected non-
Markov kinetic equations as follows:

dM i~ t !
dt 52V i11

2 E
0

t
dtM i11~ t2t !M i~t !, i50,1, . . . ,

~1!

where M 0(t)5a(t). Here M i(t) is a memory function of ith
order and V i

2 are general relaxation parameters with the di-
mension of the square of frequency. These parameters are
connected with even frequency moments of spectral density
of TCF a(t) by the following relationship @6# V1

25I2 , V2
2

5I4I2
212I2 , V3

25(I6I22I4
2)/(I4I22I2

3).
Every relaxation process can be described with the help of

a characteristic time scale usually named as relaxation time.
So, for example, the relaxation time for initial TCF a(t) can
be determined as follows ta5Re*0

`dta(t). Similarly, relax-
ation time on the second relaxation level @at i51 in Eqs. ~1!#
for memory function M 1(t) would be expressible as t1
5Re*0

`dtM 1(t), where the symbol Re means the real part. It
is convenient to describe long-range memory effects in the
underlying system with the help of time scales ta and tM1

.
For example, the presentation of the dimensionless non-
Markovity parameter was introduced earlier in Ref. @6#, e1
5t0 /t1, as an criterion of describing of non-Markovity for
any relaxation processes. As pointed out in Ref. @6# values of
e1 allow to obtain a quantitative and qualitative estimate of
non-Markovity effects and statistical memory in relaxation
processes. Parameter e1 allows to divide all relaxation pro-
cesses into three important cases. Markovian processes cor-
respond to e1→` , while quasi-Markovian processes are ap-
propriate in situations with e1@1 and e1.1. The limiting
case e1;1 describes non-Markovian processes. In this case
the time scale of memory processes and correlations ~or jun-
ior and senior memory functions! coincide with each other.
Thus, the introduced parameter e1 characterizes non-
Markovity and memory effects for any relaxation processes.
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The infinite set of values of parameters e i , where i
51,2,3, . . . , was also entered on the basis of the simple
formula e i5t i21 /t i , where t i is a relaxation time of the
memory function of ith order @7#. The whole set of values of
non-Markovity parameter e i forms the statistical spectrum,
which is connected with collective and statistical properties
of the system and allows also to estimate in detail the non-
Markovian properties of the underlying relaxation process.
In Ref. @8# the conception of non-Markovity parameter for
the frequency-dependent case was generalized . This param-
eter is determined by the following expression e i(v)
5$m i21(v)/m i(v)%1/2 at the fixed wave vector k. Here i
51,2,3 . . . and m i(v) is the power frequency spectrum of
the ith relaxation level, which is defined in the following
way m j(v)5@Re*0

`dte ivtM j(t)2.
The appropriate values of e i(v) and e i will correspond to

every j th equation of the chain ~1!. As the chain of the Eq.
~1! is infinite, the sets of e i and e i(v) are also infinite. Now
let us use the approximation M i11(t)'M i(t). It means the
approximate equality of relaxation time scales of memory
functions of ith and (i11)th orders, i.e., t i11't i . Then the
non-Markovity parameter for the whole frequency range is
approximately equal to unity, e i11(v);1 ~and also e i11
;1), and chain ~1! becomes closed. Applying Laplace trans-
form to the ith equation of the chain ~1! we get M̃ i(s)
5@2s1(s214V i11

2 )1/2#/2V i11
2 .

The results of experiment for liquid cesium were pub-
lished in Ref. @3#. The dynamic structure factor S(k ,v) has
been measured by inelastic slow neutron scattering ~INS!
near the melting point at T5380 K. The wave vector k
changes in the range from 0.2 Å21 up to 2.55 Å21. The
numerical results for S(k) were obtained from experimental
data @3# too.

It is well known that S(k ,v) is connected with TCF of
density fluctuation in the following way: S(k ,v)
5@S(k)/p#lime→10Re@ ã(k ,iv1e)# , where Laplace trans-
form ã(k ,s)5*0

`dte2sta(k ,t) was found by us as follows.
We have taken advantage of the correlation approximation
for the fourth order memory function @9#

M 4~ t !'M 3~ t !. ~2!

From the physical point of view it means the concurrence
of time scales of TCF’s M 3(t) and M 4(t). In this case the
chain of the connected kinetic equations ~1! becomes a sys-
tem consisting of four equations. Using Laplace transform,
we receive the following equation for the dynamic structure
factor S(k ,v):

S~k ,v !5
S~k !

2p
V1

2V2
2V3

2~4V4
22v2!1/2$V1

4V3
41v2

3~22V1
2V3

41V1
4V4

22V1
4V3

212V1
2V2

2V4
2

2V1
2V2

2V3
21V2

4V4
2!1v4~V3

422V1
2V4

212V1
2V3

2

22V2
2V4

21V2
2V3

2!1v6~V4
22V3

2!%21. ~3!
05710
Relaxation frequency parameters V1
2 and V2

2 are defined
as follows @11#:

V1
25KBTk2@mS~k !#21; v1

25V1
2 ; V2

25v2
22v1

2 ;

v2
253v1

2S~k !1v l
2 ;

v l
25N/mVE drg~r !@12cos~kr !#,z

2u~r !. ~4!

In Eqs. ~4! the following designations are introduced:
KBT is thermal energy, g(r) is a radial distribution function
of particles, u(r) is a pair interparticle potential of interac-
tion, and axis z is chosen in the direction of a wave vector k.
Calculating the frequency parameter V2

2 we use the well-
known approximation @10# V2

253V1
2S(k)1vE

2 $1
2@3 sin(kR0)/kR0#2@6 cos(kR0)/(kR0)2#1@6 sin(kR0)/(kR0)3#%
2V1

2, where vE is the Einstein frequency. In our case vE has
the following value vE54.1231012 s21 @3#. This frequency
parameters can also be calculated through I i (i52,4).

Theoretical formulas for calculation of relaxation fre-
quency parameters V3

2 and V4
2 are also known @11#. How-

ever the final result of these calculations contains some er-
rors. For example, in paper @11# it is shown that results of
calculated frequency moments in papers @12–14#, vary from
10% to 50%, and the distinction reaches up to 30 times for
separate values of the wave vector. Therefore it is more con-
venient to obtain these parameters by comparing results of
theory and experiment. Relaxation frequency parameter V4

2

is easy to find from comparison of developed theory with
experiment on zero frequency. Namely, it follows V4

2

5p2V1
4V3

4@S(k ,0)#2
„@S(k)#2V2

4
…

21 from Eq. ~3! at v→0.
The spectrum of S(k ,v), Eq. ~3!, allows investigations of

collective excitations in liquid cesium to be made in detail.
Our analysis show that the position of collective excitation
peak vc(k) in spectrum S(k ,v) depends on the combination
of frequencies V1

2 , V2
2 , V3

2, and V4
2. Our numerical calcu-

lations demonstrate that vc(k) value is most sensitive to re-
laxation frequency V2

2. On the other hand, collective effects
turn out to be connected with non-Markov processes in liq-
uids.

In Fig. 1 the comparison of our theory ~solid line! and
experimental data ~circles! @3# for S(k ,v) for liquid cesium
at T5380 K is shown. From Fig. 1 it is evident that our
theory absolutely agrees with the experiment in the whole
range of values of wave vector k. It is possible to see the
good qualitative coincidence between the experiment and our
theory from Fig. 2. Here dispersion of the frequency of col-
lective excitations vc(k), obtained from the position of lat-
eral peaks ~the points present experimental data; the circles
are our theoretical values!, is presented. We calculated the
first four points in a statistical spectrum of the frequency-
dependent non-Markovity parameter e i(k ,v) for the whole
range of values of the wave vector k. The results of such
calculations are shown in Fig. 3. In our opinion, the param-
eter e1(k ,v) represents special interest. From Fig. 3 it is
apparent that this parameter has maxima on frequencies that
coincide with collective excitations in S(k ,v). The spectrum
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FIG. 1. Theoretical ~solid line! and experimental @3# (s s s s) values of dynamical structure factor S(k ,v) for liquid cesium at
T5380 K at various wave vectors k5uku.
of S(k ,v) falls down smoothly at large values of k, and the
frequency-dependent non-Markovity parameter also falls
down smoothly to zero. Moreover, a ‘‘burst’’ of values
e1(k ,v) is observed on common frequencies with S(k ,v).
As indicated by Fig. 3, the non-Markovity parameter e i(v)
for this range of frequencies v must satisfy the condition
e i(k ,v).1. The non-Markovity parameter e1(k ,v) has the
distinct expressed maximum on frequencies, relevant to col-
lective excitations. Proceeding from the received results, it is
reasonable to speak about the non-Markov nature of collec-
tive excitations in liquid cesium. This important conclusion
must be taken into account while constructing the appropri-
ate theories. The behavior of e i(k ,v) for levels i52,3,4 is
very interesting here. Further calculation shows that the re-
lationship e3(k ,v)'1 takes place for the high k-value range
1.15 Å21<k<2.55 Å21 and for all frequencies v . Because
of this, the more simple approximation M 3(t)'M 2(t) can
be applied for this case. Moreover, there are cases in which
e2(k ,v)'1 for all v . It is possible to assume that good
agreement with the experiment gives correlation approxima-
tion for the memory function of the second order M 2(t)
'M 1(t) in these cases.

Thus, the frequency-dependent non-Markovity parameter
e i(k ,v) introduced in Ref. @8# allows us to reveal two im-
portant features. First, its behavior allows us to judge the
properties of non-Markovity in the whole range of the fre-
quency spectrum and at various values of the wave vector k.
Then, with its help it is possible to judge the applicability of
correlation approximation of the junior order, for which less
difficult calculations are required.

The results of this Brief Report can be summarized as
follows.

~i! S(k ,v) for liquid cesium is found on the basis of the
hypothesis of time-scale invariance of relaxation processes in
05710
liquids. We have assumed that relaxation times of memory
functions M 4(t) and M 3(t) are approximately equal in this
case and relaxation time scales are invariant. Therefore, we
have used correlation approximation for the memory func-
tion of fourth order, M 4(t), for closing the chain of the con-
nected kinetic equations ~1!. As a result we have received
good agreement with the experiment for all values of wave
vector k (0.4 Å21<k<2.55 Å21).

~ii! For the estimation of the received results the
frequency-dependent parameter of non-Markovity e i(v) (i
51, 2, 3, and 4) was calculated for all the values of the
wave vector k. It turned out that the first point in the spec-
trum of non-Markovity parameter e1(v) has frequency de-
pendence similar to the behavior of the dynamic structure
factor for liquid cesium. The maximum of e1(k ,v) and
S(k ,v) for values of the wave vector 0.4 Å21<k
<2.55 Å21 appear at the same frequencies.

~iii! On the basis of our calculations we have established

FIG. 2. Comparison of the values of frequency of collective
excitations in liquid cesium vc5vc(k) at T5380 K with calcu-
lated values from experimental data @3# (• • • •) and our theory
(s s s s).
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FIG. 3. Frequency dependence of the first four points in statistical spectrum of non-Markovity parameter e i5e i(v); (• • • •)
correspond to i51, (1 1 1 1) relate to i52, (s s s s) present i53, solid line reflects values at i54. In a wave vector range
0.4 Å21<k<1.1 Å21 collective excitations exist.
the non-Markov nature of collective excitations at the micro-
scopic level in liquid cesium. It should be pointed out that
the developed approach is true, especially for the solution of
nonperturbative problems. Nevertheless, we believe that a
systematic and general theoretic approach, such as we have
expounded, should play a useful role in analyzing and clas-
sifying experimental data simulations and more elaborate
models. It is especially true for the construction of theories
describing high-frequency and short-range relaxation pro-
cesses. The calculated frequency parameter e1(v) for every
concrete value of wave vector k allows to describe the effects
of amplification or attenuation of non-Markovity within the
05710
whole frequency interval. From the preceding it is clear that
the idea of time-scale invariance has large prospects for the
description of high- and short-wave stochastic and relaxation
processes in liquids.
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