PHYSICAL REVIEW E, VOLUME 64, 066132

Possibility between earthquake and explosion seismogram differentiation by discrete stochastic

non-Markov processes and local Hurst exponent analysis

Renat Yulmetyev,"* Fail Gafarov,"" Peter Hanggi,? Raoul Nigmatullin,> and Shamil Kayumov®

'Department of Theoretical Physics, Kazan State Pedagogical University, Mezhlauk Street 1, 420021 Kazan, Russia

2Department of Physics, University of Augsburg, Universitdtsstrasse 1, D-86135 Augsburg, Germany
3Department of Physics, Kazan State University, Kremlevskaya Street 18, 420018 Kazan, Russia
(Received 4 April 2001; revised manuscript received 24 July 2001; published 27 November 2001)

The basic scientific point of this paper is to draw the attention of researchers to new possibilities of
differentiation of similar signals having different nature. One example of such kinds of signals is presented by
seismograms containing recordings of earthquakes (EQ’s) and technogenic explosions (TE’s). EQ’s are among
the most dramatic phenomena in nature. We propose here a discrete stochastic model for possible solution of
a problem of strong EQ forecasting and differentiation of TE’s from the weak EQ’s. Theoretical analysis is
performed by two independent methods: by using statistical theory of discrete non-Markov stochastic pro-
cesses [Phys. Rev. E 62, 6178 (2000)] and the local Hurst exponent. The following Earth states have been
considered among them: before (Ib) and during (I) strong EQ, during weak EQ (II) and during TE (III), and in
a calm state of Earth’s core (IV). The estimation of states I, II, and III has been made on the particular
examples of Turkey (1999) EQ’s, state IV has been taken as an example of Earth’s state before underground
TE. Time recordings of seismic signals of the first four dynamic orthogonal collective variables, six various
planes of phase portrait of four-dimensional phase space of orthogonal variables and the local Hurst exponent
have been calculated for the dynamic analysis of states of systems I-IV. The analysis of statistical properties
of seismic time series -1V has been realized with the help of a set of discrete time-dependent functions (time
correlation function and first three memory functions), their power spectra, and the first three points in the
statistical spectrum of non-Markovity parameters. In all systems studied we have found a bizarre combination
of the following spectral characteristics: the fractal frequency spectra adjustable by phenomena of usual and
restricted self-organized criticality, spectra of white and color noises and unusual alternation of Markov and
non-Markov effects of long-range memory, detected earlier [J. Phys. A 27, 5363 (1994)] only for hydrody-
namic systems. Our research demonstrates that discrete non-Markov stochastic processes and long-range
memory effects play a crucial role in the behavior of seismic systems I-IV. The approaches, permitting us to
obtain an algorithm of strong EQ forecasting and to differentiate TE’s from weak EQ’s, have been developed.
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I. INTRODUCTION

Earthquakes are among the most mysterious and dramatic
phenomena occurring in nature. As a result of sets and break-
ups of the terrestrial cortex or higher part of the mantle, over
hundreds of thousands of underground pushes and fluctua-
tions of the Earth’s surface occur annually. They propagate
over long distances in the form of elastic seismic waves.
Nearly thousands of them are registered by people. Annually,
nearly a hundred earthquakes (EQ’s) cause catastrophic con-
sequences: they affect large communities of people and lead
to great economic losses.

For the study of the basic mechanisms underlying its na-
ture, modern numerical and statistical methods are used now
in modeling and understanding the EQ phenomenon. In pa-
pers [1,2] the modified renormalization group theory with
complex critical exponents has been studied for implications
of EQ predictions. Long-periodic corrections found fit well
the experimental data. Then universal long-periodic correc-
tions based on the modified renormalization group theory
have been used successfully [3] for possible predictions of
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the failure stress phenomenon foregoing an EQ. The failure
stress data are in a good reliability with acoustic emission
measurements. In paper [4] it has been shown that the long-
periodic corrections are of a general nature; they are related
to the discrete scale invariance and complex fractal dimen-
sion. This idea has been checked in Refs. [5,6] for diffusion-
limited-aggregate clusters. The paradox of the expected time
until the next EQ with an attempt to find acceptable distri-
bution is discussed in Ref. [7]. A new explanation of
Guttenberg-Richter power law related to the roughness of the
fractured solid surfaces has been outlined in Ref. [8]. Recent
achievements and progress in understanding of the complex
EQ phenomena from different points of view are discussed
in the recent review [9]. New numerical methods such as
wavelets and multiscale singular-spectrum analysis in the
treatment of seismic data are considered in Ref. [10].

All these previous methods have been developed for un-
derstanding the statistical and nonstationary properties of
EQ’s and technogenic explosions (TE’s). But in this paper
we would like to demonstrate some possibilities related ini-
tially to differentiation of EQ’s from TE’s. This problem has
not only scientific significance related to recognition of simi-
lar signals having physical origin, but in recent times it has
been related also to some political problems associated with
testing of nuclear explosions.
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Seismic data are an object of careful analysis and numer-
ous methods of their treatment are used, especially for the
forecasting of EQ’s with strong magnitudes. In spite of a
wide application of approaches based on nonlinear dynamics
methods, the Fourier and wavelet transformations, etc., we
have essential limitations, which narrow down the range of
applicability of the results obtained. One of the main limita-
tions is that the discrete character of the seismic signal reg-
istration is not taken into account. Another factor, which
should be taken into account, is related to the influence of
local time effects. Alongside the discreteness and the local
behavior of the seismic signals considered here exists the
third peculiarity, viz, the influence of long-range memory
effects.

In this paper, we present one of the possible solutions to
forecasting strong EQ’s and differentiating TE’s from weak
EQ’s. In this presentation we consider three important factors
for seismic signals registered in the form of seismograms:
discreteness, long-range memory, and local time behavior.
Two methods are used to analyze these three factors. The
first one is based on seismograms considered in the form of
a discrete non-Markov statistical process along with analysis
of corresponding phase portraits, memory functions, and the
non-Markovity parameters. The second method is based on
the generalized conception of the Hurst exponent. These
methods have been used for a careful analysis of seismic data
and to differentiate EQ’s from TE’s. The results obtained
with the use of these methods are useful in the recognition of
specific features of EQ’s and TE’s and can be used for strong
EQ forecasting.

The paper is organized as follows. In Sec. II we describe
in brief the stochastic dynamics of time correlation in com-
plex systems containing seismic signals by the discrete non-
Markov kinetic equations. The local fractal dimension and
the corresponding Hurst exponent are defined in the Sec. III.
The real data treatment with the use of non-Markov concep-
tions has been realized in the Sec. IV. Section V contains
some results obtained by the local Hurst exponent method.
The basic conclusions are discussed in the final Sec. VI.

II. THE KINETIC DESCRIPTION OF DISCRETE
NON-MARKOV RANDOM PROCESSES

In a recent paper [11] the statistical theory of discrete
non-Markov random processes has been developed. The ba-
sic elements, which are necessary for an understanding of
other sections, are presented in brief here. In accordance with
Refs. [11-13] the fluctuations of random variable Jx;
=ox(T+j7), j=0,1,...,N—1 of a complex system can be
represented as k-component state vector

A2(0)2(5XO,5X1,5.X2, .. .,5Xk_1)

=(6x(T),0x(T+ 1)), ...,0x(T+(k—1)7). (1)

Here 7 is a finite discretization time, &x; and (x) define
fluctuations and mean value correspondingly, and 7 is the
beginning of the time series. They are defined by conven-
tional relationships
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N—1

Ox;=x;—(x), (x)= i 120 x(T+j7). (2)

The set of state vectors forms a finite-dimensional Euclidean
space, where the scalar product of two vectors can be defined
as

k—1
(A-B>=ZO A;B;. 3)
=

The time dependence of the vector A can be defined as result
of discrete m-step shift

Al () ={6%,, 0% 1 150X s0s oo OX i f—1}
={x(T+m7),6x(T+(m+1)7),
(T+(m+2)7), ..., 0x(T+(m+k—1)7)},
4)

where t=m7 and 7 is a finite time step. Statistical param-
eters (absolute and relative variances) can be expressed by
means of the scalar product of two vectors as follows:

1
0P =AY AN =N ALY,

L (abal)
N(X)?

We define the evolution operator for the description of evo-
lution of the variables dx; as follows:

Ox; ((T+(+1)n)=U(T+(j+1)7,T+)7)0x;(T+)7)
=U(7)6x;. (%)

One can write formally the discrete equation of motion by
the use of evolution operator U(7) in the form

Z(t)ZX(t ri x(t)z;{u(r+r,¢)_1}x(t). 6)

The normalized time correlation function (TCF) can be rep-
resented by Egs. (1) and (4) (where t=m 7 is discrete time)
as follows:

(AT AT (AN0)-ATL (1)
(AR-AD) (A2(0)%)

a(t) (7)

From the last equation (7) one can see that TCF a(¢) is
obtained by projection of the final state vector A, ,(¢) (4)
on the initial state vector A,?(O). Because of this property
one can write the projection operator in the linear space of
state vectors

(ALO)ATL (1) _

ITA”, . (£)=A}(0)
(O=AO = op)

A 0)a(r). (8)
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The projection operator II has the following properties:

_ [A%(0))(Ak(0)]
(1A3(0)[%)

p*=p, IIP=0,

, II’=I, pP=1-11,

PII=0. 9)

The projection operators II and P are idempotent and mutu-
ally complementary. Projector II projects on the direction of
initial state vector A,?(O), while the projector P projects all
vectors on the direction that is orthogonal to the previous
one. Let us apply the projection technique in the state vectors
space for deduction of the discrete finite-difference equation
of motion

A .
TAR =L DAL (),

L(t,m)=(in) " {U@t+rt)—1}. (10)
The first expression defines the Liouville’s quasioperator L
and the second expression defines the evolution operator
U(t). Transferring from vectors Al , to a scalar value of the
TCF a(t) by means of suitable projection procedure one can
obtain the closed finite-difference equation for the initial
TCF,

Aa ( l‘) m—1

—ar Sha=TA 2 MiGnat=jn. (1)

j=

Here A, is the relaxation parameter while the frequency \,
defines the eigenspectrum of Liouville’s quasioperator L in

the following way:
 (AU0)LA(0))

_ :<A2E12£21A2(0)>
C (A0

T (A0

The standard equation of motion is obtained easily from Egs.
(6) and (10) by means of the limit 7—0. In this case Liou-

ville’s quasioperator L is reduced to a classical or quantum

GL=\p) A
AP GL=Ny)
W, = 0 A;/z
0 0

The physical sense of the new variables W, can be inter-
preted as follows. For example, the local density of fluctua-
tions in the physics of continuous media can be identified
with the initial variable W,,. In this case the fluctuations of
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Liouvillian and is defined correspondingly by the classical or
quantum Hamiltonian of the system considered. The given
approach is true for non-Hamiltonian systems of arbitrary
nature when the Hamiltonian cannot be written together with
conventional equations of motion. The function M;(j7) on
the right-hand side of Eq. (11) is the first order memory
function

(AN0)L {1 +i7Lynl Ly AJ(0))

M(j7)= (AR(0)L 12L5,AR(0))

s MI(O):I
(13)

Here we use the following notation for the matrix elements
of the splittable Liouvillian quasioperator L; ;=11 I-LAHA,, i,j
:1,2, HIZH, szp, Ell=HEH, ZIZZHEP, EZI
=PLII, L,,=PLP. Equation (11) can be considered as the
first equation of the finite-difference kinetic equations chain
with memory for the discrete TCF a(¢). In paper [11] it has
been demonstrated that using Gramm-Schmidt orthogonal-
ization procedure one can define the dynamic orthogonal
variables W, (#) by means of the following recurrence rela-
tionships:
Wo=A(0), W, ={iL—\}W,

W,={iL—N\,_ W, +A,_ W, >+, n>1.

(14)
Here we introduce the fundamental eigenvalues A, and re-
laxation A, parameters as follows:

(WEW,)
(W,

__ <Wn71(ii’_)\n+l)wn>
<|Wn—l|2> .

n n

(15)

Parameters A\, are very similar to Lyapunov’s exponents. If
all parameters of Eq. (14) for W except for A,_; and A, _,
are equal to zero, arbitrary orthogonal variables W, can be
expressed directly via the initial variable WO=A,?(0) by
means of Eq. (14) in the generalized form

0 0
ALY 0
Gy ... o | Wo. (16)
0 s (IL=N,0)

the local current density, local energy density, and local en-
ergy current density can be associated with the dynamic vari-
ables W, with numbers n=1,2,3, correspondingly.

One can relate to the set of projection operators II,, to the
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set of orthogonal variables (14). The last ones project an
arbitrary dynamic variable (viz. a state vector) ¥ on the cor-
responding initial state vector W,

_Iwawrl _
n—W Hn_Hn’ Pn—l_Hn,
p;=p,, II,P,=0,
m,nm,=¢,,1,, P,P,=8,,P,, P,1,=0. (17)

Acting successively by projection operators II,, and P, on
the finite-difference equations (10) for the normalized dis-
crete memory functions

(W,[1+i7L53)1"W,)
(IW,(0)[?)

one can obtain a chain of the coupled non-Markov finite-
difference kinetic equations of the following type:

M, ()=

n

, (18)

AMn(l) m—1 . .
At :)\n+1Mn(t)_TA/1+120 Mn+1(/T)Mn(t_]T)'
j=

(19)

Here \,, is the eigenvalue spectrum of Liouville’s operator
iL, while A, is the general relaxation parameter,

(IW,% "

(W, 1(iL=X, 1 )W,)
<|Wn—]|2>

which were defined before by relationships (15). One can
consider the set of the functions M ,(¢) together with the
initial TCF (n=0),

n >

(AN0)AL, (1))
My(t)=a(r)= ot D)
=A== 0P

as functions characterizing the statistical memory of the
complex system with discrete time. The initial TCF a(¢) and
the set M ,(¢) of discrete memory functions appearing from
Egs. (19) are playing an important role for the description of
non-Markov and long-range memory effects. Now it is con-
venient to rewrite the set of Egs. (19) as the chain of the
coupled non-Markov discrete equations for initial discrete
TCF a(t)(t=m) and represent them in the form

t=mr,

Aa(t "
Z—()—)\la(t) TA 2 M (jm)a(t—j1),
AM (¢ !
Alt( ):)\ZMl(t)_TA22 Mz(jT)Ml(t_jT)s
Jj=0
AM,(t) (.
A MM =T XM GDM(1— 7).

(20)
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The kinetic finite-difference Egs. (19) and (20) are analogous
to the well-known chain of kinetic equations of the Zwanzig-
Mori type. These equations are playing a fundamental role in
the modern statistical mechanics of nonequilibrium phenom-
ena with continuous time. One can consider the kinetic equa-
tions (20) as a discrete-difference analogy of hydrodynamic
equations for physical phenomena with discrete time. On the
basis of the initial set of the experimental data one can find
the set of orthogonal variables W, in the following way:

X 0 X A 0
W():Ak, le E_)\l Ak’

. A
W,= ( 2| Wi+ A LAY
[( ) NN FN N+ A AL,
R A A
W3: A[ )\ W2+A2 A )\1 Ak (21)

It seems to us that one could suggest a more physical inter-
pretation of the different terms in the right-hand side of the
three Egs. (21). For example, term (AA4)/A¢ can be associ-
ated with dissipation, term (A24)/A¢? is similar to inertia,
and term A | A(¢) is related to restoring force. Then the third
finite-difference derivative (A*4)/A¢* is associated with the
finite-difference form of the Abraham-Lorenz force corre-
sponding to dissipation feedback due to radiative losses as
seen from recent experimental evidence in frictional systems
[11].

In concrete applications it is necessary to take into ac-
count that the dimension of new state vectors W,, is gradu-
ally decreasing with the increase of the number n. If the
initial vector Ag has dimension k then the vectors W;, W,,
and W; will have the dimensions k—1, k—2, and k—3,
correspondingly.

Solving the chain of Egs. (19) under the assumption that
all A;=0, one can find recurrence formulas for memory
functions of arbitrary order in the following form:

m—1

M(m7)=— 20 MM\ [(m+1—j)7]

+e, UM, ([(m+1)7]—M,_\[(m+2)7]},

e,=7A,, s=123,... . (22)

By analogy with Ref. [11] it is convenient to define the gen-
eralized non-Markov parameter for frequency-dependent
case as follows:

() 12
Iu’l—l( )] ’ (23)

&ilw)= [ mi(w)

where i=1,2,..., and u,(w) is the power spectrum of the
ith memory function. It is convenient to use this parameter
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for quantitative description of long-range memory effects in
the system considered together with memory functions de-
fined above.

The set of new parameters describes the discrete structure
of the system considered and allows one to extract additional
information related to non-Markov properties of the complex
(non-Hamilton) systems.

III. LOCAL HURST DIMENSION ANALYSIS
OF SEISMIC DATA

The Hurst exponent. Typical seismic data are seismic
wave registration written in the form of vibrations of the
Earth’s surface. Many observations as seismograms lead to
random series registrations: technogenic noises, gravimetri-
cal, economical, meteorological, and other data. Some prop-
erties of such random series can be characterized by the
Hurst exponent H [14,15]. Let &; define the ith value of the
observable variable, (£,) define its mean value on the seg-
ment containing 7 registered points. For the cumulative av-
erage value we have X(¢,7)=3!_,(&—(§),). The range R
for the given sampling of the random series considered is
defined as follows:

R(7)=max X(¢,7) —min X(¢,7), (24)

at 1 <t<<r, where ¢ is discrete time accepting integer values
and 7 is a length of the time sampling considered.

Normalizing the range R on the standard deviation S for
the chosen sampling &;

12

1 T
S(n=| 7 Z e —(&F] (25)
and analyzing the variations of the normalized range, Hurst

[14,15] obtained the following empirical relationship:

R(7)
St

(26)

where R is the range, S is the normalized variance, and H is
the so-called Hurst exponent for the sampling of the given
length &. The value H=0.5 corresponds to the normal distri-
bution sampling, other values correspond to the various de-
grees of correlations, which can be interpreted in terms of the
persistent coefficient. One can use the normalized range
method for the definition of the Hurst exponent, but it works
well for large samplings containing 1000—10 000 registered
points.

The calculation of the Hurst exponent for seismic data.
One can obtain easily the Hurst exponent for long (1000—
10000 registered points) samplings [16] by means of the
method of the normalized range (R/S analysis). The Hurst
exponent restoration accuracy calculated on the model data
is located in the interval (0.1—1%). For example, if the model
Hurst exponent was chosen as 0.7 then in the result of the
R/S analysis the restored value is equal to 0.69 with the
changeable third decimal point. The calculated Hurst expo-
nent for the initial seismic noise without an “event” (earth-
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quake or explosion) accepted the values 0.96—0.98. The ob-
tained values show the high level of persistency and
correlation. However, these values can be referred to the
whole series and cannot reflect the peculiarities of the event.
In other words, the values of the Hurst exponents calculated
for the whole series cannot provide information about pos-
sible EQ’s or TE’s, which can be characterized by other val-
ues of persistency. In this situation it is necessary to gener-
alize this parameter and define the notion of the local Hurst
exponent.

The local Hurst exponent. The generalized (local) Hurst
exponent can be a sensitive indicator, which gives additional
information about the regular component in the sampling
considered. But the reason for changing the Hurst exponent
H is not only the presence of the signal in the sampling
considered, but slow (for natural processes) variations of the
correlated noise itself.

If one considers random series for a relatively long time it
is logically appropriate to cut the series into short segments
and calculate the Hurst exponent A for each of them. In such
a manner, one can detect the variations of H on time or in
some spatial coordinates. It is better to use the shortest inter-
vals possible for calculating the local exponent H(¢). A suf-
ficient number of registered points can serve as a criterion for
choosing the minimal interval for that kind of statistical cal-
culation of the local exponent H. So by analogy with the
conventional definition of the local temperature in statistical
physics one can generalize the conception of the Hurst ex-
ponent and use it for short samplings. The reasons for chang-
ing the Hurst exponents can be the following: (a) slow
changing of the type of correlations inside the noises; (b) the
presence of the regular signal inside the noises. So, in con-
crete applications the local Hurst exponent can serve as a
quantitative characteristic reflecting the fractal properties of
the EQ or TE event. It is obvious that the usage of long
intervals (1000 registered points and more) for the calcula-
tion of the local Hurst exponents becomes useless and the
important question is choosing the acceptable interval for
calculating this parameter with high accuracy. The usual R/S
analysis does not give the acceptable accuracy for the local
Hurst exponent related to short samplings containing 100—
120 points. So it is necessary to change the method of cal-
culation of the local Hurst exponent for short samplings. The
reliable calculation of the Hurst exponent averaged over
short samplings turned out to be a nontrivial procedure and
required elaboration of stable algorithms adjusted for aver-
aging of short segments of the given samplings.

We used another definition for the Hurst exponent [16],
which turned out to be more effective for short samplings.
The best results have been achieved in the usage of the ex-
pression for the normalized dispersion, which relates differ-
ences of a random function to retardation time 7,

_([Bylt+ D =By ()]
(B3(1))

V() =74, 27)

here By (t)==!_,& is an integral random function. As a
result of numerical experiments it has become possible to
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FIG. 1. The temporal dynam-
ics of the first four dynamic vari-
ables Wy(1), Wi(t), Wy(1),
Ws(t): (a)—(d) before strong EQ;
(e)—(h) during strong EQ. During
strong EQ fluctuation scale in-
creases drastically. It makes up

4000 2.5%10° for the initial variable

W (1), 10* for the first orthogonal

variable W,(t), 10 for W,(t), and
2 for Ws(t). The existent trend
vanishes gradually at transition
from the initial variable W(¢) to
the third orthogonal variable
W5(t). The fluctuation scale de-
creases sharply during the strong

6
a)
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0 2000 4000 0 2000 4000 0 2000 4000 0 2000
t[d t[d t[g
x107
15 0.1 1
w0l @ f 9)
0.05
0.5
5 . —
= L ° A
S 0 = = 0
z & =
"-0.05
. = z
05
10 01
-15 -0.15 -1 -1
2000 4000 0 2000 4000 0 2000 4000 0 2000

t[d t[d t[d
calculate the local Hurst exponent with acceptable accuracy
(4-5 decimal points) for samplings containing about 80—120

registered points.

IV. NON-MARKOYV DISCRETE ANALYSIS
OF SEISMIC DATA

Here we will apply the discrete non-Markov procedure
developed in Sec. II for the analysis of the real seismic data.
The basic problems, which we are trying to solve in this
analysis, are the following. The first problem relates to a
possibility of seismic activity description by statistical pa-
rameters and functions of non-Markov nature. The second
problem relates to distinctive parameters and functions for
differentiation of weak EQ’s (with small magnitudes) from
TE’s. The third problem is the most important one and re-
lates to strong EQ’s forecasting. With this aim in mind we
analyzed three parts of the real seismogram: before the event
(EQ and TE), during the event and after the event. A typical
seismogram contains 4000 registered points. The complete
analysis includes the following information: phase portraits

]

W,
1
o
=)
&

-0.15
-20

-10 20 20

Zo

EQ.

4000
t[d

of junior dynamical variables, power spectra of four junior
memory functions, and three first points of statistical spec-
trum of non-Markovity parameter. We took into account also
the values of numerical parameters characterizing the seis-
mic activity. To analyze time functions we used also the
power spectra obtained by the fast Fourier transform. The
complete analysis exhibits great variety of data.

We used four types of available experimental data courte-
ously given by the Laboratory of Geophysics and Seismol-
ogy (Amman, Jordan) for the following seismic phenomena:
strong EQ in Turkey (I) (summer 1999), a weak local EQ in
Jordan (II) (summer 1998). As a TE we had the local under-
ground explosion (III). The case (IV) corresponds to the
calm state of the Earth before the explosion. All data corre-
spond to transverse seismic displacements. The real temporal
step of digitization 7 between registered points of seismic
activity has the following values, viz, 7=0,02s for the case I,
and 7=0,01s for the cases II-1V. The graphical information
is classified as follows:

Figures 1-6 are referred to the case I; Figs. 7 and 8 cor-
respond to the cases II and III considered together; Figs. 9

FIG. 2. The phase portrait pro-
jections on the planes of orthogo-
nal variables Wy, W, (a), Wy, W,
(b), Wy, W5 (c) before the strong
EQ (Ib) and W, W, (d), Wy, W,
(e), Wy, W5 (f) during the strong
EQ (I). The sharp difference is
distinct for seismic states Ib and I.
1 The randomization of the phase
f . portrait for state I begins from
s plane W,,W,. Together with the
difference of the scale of fluctua-
tion, one can observe the asym-
metric distribution of phase clouds
everywhere.

20
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FIG. 3. The phase portrait pro-
jections on the planes of orthogo-
nal variables W, , W, (a), W,, W,
(b), W, ,W5 (c) before the strong
EQ (Ib) and on planes W, W, (d),
W, ,Ws (e), Wy, W5 (f) during of
strong EQ (I). All phase clouds for
seismic state Ib are symmetrical
as opposed to Figs. 2. Sharply
marked asymmetry and stratifica-
tion of phase clouds, what re-
sembles known situation for myo-
cardial infarction in cardiology,
are observed for state I [(d), (e),

and ()].

FIG. 4. The power spectra of
the two first memory functions w
and w,: (a),(b) before the strong
EQ (Ib), (c),(d) during the strong
EQ (I). For the cases (a), (c), and
(d) we observe fractality and self-
organized criticality (SOC). SOC
exists for the whole frequency
range for state Ib. However, we
observe restricted SOC in (c¢) and
(d) cases only in frequency range
down to 2.5X1073 units of
(27/ 7). Restricted SOC is charac-
terized by sharp decreasing of in-
tensity on two orders for (c) and
(d) cases. One can see color
noises nearby 0.1 and 0.2 fu. for
M1 in state Ib.

FIG. 5. The spectra of two
memory functions w, and ws:
(a),(b) before the strong EQ,
(¢),(d) and during the strong EQ.
One can observe color noises in
cases (a), (b), and (d). Fractal-like
spectrum on ultralow frequencies
is appreciable in addition to cases
(c) and (d). The spectra for states
Ib and I are sharply different from
each other both to intensity and to
spectral peaks positioning.
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FIG. 6. Frequency spectra of the first three points of non-Markovity parameters €,,€,,€5: (a)—(c) before the strong EQ, (d)—(f) during
the strong EQ. Markov and quasi-Markov behavior of seismic signals is observed only for €; in state Ib. All remaining cases (b), (c), (d),
and (e) relate to non-Markov processes. Strong non-Markovity is typical for cases (b),(c) (state Ib) and for case (d) (state I). In the behavior
of €,(w) and €;(w) one can see a transition from quasi-Markovity (at low frequencies) to strong non-Markovity (at high frequencies).

and 10 illustrate the case IV. At first we consider the figures,
which were obtained from the recordings corresponding to
the states defined as before and during strong earthquake
(EQ). Figures 1(a)—1(d) (before EQ, state Ib) and Figs. 1(e)—
1(h) (during EQ, state I) demonstrate the temporal dynamics
of four variables Wy(t), W (t),W,(t),Ws(t), which were
calculated in accordance with Egs. (14) and (16). Let us note,
that for convenience we use throughout initial variable
Wo(t) as a dimensionless variable. From these figures it fol-
lows that for variable W, the scale difference achieves the
value more than 2500 [compare Figs. 1(a) and 1(c)]. In com-
parison with the cases Figs. 1(b) and 1(c) the Figs. 1(f) and
1(g) reveal the long-range and low-frequency oscillations for
variables W, and W,. One can calculate phase portraits in
four-dimensional space of the obtained four dynamical vari-
ables Wy, W ,W,,W5 as well. Figures 2 and 3 show six
projections on various two-dimensional planes of states: be-

fore [Figs. 2(a)-2(c) and Figs. 3(a)-3(c)] and during [Figs.
2(d)-2(f) and Figs. 3(d)-3(f)] EQ.

The phase portraits of the system analyzed demonstrate
strong variations. The last arise owing to the transformation
of the strained state of the earth before the EQ to the state
during the EQ. The most dramatic changes emerge in the
phase plane (W,,W,) [see Figs. 2(a) and 2(d)], plane
(W, ,W,) [Figs. 2(b) and 2(e)], plane (W,,W,) [Figs. 3(b)
and 3(e)], and (W5, W) [Figs.3(a) and 3(d)]. One can notice
strong qualitative variations in the structure of phase por-
traits in the following planes: (W,,W,), (W,,W,), and
(W,,W,). Besides, we can see the quantitative change of
space scales of dynamic orthogonal variables. The plane pro-
jection (W, W) remind a strange attractor. The changes of
phase portraits in other planes are less noticeable [compare
Figs. 2(c) and 2(f), Figs. 3(b), 3(c), 3(e), and 3(f)]. The
weakest change is revealed in the phase portrait in the plane

FIG. 7. The power spectra for
the two first memory functions
and u;: (a),(b) during weak EQ,
(¢),(d) during technogenic explo-
sion. In cases Ib and I the spectra
are characterized by strong differ-
ences especially on ultralow fre-
quencies. They have very low in-
tensity for uo on low frequencies
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behavior for u; for states II and
11T [cases (b) and (d)]. Unexpected
peaks exist in system III in LFR.
The color and intensity distribu-
tion of the spectra is different for
states II and III.
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FIG. 8. The frequency spectra of the first three points in statistical spectrum of non-Markovity parameters €, , €, ,€3: (a)—(c) during weak
EQ, (d)—(f) during TE. All spectra are characterized by strong expressed non-Markovity (€,~1) for the whole frequency range. Weak
quasi-Markovity is observed near zero frequency for cases (a) and (d) (€, vary from 0.5 up to 6.5). A noticeable difference for states II and
III exists in behavior €,(w) in point w=0. Due to this fact, one can develop a reliable approach to differentiation between weak EQ’s and

underground TE’s.

(W5,W,). Probably, this phase portrait is less informative
and encloses quasi-invariant part of the total phase portrait.
Besides the spatial scales change of the orthogonal variables
W5 and W,, other essential deformations of this phase por-
trait were not observed.

As it has been mentioned above it is convenient to ana-
lyze the power spectra for comparison of memory functions.
One can divide these spectra into the following regions: ul-
tralow frequency range (ULFR), low-frequency range (LFR),
middle-frequency range (MFR), and high-frequency range
(HFR). Figures 4 and 5 demonstrate spectra of four memory
functions My,M,,M,,M5 before and during EQ. Before
[Fig. 4(a)] and during EQ [Fig. 4(c)] the power spectrum of
the initial TCF M|, has a fractal form 1/w“ in double-log
scale. One can observe a peak in ULFR [Fig. 4(c)] during
EQ. The power spectra of the first and second memory func-

tions during EQ [Figs. 4(d) and 5(c)] have also the fractal
structure. The last one reflects the existence of linear fre-
quency dependence in double-log scale within the LFR,
MFR, and HFR. The similar fractal-like behavior for the
Turkish strong EQ is preserved for the third memory func-
tion for the state during EQ [see Fig. 5(d)].

Figure 6 demonstrates the power spectra of the first three
points of the statistical spectrum of non-Markovity parameter
for the states before Figs. 6(a)—6(c) and during Figs. 6(¢)—
6(g) the strong EQ. One can make the following conclusions
from Figs. 6(a)—6(d). On the first level of relaxation process
[see, Fig. 6(a)] the strained state of the Earth’s crust before
EQ can be associated with Markov and quasi-Markov behav-
ior in ULFR and LFR, correspondingly. The influence of
non-Markov effects is reinforced in MFR with 5X 1072
fu<w<10"' fu., (1 fu.=27/7). Strong non-Markovity of

FIG. 9. The power spectra of
memory functions o),
11(@), (), and () for the
calm state of the Earth before ex-
plosion. All functions u;,(w), i

=0,1,2,3 have approximately
similar fractal behavior with re-
stricted SOC and color noises

10 . . 120
a b
) 100 )
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close to 0.2 and 0.4 f.u. The maxi-
mum of intensity emerges close to
the frequency 4X1073 fu. A
slight change and redistribution of
intensity of power spectra occur
with the increase of order of
memory function.
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FIG. 10. The power spectra of the first three points in statistical spectrum of non-Markovity parameter €;,¢€,,€; for calm state of the
Earth before explosion (IV). Due to similar frequency behavior of all memory functions u;(®) the functions €,(w), i=1, 2, and 3 have
approximately similar frequency behavior and, therefore, demonstrate strong non-Markovity on all levels. The initial parameter €;(w) is
non-Markovian with the exception of slight quasi-Markovity close to low frequencies below 0.1 f.u. As a result of this the possibility appears
for forecasting the strong EQ’s by registration of disappearance of strong non-Markovity and appearance of pronounced Markov time effects.

the processes considered for &;(w) takes place in HFR with
107! fu.<w<0.5 f.u. Simultaneously we have the numerical
values g,(w),e5(w)~ 1 in the whole frequency region [see,
Figs. 6(b) and 6(c)]. But this behavior implies that strong
non-Markovity effects are observed in these cases.

The similar picture becomes unrecognizable for seismic
state during the strong EQ [see, Figs. 6(d)—6(f)]. First, it is
immediately obvious that € (w)~1 on first relaxation level.
Second, the second and third relaxation levels are non-
Markovian [see, Figs. 6(¢) and 6(f)]. Thus, the behavior of
seismic signals during the strong EQ is characterized by
strong non-Markovity on the whole frequency region.

Figure 7 depicts power spectra of MF, M, and M, for
seismic states II and III. Figure 8 shows spectra of the first
three points of non-Markovity parameter &,(w),i=1,2,3.
The preliminary results suggest that there is remarkable dif-
ference between weak EQ’s and TE’s especially in the area
of low frequencies.

The analysis of the phase portrait for weak EQ’s and un-
derground TE’s leads to the following conclusions. First,
these portraits cannot be differentiated. It can be seen from
the range of spatial scales of the dynamical variables 7; and
W; and from the analysis of the phase points distribution
forms. Second, it is necessary to remark some peculiarities in
power spectra of w,(w), i=0,1 (see, Fig. 7) for the cases II
and III. All these spectra have distinctive similarities for the
memory functions M;(¢) with numbers i=0, 1. The charac-
ter and the form of the spectra considered for the cases II and
III are very similar to each other. The same similarity is
observed for the three non-Markovity parameters €;(w), i
=1,2,3 (see Fig. 8).

Nevertheless, the analysis of the power frequency spectra
allows to extract distinctive specific features between the
weak EQ’s and the TE’s. Such quantitative criteria can be
associated with frequency spectra of memory functions

M (w) characterizing the long-range memory effects in seis-
mic activity. This new criterion allows to tell definitely a
weak EQ from a TE, viz, to differentiate case II from case
ML

A close examination of Figs. 8(a) and 8(d) shows that this
distinction appear in frequency behavior of the first point of
non-Markovity parameter £;(w) close to the zero point w
=0. Specifically, the ratio of values £;(0) for weak EQ and
TE equal £]/(0)/1"(0)=0.92/0.57=1.61.

Let us to analyze the results of seismic activity character-
izing the calm earth state. Figures 9 and 10 present the re-
sults of this analysis. They will be useful for the comparison
with the results obtained for EQ’s and TE’s. The projections
of the phase cloud on all six planes (W;,W;), i#j exhibit
approximately the similar distribution of phase points. The
power spectra for the memory functions with the same parity
(see, Fig. 9) have a similar form. For example, for even order
functions wy(w) and u,(w) one can notice sharp peaks near
the frequency 0.2 f.u. [see, Figs. 9 and 9(c)]. In the spectrum
of the senior function w,(w) [see Fig. 9(c)] additional peaks
in HFR appears. One can notice two groups of characteristic
peaks near 0.2 fu. and 0.4 fu in odd memory functions
#1(w) and ps(w) [Figs. 9(b) and 9(d)]. With the increase of
order of the memory function the pumping over effect of
peak intensities from the MFR to the HFR takes place. The
frequency behavior of the three points of non-Markov pa-
rameters €,(w), €,(w), and €;(w) appeared to be practically
the same. The behavior of the functions €;(w) exhibits the
typical non-Markov character with small oscillations of ran-
dom nature at LFR. The spectral characteristics of the system
IV are very useful in comparison to the results obtained for
the system I (before strong EQ).

Our observation shows that the zero point values of non-
Markovity parameters for calm earth state are equal
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FIG. 11. The typical temporal
behavior of the Hurst exponent
H(t) calculated for EQ’s. One can

so0e see sharp decreasing of H(¢) on

15% during EQ. After that a
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gradual restoring of the Hurst ex-
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e17(0):2(0):£47(0)~4.99:0.947:0.861. These values are
convenient for the comparison with similar values for the
earth  seismic  state  before the strong EQ:
e1(0):5(0):85(0)~214.3:0.624:0.727. The change of ratio
of the two first non-Markovity parameters &,(0)/e,(0) is
particularly striking . This ratio is equal to 5.27 for the calm
earth state, then it comes into particular prominence for the
state before strong EQ: 8{(0)/85(0)%343.4. Thus, this ratio
changes approximately in 60 times. Hence, the behavior of
this numerical parameter is operable as a reliable diagnostic
tool for the strong EQ prediction. The foregoing proves that
the indicated value drastically increases in process of nearing
to strong EQ.

Finishing this section, we give some preliminary sugges-
tions relating to the strong EQ forecasting. They are related
in comparison of frequency spectra obtained for the calm
Earth (Figs. 9 and 10) and seismic activity data registered
before a strong EQ [see Figs. 2(a)-2(c); 3(a)-3(c); 4(a) and
4(b); 5(a) and 5(b); and 6(a) and 6(b)]. The comparison of

x107°

70

80 90 100

the phase portraits demonstrates the following peculiarities.
In the phase portraits calculated for the senior dynamical
variables (W, , W), (W5,W,), and (W5,W,) obtained for
cases I and IV the distinctions are not noticeable [see Figs.
3(a) and 3(b)]. These distinctions become noticeable in the
phase portraits of junior variables (W,W), (W,,W,), and
(W5, W,) [see Figs. 2(a)-2(c)]. One can observe a gradual
stratification of the phase clouds with the growth of elastic
deformations before the strong EQ. It is necessary to recall
the double frequency difference for systems I and IV when
comparing the frequency plots. The dependence w(w),
ui(w), pmr(w), and us(w) for systems I and IV [see Figs.
4(a), 4(b), 5(a), 5(b), and 9(a)-9(d)], is approximately simi-
lar, and qualitative difference is not noticeable. One can no-
tice some visual difference only for two spectra: for the third
memory function spectrum w;(w) and for the ULFR of the
memory function wo(w). So the power spectra of memory
functions can be used for the strong EQ forecasting. One can
notice the similar changes in the behavior of the functions

FIG. 12. The comparative
analysis of the Hurst exponent
H(t) behavior during the weak

EQ (a),(c) and for the TE (b),(d).
During the weak EQ’s one can see
sharp decreasing of H(¢) on 15%
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and almost 90% during the TE.
These observations enable us to
develop an approach to differenti-
ate the TE’s from weak EQ’s.

4 0.01
a)
0.005
1 0
~0.005
~0.01
} ) 2000
th x 10°
1.0 15
d)
1
1
Zoes g
05
09
0.85 0 .
. } ) 2000
tl x 10

4000 6000 8000

th

10000

066132-11



RENAT YULMETYEV et al.

PHYSICAL REVIEW E 64 066132

TABLE 1. Set of kinetic non-Markov parameters of discrete stochastic processes in various seismic states.

Before strong During strong During weak ~ During TE, Calm state of

EQ, Ib EQ, I EQ, II 111 Earth, TV
N (units of 7~ 1) —0.0052275 —0.00010709 —0.32465 —0.17203 —0.22972
N, (units of 7~ 1) —0.61788 —0.00058654 —0.81717 —0.84403 —0.96049
N5 (units of 7~ 1) —0.85737 —0.20212 —1.0147 —1.0076 —0.99313
A, (units of 772) 0.0040768 0.00011576 0.14726 0.059232 0.021134
A, (units of 772) 0.31541 4.5948e-005 —0.034187 —0.032079 0.11266
£1(0) 214.3 1.52 0.92 0.57 4.99
£,(0) 0.624 8.67 1.02 1.008 0.947
£3(0) 0.727 6.77 1.02 1.007 0.861
7(s) 0.02 0.02 0.01 0.01 0.01

€(w), 6(w) and e3(w) [see Figs. 6(a)—6(c) and 10(a)—
10(c)]. So one can conclude that careful investigations of
frequency behavior of memory functions u,(w) and func-
tions €;(w) describing the statistical non-Markovity param-
eters provide an accurate quantitative method of the strong
EQ forecasting. It is necessary to investigate carefully the
power spectra with the accurate localization of an object and
source, generating seismic signals, for further elaboration of
this method.

For a more complete understanding of non-Markov prop-
erties of seismic signals we give some kinetic parameters of
our theory in Tables I-1II. In Table I the full sets of kinetic
parameters describing non-Markov stochastic processes in
five various seismic states have been presented: before strong
EQ (Ib), during strong EQ (I), during weak EQ (II), during
TE (III), and for the calm Earth state (IV). The data cited in
this table are indicative of nonequilibrium properties (param-
eters N;, A, and \3), long-range memory effects (param-
eters A, and A,), and non-Markov peculiarities [parameters
£1(0), £,(0), and £5(0)]. The differences under observation
for various seismic states are sufficient to allow definite con-
clusions.

For purposes of clarity, Table II illustrates the comparison
of specific kinetic non-Markov parameters for two seismic
states: before strong EQ (Ib) and calm Earth states (IV). As
will be seen from Table II, differences of parameters for
these two states vary within a broad range: from 2.8 (param-
eter A,) to 44.0 [for parameter £,(0)]. Similarly, Table III
contains comparison data for the other two seismic states:
during weak EQ (IT) and during underground TE(IV). Differ-
ences of parameters in this case are established within more
narrow limits: from 2.486 (for parameter A ;) to 1.614 [for
parameter £,(0)].

Thus, the existence of discreteness and long-range

TABLE II. Comparison of kinetic non-Markov parameters for
two seismic states: before strong EQ (Ib) and calm Earth state (IV).

memory in the behavior of seismic signals opens up new
fields of use in the analysis of the Earth’s seismic activity.
We can state with assurance that the differences under obser-
vation favor the view that the non-Markov parameters of our
theory will be available for strong EQ forecasting and differ-
entiation of TE’s from weak EQ’s.

V. LOCAL HURST EXPONENT CALCULATIONS
FOR AVAILABLE EARTHQUAKES AND TECHNOGENIC
EXPLOSIONS DATA

Available data for the calculation of the local Hurst expo-
nents contains 3000—5000 registered points describing the
visible part of a wavelet. This number of the recorded points
allows one to use the procedure of the local Hurst exponent
H(t) calculation. For the realization of the procedure de-
scribed in Sec. III it is necessary to divide the whole sam-
pling containing 25 000 points into small intervals of 100—
200 points, where the local Hurst exponent is supposed to be
constant. In Fig. 11 we show a typical plot of the function
H(t) calculated for a typical EQ. The same features of H(¢)
behavior are conserved for a wide class of available weak
EQ’s. Then we obtained the calculated values of the local
Hurst exponents H(z) for available EQ’s and explosions.
Figure 12 exhibits the typical behavior of these functions.
The sharp decreasing (0.1) of the local Hurst function during
“an event” is typical for explosions. Then the values of the
function H(¢) are relaxing slowly to their initial values. For
EQ’s one can notice a more gradual change of H(¢) before
the event. The relaxation of H(¢) starts from higher (0.85)
values and it comes back faster to its initial values in com-
parison with explosions. Such behavior is preserved for weak
signals, when the ratio S/N decreases. For these cases the

TABLE III. Comparison of kinetic non-Markov parameters for
two seismic states: during weak EQ (II) and during underground TE
().

Ratio of e0)/elf(0) NI AN ASPIAY Ratio of AN NI e1(0)/el"(0)
parameters parameters

Numerical 42.94 1:22.0 1:1.3 1:0.7 Numerical 2.486 1.887 1.614
value value
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criterion of EQ or TE distinction is related to the amplitude
of the Hurst exponent change during the analyzed event. It is
necessary to increase the number of registered points per unit
of real time in order to obtain a more distinctive picture,
which can be more useful in differentiation of these events. It
is related to the fact that the sensitivity of correlations of a
random fractal value changing is associated with the lower
temporal limit of the corresponding measurements. The
smoothed change of H(¢) obtained for EQ’s opens a possi-
bility of more accurate registration of H(¢) before the visual
wavelet of EQ’s.

VI. CONCLUSION

We want to stress here again that these presented methods
have been applied successfully for differentiation of EQ’s
from TE’s. We hope that the results of this analysis can be
applied to a set of phenomena related with differentiation of
similar signals of different nature. With the result of this
analysis we received a new possibility of forecasting strong
EQ’s approaching, analyzing only seismograms recorded for
transverse seismic waves. Second, we received a sufficient
amount of information for the definite differentiation of weak
EQ’s from TE’s.

In this paper we have presented the results of application
of two methods for the study of dynamic, kinetic, and spec-
tral properties of seismic signals depicting EQ and TE modu-
lation. By the discrete non-Markov stochastic processes and
the local Hurst exponent analysis we have found explicitly
some features of several different states of the Earth’s crust:
states of the Earth before and during strong and weak EQ’s,
during TE’s. The used methods allow us to present the seis-
mogram analyzed in the form of a set non-Markov variables
and parameters. They contain a great amount of the qualita-
tive and quantitative information about seismic activity.

The dynamic information is contained in time recordings
of new orthogonal dynamic variables, different plane projec-
tions of the multidimensional phase portrait, and the time
dependence of local Hurst exponent. The information on the
kinetic, spectral, and statistical properties of the system is
expressed through time dependence of the initial TCF,
memory functions of junior orders, their power, and fre-
quency spectra of the first three points of the statistical spec-
trum of the non-Markovity parameter.

PHYSICAL REVIEW E 64 066132

The main advantage of our two methods is a great amount
of supplementary information about the properties of seismic
signals. The problem is its correct application. What kinds of
possibilities can one expect? It is possible to answer as fol-
lows. First, our preliminary study, convincingly demonstrates
that the relevant and valuable information on non-Markov
and discrete properties of the system considered is contained
in seismic signals. In all the studied systems (I-1V) we have
found out unique manifestations of Markov, quasi-Markov,
and non-Markov processes on the particular behavior of the
signals in a broad range of frequencies.

Similar results cannot be obtained, in principle, by other
methods used in the analysis of seismic activity.

Second, in the nonlinear non-Markov characteristics some
of well-known spectral effects are evident. Among them the
following effects are exhibited noticeably: fractal spectra
with an exponential function w™ %, which are connected to
the phenomenon of usual (SOC) and restricted (RSOC) self-
organized criticality [17—19], behavior of some frequency
spectra in the form of white and color noises. Third, the
frequency spectra introduced above are characterized by the
particular alternation of Markov (fractal) and non-Markov
spectra (such as color or white noises). The similar alterna-
tion resembles in particular the peculiar alternation of effects
of a Markov and non-Markov behavior for hydrodynamic
systems in the statistical physics of condensed matter de-
tected in papers [20,21] for the first time. The fine specifica-
tion of such alternation appears essentially different for stud-
ied states I-IV. These features allow us to view
optimistically the solution of the problem of forecasting
strong EQ’s and differentiation TE’s from weak EQ’s.
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