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Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes
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We develop the statistical theory of discrete nonstationary non-Markov random processes in complex sys-
tems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time
correlation functions (TCF) in terms of nonstationary effects. The developed theory starts from careful analysis
of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary
normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov
kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions
(MF’s). The last one contains supplementary information about nonstationary properties of the complex system
on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of
nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic,
spectral and kinetic parameters, and kinetic functions (TCF, short MF’s statistical spectra of non-Markovity
parameter, and statistical spectra of nonstationarity parameter) has made it possible to acquire the in-depth
information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying
processes. The developed theory is applied to analyze the long-time (Holter) series of RR intervals of human
ECG’s. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both
groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain
specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders
(n=1,2,...) MF m,(t) exhibit the neatly expressed fractal features. We have found out that the full sets of
non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of

the cardiovascular system states and can be used to distinguish healthy data from pathologic data.
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I. INTRODUCTION

The study of information processing in life systems is one
of the central problems in modern science. It is now well
known that in many natural sequences the elements are not
arranged randomly, but exhibit long-range correlations. For a
long period of time it was suggested that many complex
systems observed in nature should be described only by
some of low-dimensional nonlinear dynamic models. The
properties of these systems were supposed to be expressed
by Lyapunov exponents, unique fractal dimensions or
Kolmogorov-Sinai entropy. However, such low dimensional-
ity can be expected for rather coherent phenomena such as
observed in laser systems. Alive data seems to have a more
complicated structure largely due to high-dimensional and
many-factor processes and due to the pronounced effects of
random fluctuations and long-time memory effects.

Since the time of Refs. [1-6] heart rate variability (HRV)
serves as one of the most reliable and authentic methods of
testing the state of a human heart in the norm and in the
pathology [7]. In particular, the analysis of HRV has pro-
moted the establishment of reliable connections between the
functioning of a vegetative nervous system and a sudden
heart death [4,8—12]. At present there are many diverse ap-
proaches by theoretical physics to the problems of nonlinear
properties of HRV description. The following things should
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be mentioned: the fractal approach based on scaling of a
frequency spectrum on power law 1/w® [13—15], the calcu-
lation of correlation dimension [16], the simulation by non-
linear oscillators [16,17], the calculation of the Kolmogorov
entropy [16], usual [18] and dynamic [19] Shannon entropy,
the use of dynamics of lattice spins as a model of arrhythmia
[20], Fano-factor and Allan-factor [14], the wavelet analysis
[21], and the detrended fluctuation analysis [22,23]. The fol-
lowing methods are also employed here: the multifractal
analysis [24], the multiscaled randomness [25], the Markov
formalization of dynamics [26], and the terminal dynamics
model of heart beat [27]. In a recent paper, Teich et al. [28]
demonstrated the manner in which various measures of fluc-
tuation of the sequence of interbeat intervals could be used to
assess the presence or likelihood of cardiovascular disease.

The profound analysis of the dynamics of heart beats dy-
namics reveals that the fundamental methods of the statisti-
cal physics based on the Hamilton formalism and exact equa-
tions of motion are directly inapplicable for its quantitative
description. On the other hand, the discretization of events
and long-time event-event correlation are very relevant in
similar dynamics. Recently, a non-Markov theory of discrete
stochastic processes was developed in Ref. [29]. The ap-
proach advanced in [29] makes the calculation of the wide
set of non-Markov characteristics of an arbitrary complex
system from experimental database possible.

In the present paper we develop a non-Markov approach
[29] for the study of long-time correlations in chaotic long-
time dynamics of RR intervals from human electrocardio-
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gram’s (ECG’s). RR interval is defined as the time distance
between nearest R peaks in human electrocardiogram. The
generalization will consist in taking into account the nonsta-
tionarity of stochastic processes and its further applications
to the analysis of HRV.

We should bear in mind that one of the key moments of
the spectral approach in the analysis of stochastic processes
consists in the use of normalized time correlation function
(TCF)

_ (ADA(T+1)))
(A(D)?)

(1.1)

ap

where the time 7' is the beginning of a time serial, A(7) is a
state vector of a complex system, |A(?)| is the length of
vector A(¢), and the double angular brackets indicate a sca-
lar product of vectors and ensemble averaging. The ensemble
averaging is, of course, needed in Eq. (1.1) when correlation
and other characteristic functions are constructed. The aver-
age and scalar product becomes equivalent when a vector is
composed of elements from a discrete-time sampling, as
done later in the paper. Here a continuous formalism is dis-
cussed for convenience. However, further, from Sec. II we
shall consider only a case of discrete processes.

The above-stated designation is true only for stationary
systems. In a nonstationary case Eq. (1.1) is not true and
should be changed. The concept of TCF can be generalized
in case of discrete nonstationary sequence of signals. For this
purpose the standard definition of the correlation coefficient
in probability theory for the two random signals X and Y
must be taken into account:

_{XY))
p=

OxOy

. ooy=(IX), oy=(Y)). (12)

In Eq. (1.2) the multicomponent vectors X, Y are determined
by fluctuations of signals x and y accordingly, 0'§(, U%, repre-
sent the variances of signals x and y, and values [X|, |Y]
represent the lengths of vectors X, Y, correspondingly.
Therefore, the function

((A(DA(T+1)))

A0 = TADIAT+0])

(1.3)

can serve as the generalization of the concept of TCF (1.1)
for nonstationary processes A(7+t¢). Nonstationary TCF
(1.3) obeys the conditions of the normalization and attenua-
tion of correlation

a(T,0)=1, lima(T,t)=0.

{—0

According to the Egs. (1.1) and (1.3) for the quantitative
description of nonstationarity it is convenient to introduce a
function of nonstationarity

12

(1.4)

2
ATy = (JA(T+1)|) _[a (T+1)

JAD))y | (D)
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One can see that this function equals the ratio of the lengths
of vectors of final and initial states. In case of the stationary
process the dispersion does not vary with the time (or its
variation is very weak). Therefore the following relations

o(T+t)=0o(T), y(T,t)=1 (1.5)
are true for the stationary process.
Due to the condition (1.5) the following function
D(T,0)=1=v(T.1), (1.6)

is convenient to consider as a dynamic parameter of nonsta-
tionarity. This dynamic parameter can serve as a quantitative
measure of nonstationarity of the process under investiga-
tion. According to Egs. (1.4)—(1.6) it is reasonable to suggest
the existence of three different classes of nonstationarity

IT(T.0]=1=T.0)]

<1, weak nonstationarity
~1, intermediate nonstationarity (1.7)
>1, strong nonstationarity.

The existence of a dynamic parameter of nonstationarity
makes it possible to determine, on principle, the type of non-
stationarity of the investigated process and to find its spectral
characteristics from the experimental data base. We intend to
use Egs. (1.4), (1.6), and (1.7) for the quantitative description
of effects of nonstationarity in the investigated temporary
series of RR intervals of human ECG’s for healthy people
and patients after myocardial infarction (MI).

Here we shall show that the complex dynamics of heart
rate fluctuation can be described in detail by the set of non-
stationary non-Markov properties on the whole. There are
two problems, which we would like to decide. One of them
is, how important is the discretization and long-range
memory effects in the behavior of cardiovascular systems?
The second problem is defined by the following: whether it
is possible to use nonstationary and non-Markov properties
to diagnose the state of a human heart. We demonstrate that
the solution to these problems is possible to be found.

The paper is organized in the following way. In Sec. II,
we present the nonstationary generalization of our previous
paper [29], used here for the analysis of HRV. In Sec. III we
describe the data and standard technique of ECG in the time
and frequency domains. This section contains technical de-
tails of obtaining experimental data on Holter monitoring of
ECG’s for healthy people and patients after MI. The results
of quantitative calculations of the phase portraits, the
memory functions, their power frequency spectra, the fre-
quency dependence of the first three points in statistical spec-
trum of non-Markovity parameter, and in statistical spectrum
of nonstationarity parameter will be shown in Sec. IV. The
last, Sec. V, contains the discussion of the results obtained
and the conclusion.
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II. STATISTICAL THEORY OF NONSTATIONARY
DISCRETE NON-MARKOV PROCESSES
IN COMPLEX SYSTEMS

Here we shall extend original results of the statistical
theory of discrete non-Markov processes in complex sys-
tems, developed recently by us in Ref. [29], for the case of
nonstationary processes. The theory [29] is developed on the
basis of the first principles and represents a discrete finite-
difference analogy for complex systems of well-known
Zwanzig’-Mori’s kinetic equations [30,31] in the statistical
physics of condensed matter.

We examine a discrete stochastic process X(7+¢), where
t=mr,

X={x(T),x(T+7),x(T+27),....x(T+k7),...,

Xx(T+(N—1)7)}, (2.1)

where T is the beginning of the time and 7is a discretization
time. The normalized TCF

N—t—m

. ,Zo S(T+j7)8(T+[j+m]7)

a(t)= (N—m)o
(2.2)

is a convenient means to analyze dynamic properties of com-
plex systems. Here is entered variance o, fluctuation &x(7T
+,7), and mean value (x),

&= 8x(T+jm)=x(T+/7)—(x),

1 N—1—m
=y 2, (TP
(2.3)
1 N—1-m
<x>=m ,Zo x(T+j7), (2.4)

and discrete time ¢ is equal t=m .

In general, the mean value, the variance and TCF in Egs.
(2.2), (2.3), and (2.4) is dependent on numbers m and N. The
similar situation is especially typical for the case of nonsta-
tionary processes. All indicated values cease to depend on
numbers m and N for stationary processes at m<<N. The
definition of TCF in Eq. (2.2) is true only for stationary
processes.

Now we shall try to take into account this important de-
pendence. With this purpose we shall form two
k-dimensional vectors of state by the process (2.1)

A= (8xq,0x,,0x,...,00_1),

A k= (0%, OX 15 OX g5y X = 1)
(2.5)

When a vector of a state is composed of elements from a
discrete-time sampling, the average and scalar product in Eq.
(1.1) becomes equivalent. In a Euclidean space of vectors of
state (2.5), TCF a(t),
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<AO—I—mA%—1> _
(N=m){oc(N=m)}*

(A1 AV 1)
|A?\/717m|2

a(t)= (2.6)

describes the correlation of two different states of the system
(t=m). Here the brackets (--) indicate the scalar product
of the two vectors. The dimension dependence of the corre-
sponding vectors is also taken into account in the variance
o=0(N—m). As a matter of fact TCF a(¢) represents
cos ¥, where 9 is the angle between the two vectors from Eq.
(2.5). Let us introduce a unit vector of dimension (N—m) as
follows:

ASo
n= —tom 2.7)

JN=m)o?
Then it is possible to present TCF a(¢) (2.2) as follows:
a(t)=(n(0)n(¢)).

From the above discussion it is clear that Egs. (2.6)—(2.8)
are true for stationary processes only. In case of nonstation-
ary processes it is necessary to redefine TCF to take into
account the nonstationarity in the variance o in a line with
Egs. (1.2)—(1.7). For this purpose we shall redefine a unit
vector of the final state as follows:

(2.8)

Ay, (1)
AN ()]
Then for nonstationary processes it is convenient to write

TCF as the scalar product of the two unit vectors of the
initial and final states

n(z)= (2.9)

(A (0)AZ_ (1))
|AY 1, (0)]|AR_ ()]

a(t)=(n(0)n(1))= (2.10)

Now we shall consider dynamics of nonstationary sto-
chastic process. The equation of motion of a random variable
x; can be written in a finite-difference form for 0<j<N
—1 [29] as follows:

Ez At T

(2.11)

Then it is convenient to express the discrete evolution of
single step operator as follows:

X[ T+(G+D)r=0(T+(+ 1) 7, T+j0)x(T+j7).
(2.12)

In the case of stationary process we can rewrite the equation
of motion (2.11) in a more simple form

ox; =7 YU(r)— 1}0x;.

N (2.13)

The invariance of the mean value {x) is taken into account
in an equation, Eq. (2.13),
{U(1)—1}{x)=0.

(xy=U(7){(x), (2.14)
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In case of nonstationary process it is necessary to turn to
the equation of motion for vector of the final state A} . (#)
(k=N—1—m)

AALL()
e L (AT (1), (2.15)
At
where the Liouville’s quasioperator is
L(t,7)=(ir)" YU+ r1)—1}. (2.16)

It is well known that, in general, a stochastic trajectory does
not obey a linear equation, so the general evolution operator

PHYSICAL REVIEW E 65 046107

and Liouville’s quasioperator should probably be nonlinear.
Furthermore, in statistical physics Liouville’s operator acts
upon the probability densities of dynamical variables, as well
as upon the variables themselves such as in the Mori paper
[31]. The evolution of density would indeed be linear. But
Mori, in Ref. [31], used Liouville’s operator in the quantum
equation of motion. In line with Mori [31] Egs. (2.13) and
(2.15) can be considered as the formal and exact equation of
motion of a complex system.

As a matter of fact, the discrete set of values of the dis-
crete evolution operator is considered in Egs. (2.15) and
(2.16). This set is convenient for presenting as a
(N—1)-dimensional diagonal matrix

U(T+7,T) 0 0 0
0 U(T+27,T+7) 0 0
Ult+1,0)= 0 0 O(T+37,T+27) 0 . (2.17)
0 0 0 o U(T+[N—1]7,T+[N-2]7)

Here each diagonal matrix element acts on the corresponding component of the state vector. Then it is convenient to rewrite
the Liouville’s quasioperator in Eq. (2.15) in the form of (N—1)-dimensional diagonal matrix as follows:

O(T+7,7)—1 0 0 0

0 UT+27,T+1—1 0 0

Litn=(in"'x 0 0 O(T+37T+29)—1 -+ 0
0 0 0 o O(THIN=117,T+[N-2]9—1

It is obvious from Egs. (2.17) and (2.18) that the diagonal

elements of matrices U and L are operators themselves. Here
each diagonal matrix element acts on the corresponding
component of the state vector. The matrix representation of
the Liouville’s quasioperator (2.18) and the evolution opera-
tor (2.17) allow to take into account the nonstationary pecu-
liarities of the dynamics of the multidimensional vector of
the final state of the system.

We shall use the formulas (2.15) and (2.18) further only
for compactness.

So, due to the Egs. (2.10) and (2.15)—(2.18) it is possible
to take into account the nonstationarity of the stochastic pro-
cess. Now let us introduce the linear projection operator in
Euclidean space of the state vectors

_A(0))(A(0)A(1)

A(0))(A(0)
A= or ;

~ (A(0)A(0))”
(2.19)

(2.18)

where angular brackets in the numerator represent the bound-
aries of action for the scalar product.

For the analysis of the dynamics of stochastic process
A(?), the vector AJ(0) from Eq. (2.5) can be considered as
the vector of the initial state A(0), and vector A}, ,(¢) from
Eq. (2.5) at value m+k=N—1 can be considered as the
vector of the final state A(?).

It is necessary to note that the projection operator (2.19)
has the necessary property of idempotentity I1?=1II. The
presence of operator Il allows to introduce the mutually
supplementary projection operator P as follows:

P=1-1II, P?>=P, IIP=PII=0. (2.20)
It is necessary to mark that both projectors II and P are linear
and can be recorded for the fulfillment of operations in the
particular Euclidean space. Due to the property (2.10) and
Eq. (1.4) it is easy to receive the required TCF as follows:
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TTA(7)=TIA” ()= AY(0)(n(0)n}", (1)) ¥, (1)

=A(0)a(t)y,(1),

A0

W. (2.21)

yi(t)=

Therefore the projector 11 generates a unit vector along the
vector of the final state A(#) and creates its projection on the
initial state vector A(0).

The existence of a pair of two mutually supplementary
projection operators IT and P allows to carry out the splitting
of Euclidean space of vectors A[A(0),A(t)eA] into a
straight sum of the two mutually supplementary subspaces as
follows:

A=A4"+4", A'=114,

A"=PA. (2.22)

Substituting Eq. (2.22) in Eq. (2.16) we find Liouville’s
quasioperator L in a matrix form

E=LA]1+E12+LAZI+IA/22, (223)
where the matrix elements are introduced
E11=HZH, E12:HZP, L21:P]:H, E22:P]:P
(2.24)

Due to the properties (2.17) and (2.18) Euclidean space of

values of Liouville’s quasioperator W=LA will be generated
by vectors W of dimension £— 1

(W(0)e W, W(t)e W)

w=w'+w", w'=I11W, "=PwW. (2.25)
Matrix elements L ;j of the contracted description
C Ly Ly
L=]| | . (2.26)
Ly Ly

PHYSICAL REVIEW E 65 046107

act as follows: L, from a subspace 4’ to subspace W';

Ly, from A" to W'; Ly, from W' to W"; and L,,, from A"
to W

The projection operators IT and P allow to execute the
contracted description of stochastic process. Splitting the dy-
namic equation (2.15) into two equations in the two mutually
supplementary Euclidean subspaces (see, for example, [29]),
we find

AA'(t) . .

A[ :iLllA,(t)"f'ileA,’(t), (227)
AA"(t) . .
A—t:lelA,(t)+lL22A/’(t) (228)

Following [29] it is necessary to eliminate first irrelevant
part A”(¢) to simplify Liouville’s equation (2.15) and then to
write a closed equation for relevant part A’ (#). According to
[29] this can be realized by the series of successive steps (for
example, see Eqs. (32)—(36) in Ref. [29]). At first a solution
to Egs. (2.28) for the first step can be obtained in a form

AA"(1) B A(t+71)—A"(1)
At T

=iLy A’ (t)+iLpA" (1),

A"(t+ 7)=A"(t)+iTLy A’ (1) +iTL,pA" (1)
={14+i7Ly}A"(t)+iTL, A’ (1)

=U,(t+1,0)A"(t)+i7Ly (t+ 7,0)A'(1).
(2.29)

Here we considered the obvious ratio for operators of the
particular step and introduced designations

022(t+7,t):1+iTE22(t+T,t). (230)

Using Egs. (2.29) and (2.30), we derive successively for the
next step

A'(t+27)=Unp(t+21,t+7)A"(t+ 7)+itLo (1 +2 7,0+ T)A' (14 7)

=Uyn(t+ 1,0+ 1) {Us(t+ 7,t)A"(t) +i7Ly (t+ 7,0) A" (1)} +iTLy (t+ 27t + T)A (1 + 7)

=U(t+27,t+7)Usp(t+ T,l‘)A”(l‘)+iT{Uzz(t+27',t+ VLo (t+ 7,0)A" (1) + Loy (t+2 7,0+ 7)A (1 + 7}

(2.31)

Consequently, for the third step of evolution of the final state vector we obtain

A" (t+37)=Un(t+37,t+ 1) Upp(t +27,t+ 1) Uyt + 7,0) A"(1) + i T{ Uy (t+ 3 7,1+ 27) Uyt + 27,1+ 7) Loy (1 + 7,0) A’ (1)

+ Up(t+37,t+27) Loy (t4+ 27,0+ 7)A' (t+ )+ Loy (143 7,0+ 27)A' (142 7))

(2.32)

046107-5



RENAT YULMETYEYV, PETER HANGGI, AND FAIL GAFAROV

Generally, after a series of mth successive discrete steps,
the final result represents, respectively, the following:

m—1

A'(t+mr)={ T[] Un(t+[j+1]1nt+j7)A"(2)
j=0

m—2

TII Up(t+[j +2]7.t

i'=j

m—1

+i7'2
j=0

+U’+1]7‘))EZI(t+[j+1]T,t+jT)

XA'(t+)7). (2.33)
Here 7' denotes the Dyson operator of chronological order-
ing. Substituting the irrelevant part in Eq. (2.27) to the right
side of Eq. (2.33), we obtain the closed finite-difference
equation for the relevant part of the state vector

A .
EA'(H—mT):iL”(H-[m-l— 1] t+m7)A'(t+mT)

+iﬁ12(t+[m+ 17 t+m7)

X A”(t)

m—1
[TH Upy(t+(j+ 1)1t +)7)
j=0

m—2

m—1
-7 |TH Uy(t+ (' +2) 7t
j=0 R

J'=j

+U'+1]r>]L‘21<r+u+1]m+jr>A'

X(t+7)|. (2.34)

Introducing the modified evolution operator by the formula
m—1

f/(t—i-mT,H—ST):TII Uzz(t+[i+l]7',t+j7'),
Jj=s
(2.35)

where the integers m and s fit the condition m>s, we can
rewrite Eq. (2.34) in the following form:

A .
A—tA'(H-mT):iLll(t—F[m—!- 1]rt+m7)A’(t+m7)

+il p(t+[m+1]) 1t +m7)
m—1

XV(t+mr,)A"(H)—7> L,
=0

X(t+[m+1)r,t+mT)

XV(t+mrt+[j+1]7)

XLy(t+[j+1]mt+)7)A (t+)7).
(2.36)

PHYSICAL REVIEW E 65 046107

This vector equation can be simplified as well. For this pur-
pose we shall take into account the idempotentity property of
the projection operators. Substituting time arguments in Eqgs.
(2.36) t— T, mT—1t we receive ratio

A"(T)=0, V(T+t,T)A"(T)=0. (2.37)

Substituting Egs. (2.21) and (2.22) in Eq. (2.36), we de-
rive a finite-difference kinetic equation of a non-Markov type
for TCF a(t=m7)

A m—1
%Z)\]a(t)— A, > M (t—jr)a(i7). (2.38)
t j=0

Here A, is an eigenvalue and A is the relaxation param-
eter of Liouville’s quasioperator L

_ (AU0)LAY(0))
AN 0

_(ARO0)L1pLyAK(0))  (AY(0)L2AY(0))
1 |AL(0)]? A O)*
(2.39)

and angular brackets indicate a scalar product of the new
vectors of state. Function M(¢#—j7) in the right side of Eq.
(2.38) represents the modified memory function (MF) of the
first order

Yi(t=j7)

Ml(t—jT)=Wml(t—j7'). (2.40)

For stationary processes the function 7y, (¢) turns to unit then
the memory functions M (¢) and m(¢) coincide with each
other. The latter equation is the first kinetic finite-difference
equation for TCE. It is remarkable that the non-Markovity,
discretization, and nonstationarity of stochastic process can
be considered here explicitly. Due to the account of nonsta-
tionarity both in TCF and in the first memory function this
equation generalizes our results obtained recently in Ref.
[29]. We introduced the following designations for functions
in Egs. (2.38) and (2.40):

(W () (T+mr,T+j)TW,(j 7))

W1 (0)||W,(1—j7)] ’
(2.41)

m(t—jr)=
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W=7
yl(t_]T)_ |W1(0)| s (2~42)
W, (t—j7)=V(T+1,T+;7)L,A%0). (2.43)

The modified evolution operator in Eq. (2.42) has prop-

erty V(T+t,T+t)=1. It should be mentioned that a new
dynamic parameter of nonstationarity y;(¢—;7), Eq. (2.42)
appears in the first MF M (t—j7). On the one hand, as
indicated by Eq. (2.41), short MF m (¢—j7) represents an
ordinary memory function of the first order, normalized with
the view of the property of nonstationarity.

It is important to mark that the memory function m(j 7)
is a normalized TCF for a new random variable Wy,

W, ()=V(T+t,T)LyAJ(0). (2.44)
Now contracted Liouville’s quasioperator
LW=L,,=PLP (2.45)

determines the time evolution. Owing to the discreteness of
time series and Egs. (2.17) and (2.18) the dimension (k
—1) of new state vector W, is a unit less than dimension (k)
of initial vector Wy=AY. It should be taken into account in
numerical calculations. Now let us write in an obvious form
an equation of motion for W;(jr) with regard to Egs.
(2.15)-(2.18), (2.29), and (2.30)

AW (1) W, (t+7)—W,(1)

At T :iZZZWI(t):iilwl(t).

(2.46)

For a new random dynamic variable W,(¢) it is possible to
repeat all the above-mentioned arguments, which we have
used at finding the kinetic equation (2.38). Then it is possible
to find the second equation for the short normalized memory
function m (j 7).

However, it is more convenient to use the Gram-Schmidt
orthogonalization procedure [32,33] for the set of new dy-
namical orthogonal variables

(Wo . W,0) =8, ([ W), (2.47)

where &, ,, is Kronecker’s symbol. It is easy to find the
recurrence formula for the orthogonal variable of different
orders (n=2)

Wo=A0), W, ={iL—\}?W,, (2.48)
W2:{i1:_7\2}wl — AW,
Wi={iL = \;}W, = A, W, — v, W,
W4:{ii N W3 = AW — 1, W — 1 W,

Wn+1 z{ii_)\n-%—l}wn_Anwn—l - Vn—lwn—Z
_lu‘n—ZWn—3+. "
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with notations for eigenvalues A\, and relaxation parameters
A, V,_1,hy—2,... of Liouville’s quasioperator

. <Wn7 II:Wn>

Twr o M e, o B

. <Wn—2zwn>
Vo171l 7T 12
! |Wn—2|2
:i<wn—3f’wn>
Ho-2 |Wn*3|2 T

From Egs. (2.48) and (2.49) it will be obvious that in the
cited Gram-Schmidt procedure from each new vector of state
one should subtract the projection on to all previous vectors.
Thereafter the orthogonalization (2.47) is complete. In the
present form the new vector W, would necessarily be per-
pendicular to the preceding vectors W, with k<<n—2. This
problem affects the coupled finite-discrete equations for the
memory functions, a central result in this paper.

As the initial stochastic process W (#)=A(¢) is nonsta-
tionary, all subsequent orthogonal dynamic variables W, (¢)
[see, Eq. (2.44)] also describe nonstationary process. It is
necessary to take into account that in this case all eigenspec-
trum values do not disappear, \,# 0. It is important to note
that relaxation parameters A,, v,, &,,... will reflect non-
equilibrium and nonstationary properties of the system con-
sidered. It is interesting to note that in the statistical theory
Zwanzig and Mori a relaxation parameter A, can be only
positive. Therefore, unlike the case of physical systems, nu-
merical values of parameters A ,,v,_|,,_2,... can be both
positive and negative in case of complex systems.

As noted above, by the simple, but cumbersome calcula-
tions it is possible to show that the first short memory func-
tion m(¢) represents a normalized TCF of the first dynamic
variable W,

W, (0)W, (1)
m(t)=(n,,(0)n,(t))= W’

W, (t)=V(T+¢,T)W,(0). (2.50)
Here n,,(0) and n,,(#) are the unit vectors in Euclidean space
W [W,(0),W,(t) e W,] of the new orthogonal vectors of
the state with dimension equal (k—1).

Following Egs. (2.19)—(2.24) it is possible to introduce
the sequence of projection operators II, in sequence of Eu-
clidean subspaces W,(W,(0),W,(¢) e W,) with n=1

W, (0)(W,,(0)W,(1))

I, W,(t)= |Wn(0)||Wn| =W, (0)m, (1) y,(1),
W, (0)] @51

0= w0

Alongside a set of projectors I1,, it is possible to introduce
a set of mutually supplementary projectors P,
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Pn:]‘_HVl’ PI’IHVl:HnPﬂ:O’

HnHm: 5n,mHn > Pan: 5m,nPn .
(2.52)

Each pair of the projection operators II,,, P, splits the
appropriate Euclidean space W, of vectors of state W, ,
W, (%) e W, into the two mutually supplementary subspaces

W,=Ww,+w,

Wr,z:Han,s WZ:Pan'

(2.53)

Now we derive the discrete equation of motion of variable
W..(0),

AW"(t)—lw +7)—W ! pin 1lW
At _;{ n(t T) n(t)}_;{ (T) } n(t)
=iL"W (1). (2.54)
Here L™ is a new Liouville’s quasioperator
LW=LYW=(in) " {7"(n)—-1}=P,LY% "P,.
(2.55)

Following the projection technique described above, we re-
ceive a chain of connected kinetic finite-difference equations
of a non-Markov type for normalized short memory func-
tions m ,(¢) in Euclidean space of state vectors of dimension
(k—n) (t=m7,n=1)

Am.(t m—1

A—nt():)\/1+1mn(t)_ TAI1+IJZ() mn+1(j7-)mn(t_j7-)

7n+1(jT)y'1+l(t_jT)
X( 0 ] 230
mo o (1)= (W, 1(0)W,, (1))
el |Wn+l(0)||wn+1(t)|,
.. IWn(mI]

Here v,(j7) is the nth order nonstationarity function.

The set of all memory functions m (), m,(t), mxz(¢),...
allows to describe non-Markov processes and statistical
memory effects in the considered nonstationary system. For
the particular case we receive a more simple form for the set
of equations (2.47) for the first three short memory functions
(t=mr)

Aa() G (D) .

X ——TAIJZO ml(m(T}a(z—m
+Na(t),

Amy(1) < [ mUnw—jn .

Al __TAsz() mz(ﬂ')(T}mM—ﬂ)
+)\2ml(t)a
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Amy(1) . () ys(t—j7)
=AY W(ﬂ){%]mz(ﬁﬂ)

Here relaxation parameters A;, A,, and A are determined
by Eq. (2.49), and the nonstationarity functions v, (z) are
introduced in Egs. (2.42) and (2.57). Now by analogy with
Eq. (1.6) we can introduce a set of dynamic parameters of
nonstationarity (PNS) for the arbitrary nth relaxation level

LT, 0)=1=y,(t)=1=y,(T,2). (2.59)
The whole set of values of dynamic PNS v,(#) determines
the broad spectrum of nonstationarity effects of the consid-
ered process.

The obtained equations are very similar to the well-known
Zwanzig’-Mori’s kinetic equations [30,31] in the nonequilib-
rium statistical physics of condensed matter. Let us mark
three essential distinctions of our Egs. (2.56) and (2.58) from
the results of Refs. [30,31]. In Zwanzig’-Mori’s theory the
key moment in the analysis of considered physical systems is
the presence of a Hamiltonian and an operation of a statisti-
cal averaging carried out with the help of the quantum den-
sity operator or the classic Gibbs distribution function. In the
examined case both Hamiltonian and distribution functions
are absent. In physics exact classic or quantum equations of
motion exist, therefore, Liouville’s equation and Liouville’s
operator are useful in many applications. The motion of both
individual particles and the whole statistic system is de-
scribed by states with smooth time. Therefore, for physical
systems it is possible to use effectively the methods of inte-
grodifferential calculus, based on mathematically habitual
(but from the physical point of view difficult for understand-
ing) representation of infinitesimal variations of values of
coordinates and time. By nature the majority of complex
systems is discrete. As is well known, discretization is inher-
ent in a wide variety of both classic and quantum complex
systems. It compels us to reject the concept of infinite small
values and continuity and turn to the discrete-difference
schemes. And, at last, the third feature is connected with
incorporating the nonstationary processes into our theory.
The Zwanzig’-Mori’s theory is true only for stationary pro-
cesses. Due to the introduction of normalized vectors of
states and the use of the appropriate projection technique our
theory allows to take into account nonstationary processes.
The last ones can be described by the non-Markov kinetic
equations together with the introduction of the set of nonsta-
tionarity functions.

The nonstationary theory advanced here, essentially dif-
fers from stationary case [29]. The external structure of the
kinetic equations remains constant. As well as earlier, they
represent the kinetic equations with memory. However, the
functions and the parameters, which are included in these
equations, differ appreciably from each other. As we have
already marked above, nonstationarity effects are shown both
in functions vy,(¢), and in spectral and kinetic parameters.
Therefore, it appears possible to carry the careful account of
nonstationarity effects in complex systems.
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FIG. 1. The time record of the four first orthogonal variables
Wy, Wi, W,, and W5 of healthy person, Kshf. (a)—(d), and a
patient, Sibg., after MI (e)—(h) from the time dynamics of RR inter-
vals of the ECG’s. In both cases the disappearance of trends is
appreciable. The scales of fluctuations of the orthogonal variables
practically do not change.

III. EXPERIMENTAL DATA AND PREPROCESSING
A. Data

Dynamic ECG recording has been done on three chan-
nels. The bipolar orthogonal channel X is channel N1, Y is
channel N2, and Z is channel N3. Our analysis is executed
on the channel N1. The RR recordings were drawn from the
Division of Cardiac Surgery of 6th Kazan city Hospital (Ka-
zan, Tatarstan) congestive heart-failure database comprising
30 records from normal patients (age: 1831 years; mean: 22
year) and 14 records from severe congestive heart-disease
patients (age: 32—67 years, mean: 55 years). The recordings,
which form a standard database for evaluating the merits of
various measures for identification of heart disease, were
made with a standard Holter Monitor (Astrocard Holter sys-
tem, 2F), digitized at a fixed value of 250 Hz. We use the
long-time series to 2'®=65536 beats to eliminate spurious
effects due to variations in data to nonsinus beats associated
with artifacts.

B. Patients

In this preliminary study, we have included a sample of
patients subdivided into two groups. The first group consists
of 30 healthy persons. In the second group there are 14 pa-
tients after MI with weak electrical risk (arrhythmias of low
degree).

C. Traditional analysis

These techniques can be divided into time and frequency
domains. In the time domain we have calculated the follow-
ing standard functions: the phase portrait in plane projections
of the multidimensional space of the dynamic orthogonal
variables, the time correlation function throughout the ob-
served time domain, and the set of the first three junior
memories, and the first four nonstationarity functions. Also
we have determined the following power spectra (PS): of the
initial TCF’s first, second, and third short MF’s, PS of the
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FIG. 2. Phase portraits of RR intervals dynamics from human
ECG’s in a plane of the two various orthogonal variables (W;, W)
for the healthy person (Kshf.), (a)—(f). In cases (a), (d), and (c) the
phase clouds are stretched along a |, axis and they look similar to
a pancake. In three other cases (d)—(f) they become more and more
symmetrical and acquire spherical forms.

first, second, and third points of the statistical spectrum of
non-Markovity parameter and PS of the first four nonstation-
arity parameters.

IV. THE QUANTITATIVE ANALYSIS OF LONG-RANGE
MEMORY EFFECTS OF LONG-TIME DYNAMICS
OF HUMAN ECG’S RR INTERVALS

In this section we shall present some results of the quan-
titative analysis of random dynamics of RR intervals of a
healthy person and a patient after a MI ECG’s within the
framework of the theory developed in Sec. II. Figures 1-6
present typical examples of phase portraits, the power spec-
tra of TCF and junior short memory functions and the fre-
quency spectra of the first three points of a statistical spec-
trum of non-Markovity parameter. Figures 7 and 8
demonstrate the results of calculations of the statistical pa-
rameter of nonstationarity and its power spectrum for long-
time series of RR intervals for the ECG’s of healthy persons
and patients after MI. In Figs. 1(a)—1(h) the representative
time records of RR intervals of the ECG’s of a healthy person

1000
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o
¥ o0 ; o
Ad
500 s00F o JE
1000 1000
500 500 0 500
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1000 1000 1000
d) 8) f)
500 500 . . 500
Ex E 'R * & R .
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FIG. 3. Phase portraits of RR intervals dynamics from human
ECG’s in a plane of two various orthogonal variables (W;,W;) for
patient Sibg. on the 20th day after M, (a)—(f). In all six plane
projections there is a strong stratification of the phase clouds. Thus
there are the shoots similar to the legs of an octopus. The similar
stratification can serve as a serious indicator of MI.
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FIG. 4. (a)-(d) Power spectra
pi(w), i=0,1,2,3 for the healthy
person (Kshf.) from time dynam-
ics of RR intervals of human
ECG’s in a double-log scale. In
the spectrum of initial TCF self-
organized criticality is observed.
With the growth of order of the
memory function there is a certain
reduction of the linear (fractal)
site. Besides, a high-frequency
peak appears as a reflection of res-
piratory arrhythmia.

FIG. 5. (a)—(d) Power spectra
pi(w), i=0,1,2,3 for the first four
junior memory functions for the
patient (Sibg.) after MI from the
time dynamics of RR intervals of
human ECG’s in a double-log
scale. All spectra have linear sites
with fractal frequency dependence
and there are no high-frequency
peaks connected with respiratory
arrhythmia. As a rule, fractal ex-
ponents are smaller here than in
the case of a healthy person.

FIG. 6. The frequency depen-
dence of the first three points of
non-Markovity parameter for the
healthy person (Kshf.) (a)—(c) and
patient (Sibg.) after MI (d)—(f)
from the time dynamics of RR in-
tervals of human ECG’s. In the
spectrum of the first point of NMP
€,(w) there is an appreciable low-
frequency (long-time) component,
which  concerns the quasi-
Markovian processes.  Spectra
NMP €,(w) and NMP €;(w) fully
comply with non-Markovian pro-
cesses within the whole range of
frequencies.
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[Figs. 1(a)—1(d)] and a patient after MI [Figs. 1(e)—1(h)] are
displayed for comparison. The records are given for the first
four orthogonal variables W, [Figs. 1(a) and 1(e)], W, [Figs.
1(b) and 1(f)], W, [Figs. 1(c) and 1(d)], and W5 [Figs. 1(d)
and 1(h)]. Two circumstances have drawn our attention. The
initial variable W, for the healthy person has a higher value
than for the patient after MI. In comparison with the fluctua-
tion W, the fluctuation scales W, and W5 grow insignifi-
cantly both for the healthy person and for the patient after
MI. However, the scale and amplitude of this fluctuation are

200 400
t [100 7]

600

much higher for the patient after MI than for the healthy
person.

In Figs. 2(a)-2(f) and 3(a)-3(f) the phase clouds for the
healthy person [Kshf, Figs. 2(a)-2(f)] and the patient after
MI [Sibg., Figs. 3(a)-3(f)] in six plane projections (W;,W))
of first four orthogonal dynamic variables W;, i#;=0,1,2,3
are shown. In phase portraits of the healthy person [Figs.
2(a)-2(f)] in a plane (W;,W;) there is some asymmetry of a
phase cloud along variable W;(i=1,2,3) at value j=0. But
the projection of a phase cloud in planes (W;,W;) with i,
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TABLE 1. Some kinetic and relaxation parameters in comparison for healthy and patient after MI.

Nl A(m7h) As(mh) A7) Ax(17?)
Healthy ~0.0267 ~0.907 —0.974 0.005 —0.074
Patient after MI ~0.1676 ~1.201 ~1.048 0.254 0.156

=1,2,3 is characterized by the symmetrical distribution of
the phase cloud. In the case of patients after MI some fea-
tures are evident. The basic feature is a fingerlike scattering
of the phase cloud in planes W,; with numbers j=1,2,3.
This scattering is so specific, that its occurrence represents
the indicator of MI. The next feature is an octopuslike dis-
tribution of the phase clouds in the other three planes [see,
Figs. 3(d)-3(f)].

In Figs. 4(a)-4(d) the power spectra of TCF a(t)
=m(t) [Fig. 4(a)], the first [Fig. 4(b)], the second [Fig.
4(c)], and the third [Fig. 4(d)] MF’s of the dynamics of RR
intervals of the ECG for the healthy person (Ksfh., y) are
represented. The fractal peculiarities are found for the spec-
tra of all memory functions (the zero (TCF) and the first, the
second, and the third orders [Figs. 4(a) and 4(c)]). There
appears a frequency dependence such as u(w)~w™ ¢, i
=0,2. Fractal behavior exists in full frequency range only for
the initial TCF [see, Fig. 4(a)]. The power spectra of the first
three junior MF’s u;(w), i=1,2,3, depict the nonfractal be-
havior in frequency domain 10 2<w<0.5fu., 1fu
=2/ 71, where the set of peaks is connected with the fast
alteration of the first three orthogonal variables W, W,, and
W, which describe a human cardiovascular system (CVS)
state.

Thus, the sudden emergence of a group of high-frequency
peaks in the spectrum of the healthy person for functions
Mo, ms(w) contradicts the standard point of view [7,17,21]
and can serve as the proof of latent pathology in human CVS
activity.

Let us return again to fractal behavior in Figs. 4(a) and
4(c). The self-similar behavior of spectra u;(w) and w,(w)
for the healthy person is accompanied by a number of ef-
fects. The effects of respiratory arrhythmia (RA) are con-
spicuous in both Figs. 4(b) and 4(d). In a spectrum of the
initial TCF [Fig. 4(a)] the influence of RA can be found on a
frequency of 0.11 fu. in the form of a weak spectral splash.
In the spectrum of the next short MF’s the same influence of
RA is appreciably amplified owing to the Syuyumbike Tower
effect [34]. The fractal behavior of all spectra is also associ-
ated with the phenomenon of the self-organized criticality
(SOC) [35,36]. Nevertheless, the lengths of the linear seg-
ments in Figs. 4(a) and 4(d) are different. For example, for
the initial TCF [see, Fig. 4(a)] criticality exists within the
frequency range from 0.5 fu. up to 5xX 10~ * fu., and SOC
is characteristic for the whole registered frequency area. Vice
versa, SOC in the short MF’s [see, Figs. 4(c)—4(d)] is seen
only in the restricted frequency area from 10~2fu. up to
frequency 5X107* fu. As a result the restricted self-
organized criticality (RSOC) is significant in the spectra of
all short MF’s.

The power spectra for patients after MI and for healthy
persons differ a little. Fractality and criticality also exist in

the spectra of patients after MI, but they have essentially
limited character. Criticality is appreciable in the linear re-
gion for initial TCF [see, Fig. 5(a)] in the frequency interval
from 0.4 fu. up to frequency 0.9 10~ fu. and for all short
MF’s [Figs. 5(b) and 5(c)] in the frequency interval from 2
X 1072<w<6Xx10"°fu. The packets of spectral lines ap-
pear in the power spectra of short MF’s [Figs. 5(b) and 5(d)]
in a high-frequency region from 2X 1072 f.u. up to 0.5 fu.

Table I contains some kinetic and relaxation parameters of
stochastic dynamics of RR intervals of human ECG’s for
healthy persons and patients after MI. It is possible to notice
some similarity of our kinetic parameter \; with well-known
Lyapunov’s exponents. It is important to note that all A; are
only negative numbers (\;<0). Relaxation parameters A;
are both positive and negative. Numerical changes of these
parameters can appear useful to diagnose CVS diseases. For
example, it is visible from Table I that the transition from the
healthy person to the patient after MI is accompanied by
sharp change of parameter A\, (almost 6.28 times) and pa-
rameter A; (almost 50 times).

By analogy with Ref. [29] it is convenient to define the
generalized non-Markov parameter for the frequency-
dependent case as

€(w)= (4.1)

Mil(w)] 1z
mi(w) ’

where i=1,2, ..., and wu;(w) is the power spectrum of the
ith memory function. It is convenient to use this parameter
for quantitative description of long-range memory effects in
the system considered together with memory functions de-
fined above. The behavior of spectra of the first three points
g;(w) of the statistical spectrum of NMP for the healthy
person [Figs. 6(a)—6(c)] and the patient after MI [Figs. 6(d)—
6(f)] is rather informative. Careful analysis of these data
shows that the dynamics of RR intervals is non-Markovian
for the second and the third relaxation levels both for the
healthy person and for the patient after MI. As seen from
Figs. 6(b),6(c) and 6(e),6(f) the similar behavior arises for
the first and the second non-Markovity parameters €,(w)
~1 and €;(w)~1, everywhere within the whole frequency
region. The behavior of €;(w) for the patient after MI within
the whole frequency region [see, Fig. 6(d)] is typical for

TABLE II. Set of fractal exponents for power spectra of initial
TCF and first three memory functions.

e ay @) as
Healthy 1.7662 2.0177 2.2015 2.0914
Patient after MI 1.5852 1.7996 1.9013 2.0033
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non-Markov relaxation scenario. A sharp change of value of
parameter €,(0) from the healthy person [€;(0)~71.6] to
the patient after MI [ €,(0)~11.0] (almost 6.5 times) is valu-
able for pathologic data sets based on the difference of these
non-Markov properties. Careful analysis of Figs. 6 reveals a
less prominent non-Markov behavior for the patient after MI
rather than for the healthy person. CVS of the healthy person
represents the more chaotic system whereas CVS of the pa-
tient after MI shows evidence of the more ordered system.

Table II contains a number of fractal exponents for the
power spectra of the initial TCF and the first three junior
memory functions for the healthy person and patient after
MI. As may be seen from these tables crucial differences
exist in fractal exponents «q, «;, a,, and a5 for the healthy
person and the patient after MI. They are trustworthy means
of distinguishing healthy cases from cardiac diseases.

In Figs. 7 and 8 numerical results of calculation of non-
stationarity effects for the healthy person [Figs. 7(a)—7(d),
and 8(a)—8(d)] and the patient after MI [Figs. 7(e)—7(h) and
8(e)—8(h)] are displayed. The time behavior of these effects
is presented in Figs. 7(a)—7(h) through the time dependence
of nonstationarity functions vy;(#). Frequency behavior is
shown in Figs. 8(a)—8(h) by the frequency dependence of PS
v;(w) of functions vy,(¢). Figures 7(a)—7(f) convincingly dis-
play that according to our classification (1.7) the long-term
dynamics of RR intervals of human ECG’s, both for the
healthy person and the patient with cardiac disease, concern
the case of intermediate nonstationarity. From Figs. 8(a)—
8(h) we can state with assurance that all PS v;(w) both for
the healthy person and the patient after MI, i=0,1,2,3 dem-
onstrate the similar fractal-like behavior with power law de-
pendence w ™ “; exponents are in the range 0.47<@<<0.49 as
a rule. But the values of exponent « for the patient after MI
for the case i=2 (a;=0.44285) and i=3 (a3=0.44045)
are far outside of this range. These values of fractal exponent
differ drastically from the similar values for PS for patients
after MI and the first points of the statistical spectrum of
NMP.

We emphasize especially that frequency spectra intro-
duced above are characterized by a specific alternation of
fractal spectra and spectra such as the color noise. In a cer-
tain sense the similar alternation reminds the peculiar alter-
nation of effects of a Markov and non-Markov behavior for
hydrodynamic systems in statistical physics of condensed
systems detected for the first time in papers [37,38]. The fine
specificity of such alternation appears essentially diverse for
healthy persons and patients after MI. It is important to note
that the similar alternation is completely absent in frequency
spectrums of non-Markovity for the short-time series of RR
intervals of human ECG’s both for healthy persons and pa-
tients of various heart diseases [29].

As the research held by us demonstrates such alternation
of non-Markov effects is typical only for long-time (Holter)
series of RR intervals of human ECG’s. It allows to use the
fine points of this behavior for more comprehensive and de-
tailed diagnosis of human CVS diseases.

V. DISCUSSION OF RESULTS AND CONCLUSION

In the present paper we have constructed the kinetic
theory of discrete nonstationary non-Markov processes in
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complex systems of various nature. From the very beginning
we developed the theory on the basis of nonstationary TCF.
For finding the latter we have taken advantage of the general
and exact definition of correlation coefficient of the stochas-
tic processes in the probability theory. The construction of
nonstationary TCF allows one to get the linear projection
operator acting in a Euclidean space of nonstationary dy-
namic vectors of states. For the analysis of nonstationary
dynamics of stochastic process we have constructed discrete-
difference stochastic equation of motion, Liouville’s quasio-
perator and evolution operator in the form of diagonal ma-
trices. We have executed careful investigation of stochastic
nonstationary dynamics of multidimensional vectors of ini-
tial and final chaotic states. To find the nonstationary TCF we
have taken advantage of the technique of projection opera-
tors, developed in our previous paper [29]. We have espe-
cially updated it here to analyze nonstationary stochastic pro-
cesses.

Due to splitting of a stochastic Liouville’s equation into
two mutually supplementary Euclidian subspaces we could
receive the chain of connected finite-difference kinetic equa-
tions for discrete nonstationary TCF and MF’s. Kinetic pa-
rameters and discrete functions (TCF and MF’s of different
orders) in this set of equations can be easily found from
experimental time series. It makes possible to apply our
theory in the study of the broad class of discrete nonstation-
ary stochastic processes with a long-range memory. It is nec-
essary to mark one more relevant feature of the developed
theory. Our theory has certain analogy with the famous
Zwanzig-Mori theory in statistical physics. But there are two
key differences. First, our results are true for non-Hamilton
systems, where there are no Hamiltonian and exact equations
of motion. Second, our theory is specially adapted to account
for the step-type behavior of the underlying process with
discretization time 7. It is easy to notice that our theory con-
tains Zwanzig’-Mori’s results as the specific case. For this
purpose it is necessary to proceed to a limit 7—0 and to
replace the stochastic Liouville’s quasioperator on the physi-
cal quantum or classical Liouville’s operator.

Another relevant result of this paper is the quantification
of discrete nonstationary non-Markov stochastic processes in
heart rate variability for healthy persons and for patients after
MI by memory functions, non-Markovity and nonstationary
parameters, and a long-range memory. We have established
the existence of a large variety of interesting physical effects
in different nonlinear spectra. Among them it is necessary to
mark the fractal-like behavior of PS with power frequency
law, the phenomena of SOC and RSOC, the spectral behav-
ior of some frequency spectra in the form of white and color
noises, the existence of the legibly expressed qualitative and
quantitative differences in spectral and kinetic characteristics
for healthy persons and patients after MI. Our preliminary
study shows that the indicated differences can serve a trust-
worthy method of diagnosis of the state of cardiovascular
systems for healthy persons and patients. The last circum-
stance is of special value for the results of theory developed
here. An interesting feature of the advanced theory is that it
justifies not only the change of absolute values, but also the
sign of the relaxation parameters. Change of a sign of param-
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eter is unattainable in the standard physical theory of station-
ary processes.

One of the most interesting experimental results of our
study consists in the reliable registration of hydrodynamic
effects of alternation of Markov and non-Markov effects in
the behavior of power spectra for cardiac time series. The
analysis of these terms provides insight into the nature of
chaotic dynamics of HRV. All the abovementioned are in
good agreement with the basic results of recent publications
[39-43]. In particular, in Ref. [39] is offered an approach for
analyzing signals with long-range correlations by decompos-
ing the signal increment series into magnitude and sign series
and analyzing their scaling properties. It is well known that
many complex systems share statistical characteristics. For
instance, in Ref. [40] a turbulence analogy is proposed for
the long-term heart rate variability of healthy humans. In
Ref. [41] it was revealed that when fluctuation in physical
activity and other behavioral modifiers are minimized, a re-
markable level of complexity of heart beat dynamics re-
mains, while for neuroautonomic blockage the multifractal
complexity decreases. Introducing a model of competitive
population dynamics of biological species with clock dynam-
ics incorporated, Daido [42] has shown that periods equal or
close to that of the environment do not always guarantee
overwhelming superiority and can even lead to extinction.
Stanley and co-workers [43] have analyzed a complex
rhythm of heart beats for patients at high risk for sudden
cardiac death. They have shown that the rhythm can be de-
scribed by a theoretical model consisting of two interacting
oscillators with stochastic elements. Bunde ef al. [44] have
studied the heart rhythm in the different sleep stages [deep,
light, and rapid eye movement sleep] that reflect different
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brain activities for both healthy subjects and patients with
moderate sleep disorder. They have found a sleep phase
finder that is based on the different heart rthythm in the dif-
ferent sleep stages, supplementing the quite tedious evalua-
tion of the sleep phases by the standard electrophysiological
procedures.

Thus, our observation suggests strongly that the fractal
frequency behavior is one of the basic properties of the hu-
man cardiovascular system. From our standpoint the funda-
mental property of a human heart consists in the specific
alternation of Markov and non-Markov memory effects. It is
quite probable that the last conclusion is the key moment in
understanding the physics of alive systems.
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